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Abstract—Modern HPC systems employ burst buffer instal-
lations to reduce the peak I/O requirements for external stor-
age and deal with the burstiness of I/O in modern scientific
applications. These I/O buffering resources are shared between
multiple applications that run concurrently. This leads to severe
performance degradation due to contention, a phenomenon called
cross-application I/O interference. In this paper, we first explore
the negative effects of interference at the burst buffer layer and
we present two new metrics that can quantitatively describe
the slowdown applications experience due to interference. We
introduce Harmonia, a new dynamic I/O scheduler that is aware
of interference, adapts to the underlying system, implements a
new 2-way decision-making process and employs several schedul-
ing policies to maximize the system efficiency and applications’
performance. Our evaluation shows that Harmonia, through
better I/O scheduling, can outperform by 3x existing state-of-
the-art buffering management solutions and can lead to better
resource utilization.

Index Terms—Burst Buffers, I/O Scheduling, I/O Interference,
Multi-Tenancy, I/O Policies, Shared Buffers

I. INTRODUCTION

Modern HPC applications generate massive amounts of
data. However, the improvement in the speed of disk-based
storage systems has been much slower than that of memory,
creating a significant I/O performance gap [1], [2]. In a large
scale environment, the underlying file system is usually a
remote parallel file system (PFS) with Lustre [3], GPFS [4],
and PVFS2 [5] being some popular examples. However, as we
move towards the exascale era, most of these file systems face
significant challenges in performance, scalability, complexity,
and limited metadata services [6], creating the so called I/O
bottleneck which will lead to less scientific productivity [7],
[8]. Non-Volatile Memory Express devices (NVMe), Solid-
State Drives (SSD), and shared burst buffer (BB) nodes have
been introduced to alleviate this issue [9], [10], [11]. Several
new supercomputers employ such low-latency devices to deal
with the burstiness of I/O [12], [13], reducing the peak I/O
requirements for external storage [14]. For example, Cori
system at the National Energy Research Scientific Computing
Center (NERSC), uses CRAY’s Datawarp technology [15]. Los
Alamos National Laboratory Trinity supercomputer uses BBs
with a 3.7 PB capacity and 3.3 TB/s bandwidth. Summit in
Oak Ridge National Lab will also employ fast NVMe storage
for buffering [16]. In fact, IDC reports [17] that as solid
state devices become more affordable (2.2x price premium
by 2021), storage systems will be equipped with SSD-only
deployments making disk-based PFS archival in nature. As

multiple layers of storage are introduced into HPC systems,
the complexity of data movement among the layers increases
significantly, making it harder to take advantage of the high-
speed or low-latency storage systems [18].

Another characteristic of modern supercomputers that leads
to challenges regarding I/O access is multiple concurrent jobs.
Systems like Sunway TaihuLight, the top supercomputer in the
Top500 list, have million of cores and run multiple applica-
tions concurrently [19]. Due to the sharing of resources such as
compute nodes, networks, remote PFS, performance variability
is observed [20]. This phenomenon is called cross-application
interference and is common in most HPC sites [21]. The
interference generally originates from concurrent access by
multiple applications to shared resources. While computing
and network resources can be shared effectively by state-
of-the-art job schedulers, the same cannot be said about the
storage resources. In fact, [22] and [23] suggest that I/O con-
gestion, within and across independent jobs, is one of the main
problems for future HPC machines. A lot of work has been
done in PFS to mitigate the effects of I/O interference [19],
[24], [25], [26], [27]. However, with the wider adoption of
extra layers in the memory and storage hierarchy, such as BBs,
extra care needs to be applied to coordinate the access to this
new layer by multiple applications that shared it.

There are several characteristics of shared I/O buffering
nodes that make scheduling I/O to this new layer quite
challenging. First, BB nodes are placed either inside or very
close to the compute-node network fabric. The lower access
latency and the higher bandwidth of these networks change
the way applications perform I/O compared to a traditional
remote PFS that uses a slower network. Second, BBs can
be used in several ways: as a cache on top of the PFS as a
fast temporary storage for intermediate results or out-of-core
applications (data may or may not need to be persisted), and
as an in-situ/in-transit visualization and analysis. These use
cases are fundamentally different from a file system where all
I/O requests are persisted and strongly consistent. Lastly, BBs
are presented to applications through reservations made to the
central batch scheduler (e.g., Slurm [28]) whereas I/O access
to PFS is performed via a mounting point and interleaved
requests are serviced by the file system scheduler in a first-
come-first-serve fashion. The above characteristics constitute
traditional PFS I/O schedulers not suitable for this new storage
layer and special attention in scheduling the I/O is needed to
mitigate the negative effects of cross-application interference.



In this paper, we propose Harmonia (greek word meaning
“in agreement or concord”), a new dynamic I/O scheduler tai-
lored for systems with shared I/O buffering nodes. Harmonia
is a scheduler that is interference-aware, operates in a finer
granularity, and is adaptive to the current system status. Our
proposed 2-way design allows Harmonia to make scheduling
decisions by collecting information from applications (i.e., in-
tention to perform I/O) and the buffering nodes (i.e., available
or busy device status) at the same time. We also present a
novel metric, called Medium Sensitivity to Concurrent Access
(MSCA), that captures how each type of buffering medium
(i.e., NVMe, SSD, HDD) handles concurrent accesses. This
metric helps Harmonia make better decisions when scheduling
I/O by tuning the concurrency. We investigate how interference
affects the application’s execution time and we model this
performance degradation by introducing a metric called Inter-
ference Factor (If ). Harmonia uses a dynamic programming
algorithm to optimize the scheduling of individual I/O phases
on available buffers. By over-provisioning buffer nodes and
by overlapping computation with I/O, Harmonia is able to
reduce the scheduling cost in several metrics such as maximum
bandwidth, minimum stall time, fairness, and buffer efficiency.
Lastly, Harmonia offers the infrastructure to system admin-
istrators who can now offer discounted scheduling to their
users. This effectively means that users will have the flexibility
to “pay” (e.g., CPU hours or $ in reservation) according to
their I/O needs. If an application is willing to allow its I/O to
run longer, then Harmonia can “charge” this user less while
still offering competitive performance. Scheduling discounts
can easily be implemented by Harmonia’s complete set of
scheduling policies. The contributions of this work are:

• we introduce two new metrics that model performance
degradation due to concurrent accesses and interference
(i.e., resource contention), Section III.

• we present the design and implementation of a new BB
I/O scheduler, called Harmonia, Section IV.

• we introduce three techniques to perform I/O Phase
Detection, Section IV-A.

• we propose five new scheduling policies that optimize the
performance of the buffering layer, Section IV-B.

II. BACKGROUND AND MOTIVATION

Typically in HPC, storage systems are subjected to periodic,
intense, short I/O phases (or bursts) that usually occur between
computation phases and mostly consist of defensive I/O (i.e.,
simulation checkpoint) [29], [30], [31]. To better handle these
I/O intensive phases, a new storage layer that sits between the
application and the remote PFS has been introduced. This layer
is commonly called burst buffers and its main functionality is
to quickly absorb I/O requests from the application processing
elements and asynchronously push them down to the PFS [32].
Burst buffers have evolved well beyond increasing the total
I/O bandwidth available to applications and optimizing the
I/O operations per second (i.e., IOPS) [14]. The addition
of BBs to any computing infrastructure can make storage
solution smarter and more efficient [33]. There are several

BB deployments in supercomputers of today. These include,
Cori at NERSC, Trinity at Los Alamos National Laboratory
and KAUST at Shaheen Supercomputing Laboratory. All these
use Cray’s DataWarp Technology [15] for their BB manage-
ment. NERSC demonstrated [34] an improvement of 60%
performance on balanced usage over applications not using BB
acceleration. However, they also stated that when two compute
nodes share a BB node, their accesses compete for bandwidth
which resulted in performance degradation for both jobs. This
phenomenon is even stronger for data-intensive applications.

Burst buffers are proven to be valuable and efficient in
accelerating the I/O but the software that manages this new
layer is still new and not as mature as other traditional storage
solutions such as PFS. We identify several challenges when
scheduling I/O on shared buffering nodes [35]:
a) Reserving BB allocations through the main system batch
scheduler does not account for interference on the buffering
destination; if there is space on the buffer nodes’ drives, the
scheduler will place multiple applications on the same nodes
which leads to performance degradation. The scheduler needs
to be aware of concurrent accesses and avoid interference.
b) The lifetime of BB allocations is the same as the application
that created them; this allocation exclusivity in terms of space
and network leads to underutilization of the buffer resources
since applications perform I/O in phases or bursts. The
scheduler should be able to leverage the several computation
phases that applications perform in between of I/O bursts and
therefore could over-provision the buffer resources whenever
possible (i.e., while one application is doing computation,
another application can use the same buffers).
c) If the application uses more space than the allocation it has,
the entire application will terminate unwillingly due to security
and data consistency issues; this leads to users reserving more
space than they actually need, and thus, waste of valuable
resources. The scheduler should be able to dynamically extend
temporarily the allocation space and continue execution.
d) When all buffer capacity is already allocated, any future
application will wait in the queue of the system batch sched-
uler until resources become available again; this increases
the scheduling time, even if there is plenty of unused space,
leading to low system efficiency. The scheduler should take
into account the type of reservations that are already allocated
(i.e., some allocations are only for writing intermediate results
and not for reading) and try to leverage any free buffer space.
e) When buffers are synchronizing data with the underlying
parallel file system, any incoming I/O is severely stalled. For
instance, when the buffer nodes are acting as the PFS cache,
the application should be able to write data on the buffers
while the buffers are flushing their contents on the PFS. The
scheduler should be aware of the buffer nodes’ status in order
to smartly place incoming I/O to available nodes, and thus,
provide performance guarantees to the application.

Understanding and solving those challenges motivates the
proposal of Harmonia. Through our design choices, we aim
to increase the buffering system efficiency, further acceler-
ate applications’ I/O by minimizing waiting times, mitigate



Device RAM NVMe SSD HDD fast HDD

Model M386A4G40DM0 Intel DC P3700 Intel DC S3610

Connection DDR4 2133Mhz PCIe Gen3 x8 SATA 6Gb/s 12Gb/s SAS SATA 6Gb/s 
Capacity 512 GB(32GBx16) 1 TB 1.6 TB 600 GB 2.4 TB
Latency 13.5 ns 2 ms 4.16 ms

RPM - - - 15000 7200
Device Concurrency 8 4 2 1 1

Max Read BW 65000 MB/s 2800 MB/s 550 MB/s 215 MB/s 115 MB/s
Max Write BW 59000 MB/s 1900 MB/s 500 MB/s 185 MB/s 95 MB/s

Seagate 
ST600MP0005

Seagate 
ST9250610NS

20 µs 55-66 µs

Fig. 1. Storage Medium Specifications.

resource contention, and leverage the buffering medium’s
characteristics to maximize the overall system performance.

III. INTERFERENCE SENSITIVITY

A. Buffering Medium Sensitivity to Concurrent Accesses

In systems equipped with I/O buffering capabilities, like
supercomputers with burst buffer nodes, several devices such
as RAM, SSDs, and HDDs can be used as the buffering
destination. The advent of new memory-class storage mediums
such as NVMe (i.e., non-volatile flash-based chips using new
controllers such as NVMe) can lead to better I/O buffering
due to lower latencies, higher bandwidth, and more medium
concurrency. However, the burst buffer I/O scheduler needs
to be aware of how each storage medium handles concur-
rent and interleaved requests coming from the application
(App Concurrent Accesses). In order to determine the various
performance variabilities these mediums demonstrate under
concurrent access we introduce a new metric called medium
sensitivity to concurrent access (MSCA). MSCA, shown in
Eq.1, is defined as the rate at which each medium experiences
a bandwidth reduction due to interference (i.e., concurrent
accesses competing for the resource). The bandwidth reduction
rate is linearly correlated to the I/O device concurrency which
refers to hardware characteristics such as number of bus lanes,
controller channels, memory banks (i.e., internal parallelism),
and the maximum bandwidth each can achieve.

MSCA =
App Concurrent Accesses

I/O Device Concurrency
×

MaxBW −RealBW

MaxBW
(1)

Higher MSCA values mean that the medium is more sen-
sitive to concurrent access. Harmonia takes this value into
account to minimize the interference effect stemming from the
underlying storage medium. To evaluate MSCA, we performed
a series of tests on Chameleon testbed [36]. Specifically we
used the bare metal configuration on the special storage hier-
archy appliances. The specifications of each storage medium
used in this evaluation can be seen in Figure 1. We mounted
each storage device as an XFS Linux file system and we used
a RamDisk (i.e., ramfs in main memory) as a reference. We
bypassed the OS kernel buffering by using the O DIRECT flag
in the open64() and we flushed the OS cache before every
run to make sure that I/O reaches the storage devices. Finally,
we repeated the tests 10 times and reported the average.

As a driver program, we wrote a synthetic benchmark that
stresses the storage medium with concurrent operations. In
this benchmark, each process performs sequential I/O in a
file-per-process pattern. The total I/O is 2GB and the request
size is 64MB. We increased the number of MPI ranks that
concurrently issue the I/O requests from 1 to 32 (weak scaling)
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Fig. 2. Sensitivity to Concurrent Access (MSCA).

and measured the achieved bandwidth. Note that the CPU
has 48 cores. Figure 2 shows the results for write (a) and
read (b) operations. As expected, RAM is the least sensitive
buffering destination with a MSCA value of only 0.43 for 32
concurrent ranks since RAM has the most access lanes. On
the other hand, traditional spinning hard drives, connected via
a typical SATA III controller, have the highest MSCA value
of around 30 for 32 concurrent ranks. This is reasonable since
neither the controller nor the device itself provide more than
one access lane. The SSD is also connected via a SATA III
but the device we used has some degree of internal parallelism
with two controller channels and memory banks being used
at the same time. The MSCA value for SSD is close to 15
for 32 concurrent ranks which is half than that of the HDD.
Finally, and most interestingly, NVMe demonstrated a MSCA
value of around 3 placing it closer to RAM values. The reason
that NVMe is less sensitive to concurrent accesses is that the
NVMe controller uses the PCIe bus that provides 8 concurrent
lanes. Note that MSCA does not describe how speedy a
device is but rather how sensitive it is to concurrent accesses.
All devices and controllers will eventually get saturated and
the bandwidth that the application receives will drop. MSCA
shows how quickly this happens for each type of buffering
destination. This information is useful to Harmonia in order
to make better scheduling decisions that take into account the
characteristics of the buffering medium.

B. Slowdown due to Cross-Application Interference

When applications run concurrently in a system they com-
pete for shared resources such as compute, network, and I/O.
This phenomenon is called cross-application interference and
can cause severe performance degradation. It is in fact one of
the most complex manifestations of performance variability on
large scale parallel computers [37]. In this subsection we focus
on how this issue manifests when applications compete for
access to shared buffering nodes. We leverage a metric we first
introduced in our previous work [25] called interference factor
and which can describe the slowdown applications experience
due to resource contention. The interference factor is defined
for a single application as the execution time with interference
divided by the execution time without interference:

If =
Execution T imewith interference

Execution T imewithout interference
(2)

This metric is appropriate to study the effects of interference
because it provides an absolute reference for a non-interfering
system when If = 1. An interference factor of 2 means that
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Fig. 3. Application Slowdown due to Interference (If ).

the application experiences a 2x slowdown due to contention.
Moreover, it allows the comparison of applications that have
different size or different I/O requirements and is therefore a
context-dependent measure. While cross-application interfer-
ence has long been an important challenge in HPC systems,
prior work focuses on different subsystems, such as compute
and network, and has not taken into account the newly added
burst buffer layer as well as new hardware storage devices.

To quantitatively measure the negative effects of cross-
application interference, we performed the following motivat-
ing tests. We used the same machine and benchmark as the
previous subsection III-A. We run multiple instances of the
same benchmark at the same time, which introduces contention
for the buffer resource. Figure 3 shows the results of scaling
the test up to 8 concurrent instances expressed in terms of
interference factor. As it can be seen, when 8 applications use
RAM as their buffering destination the interference factor is
around 1.45, for NVMe 5.24, for SSD 7.69, for the fast HDD
10.52, and for the typical HDD 11.90. Read operations in
figure 3 (b) follow the same pattern. This severe performance
degradation stems from the uncoordinated access to the buffer
resource which has to deal with interleaved requests coming
from different sources. This fact breaks any access pattern
optimization individual applications may have and any data
locality that low-level schedulers aim to leverage.

The above results depict how state-of-the-art burst buffer
management software such as Datawarp would schedule I/O
without being aware of the cross-application interference. It
is crucial for the scheduler to consider resource contention to
offer applications a more efficient buffering layer. Harmonia
scheduler takes into account both how storage mediums handle
concurrency through MSCA and how applications interfere
to each other’s I/O access through If .

IV. DESIGN AND IMPLEMENTATION

Harmonia is a dynamic, interference-aware, 2-way, adaptive
I/O scheduler for systems equipped with shared, distributed
buffering nodes. Harmonia is a middle-ware library imple-
mented in C++. Applications can use Harmonia easily by
either re-compiling their code with our library or by simply
linking it by LD PRELOAD. During the initialization of
the application, Harmonia sets up all the components and
establishes connection between them. All communications
between application cores and Harmonia are performed via
MPI one-sided operations. We developed our own distributed
hashmaps, queues, and tables using MPI RMA calls (i.e.,

Harmonia Scheduler
Application A Application B

...

Application N

I/O 
Path

Burst buffer nodes
Harmonia Buffer Monitor

Applications

BufferID Queue Size Remaining
Capacity

1 12 120GB
2 14 115GB
3 5 56GB
... ... ...

App Phase Size
A 1 128
B 0 0
C 1 64

A A A

Buffer nodes

JobQueue 
(Distributed Queue)

RunningJobs
(List)

ScheduledJobs
(Distributed Queue)

CompletedJobs
(Distributed Map)

7 5 6 21
2 8 5 24

Harmonia Scheduling Queue

Dev MSCA If
Ram 1.8 1.58
SSD 11.2 7.8
HDD 29.5 12

System Metrics

Buffer 
PFS

Latency
(ms)

Bandwidth
(MB/sec)

1 120 300
1+2 140 556

2+3+4+5 150 992
... ... ...

System profiler

Harmonia
Agent

Fig. 4. Harmonia high-level architecture.

MPI Put(message)) to minimize the overheads. Finally, we
implemented a system profiler that can optionally run in the
bootstrapping phase and collect information about the buffer-
ing system in place. This profiler helps Harmonia configure
the internals according to each platform it runs.

Harmonia’s design aims to mitigate the challenges men-
tioned in Section II. The high-level architecture of our Har-
monia scheduler can be seen in Figure 4. There are several
components that work together to make scheduling possible:

1) Harmonia Agent: This component represents the appli-
cation. When the application starts (i.e., MPI Init()), the Agent
registers several information to the global Harmonia Scheduler
(e.g., name and size of the job, group that owns the job etc.).
The Agent acts as a “spy” for Harmonia and communicates
the application’s I/O behavior to the global scheduler. An I/O
behavior in the context of this study is the pattern with which
the application accesses the buffers. In Harmonia, instead
of providing a buffer lease to an application for its entire
execution time, we schedule the application’s individual I/O
bursts. Thus, Harmonia aims to overlap computation and I/O
phases of several applications that share access to the buffers.
A crucial responsibility of the Agent is to detect when an I/O
phase will start and end in between of computation phases.
Identifying this pattern can be very challenging. We call this
task I/O Phase Detection. Finally, a Harmonia Agent can be
distributed according to the size of the application (i.e., number
of ranks). If there is an I/O forwarding layer [38], Harmonia
deploys its agents on this layer. Otherwise, Harmonia reserves
1 extra core per 64 computing cores at initialization.

2) Harmonia Buffer Monitor: This component collects
information from the burst buffer nodes. Specifically, the main
responsibility of this component is to communicate the buffer
node’s status (i.e., busy - free) to the global scheduler. This is a
lightweight process running in the background on buffer nodes
and uses MPI one-sided operations for all communications.
We use the I/O queue size (e.g., iostat) to represent how busy
or not a certain buffer node is. Also, when a buffer node is
flushing data to the underlying PFS, it marks itself as busy.
Finally, this component keeps tracks of the capacity of each
buffer node and reports back to the scheduler upon reaching a
given, configurable, threshold. Optionally, Harmonia reserves
a small percentage of the buffer nodes as backup nodes which
are responsible to accept overflowing data and data ready to



be flushed. The extra reserved backup nodes ensure that at
any given point Harmonia can switch incoming I/O to them
and flush data from the overwhelmed buffers. They also allow
Harmonia to better aggregate buffered data.

3) Harmonia Scheduler: This component is a global entity
that performs the actual I/O scheduling. It is multi-threaded
and can be distributed. By using information collected from
both the application side (i.e., Agents) and the buffering
nodes side (i.e., Buffer Monitor), this component is able to
effectively schedule individual I/O bursts and therefore overlap
computation and I/O phases leading to better buffer utilization.
Harmonia Scheduler uses several in memory structures to
achieve its goals. First, it maintains an application registration
table to keep track of all running applications and the phase
they are in (i.e., I/O or not). Second, it maintains a buffer
status table where it keeps track of how busy a node is and
what is the remaining capacity on the storage devices of that
node. During initialization, a system profiler populates some
auxiliary structures by capturing the underlying system’s met-
rics such as MSCA and If and performance characteristics.
Finally, as it can be seen in Figure 4, this component maintains
a scheduling queue which is organized as follows (note that
a job in the context of this study represents an I/O phase of
an application): a distributed job queue for incoming I/O, a
scheduled job queue, a running job list, and a completed job
hashmap for statistical reasons.

At any given time, Harmonia needs to schedule a number
of I/O phases into a number of available buffer nodes. To effi-
ciently achieve this goal we propose a dynamic programming
approach. Harmonia Scheduler expresses I/O scheduling as a
dynamic programming optimization problem as follows:

OPT (n,m) =



∞ , if n = 0,
0 , if n

m
≥ X or m < Y,

max


Cij +OPT (n−i,m−j),

OPT (n−i,m),
OPT (n,m−j),
OPT (n−i,m−j)

 , otherwise


(3)

where OPT (n,m) is the optimal solution of scheduling n
number of I/O phases onto m number of available buffer nodes
at time t, Cij is the cost to schedule the ith I/O phase on the
jth buffer with 0 ≤ i < n and 0 ≤ j < m, X is the maximum
number of concurrent applications on the same buffer (i.e.,
relative to If and MSCA values), and Y is the minimum
number of buffers per I/O phase (i.e., minimum parallelism
degree). Our algorithm uses memoization techniques [39] to
optimize the time needed to solve the scheduling problem.
Therefore, Harmonia learns through time and finding the
optimal scheduling decision eventually becomes very fast.

A. I/O Phase Detection

We propose three different ways to detect an I/O phase for
a variety of scenarios and use cases:

1) User-defined: In this mode, the user is aware of the
Harmonia scheduler and is expected to declare the start and the
end of each I/O phase using the provided Harmonia pragmas
(e.g., #pragma harmonia io start(...)). The pragma de-
fines the start of the phase, the size of the I/O within the phase,

and other flags such as the priority level. When the application
is compiled, the pragmas are transformed into MPI messages
to the global Harmonia scheduler. This mode allows users
to express their application’s I/O behavior leading to better
accuracy of I/O phase detection. However, not all users fully
understand their I/O needs and thus, it could be challenging
for the developer to clearly define an I/O phase. Additionally,
some users might take advantage of this mode and overstate
their I/O phases to get more buffer access time.

2) Source code: In this mode, users submit the source code
along with the job. We implemented a source code analyzer
where Harmonia identifies I/O phases automatically. This pro-
cess takes place before the application execution. The analyzer
builds a direct acyclic graph (DAG) of functions and loops
which describes inter-code dependencies and helps Harmonia
identify I/O calls in various blocks of code. Based on the
I/O intensiveness of those blocks, Harmonia combines them
together to characterize a distinct I/O phase. I/O intensiveness
is defined as a function of the total number of files, the
size of individual requests, and the count of repetitions in a
loop. After identifying those I/O phases, Harmonia first injects
automatically generated pragmas and then compiles the appli-
cation. This mode allows Harmonia to automatically detect the
I/O phases requiring less user intervention. However, in some
instances, the classifier might incorrectly classify some parts
of the code as I/O intensive (i.e., false-positives, -negatives).
There is a trade-off between accuracy and performance that
is tuned by a weighting system in place. We do not expose
these weights to the user to avoid exploitation of the scheduler.
Lastly, this mode is not suitable when the source code cannot
be exposed due to security concerns. The accuracy, overheads,
and effectiveness of our I/O intensity classifier is detailed and
evaluated with real applications in [40].

3) Binary(executable): In this mode, users submit only the
application binary. A normally compiled executable includes
function symbols. Using these symbols (i.e., GNU nm), Har-
monia builds the same DAG with code dependencies and
proceeds to an analysis of calls (i.e., using Flint++). We then
intercept all identified calls using our wrapper and we mark
the start - end of an I/O phase. This results to messages
destined to the global Harmonia scheduler, similarly with the
pragmas from above. The benefits of this mode is that there
is no need for user involvement or source code submission.
Furthermore, the I/O phase detection is done dynamically
during linking. On the downside, this method demonstrates
higher chances of error in the detection when compared to the
source code analyzer since it relies on information extracted
from the object symbols and not the actual code. As a special
case, when the binary is a striped-down executable (i.e., binary
size reduction by removing debugging and other information),
Harmonia proceeds to I/O phase detection by approximation.
We intercept all fopen() and fclose() calls and code blocks with
loops containing fwrite() or fread() to estimate the I/O phases.
Clearly, this approach is the least accurate since no global view
of the code can be obtained. However, this method does not
require extra processing and can apply to any executable.



Fig. 5. Harmonia scheduling policies.

Note that, misclassification of the beginning and the end
of an I/O phase will not result in any catastrophic outcome
in terms of performance. In scenarios where an I/O phase
was inaccurately marked, applications might experience some
interference, but, will successfully be scheduled and run.

B. Proposed Scheduling Policies

Harmonia schedules I/O phases on buffer nodes using a
dynamic programming (DP) approach as discussed on Sec-
tion IV-3. By expressing different constraints and cost func-
tions to the DP algorithm, Harmonia is able to maximize or
minimize the objective of each policy. We define a scheduling
window as the time period in which we solve the scheduling
problem. The complexity of the DP algorithm is in the order
of number of I/O phases within the scheduling window. We
also define a time slice t as the time needed to write an I/O
phase on all available buffer nodes with no interference. A
scheduling window has many time slices. We propose five new
burst buffer I/O scheduling policies. To better demonstrate our
proposed policies let us follow an example scenario shown in
Figure 5 and discuss how each policy works. Our baseline
application performs a computation phase that requires two
time slices followed by an I/O phase and repeats this pattern
twice. Therefore, if it runs unobstructed, it completes in six
time slices in total. Assume we have 6 instances of this
application coming into the system and 2 available buffers.
Also assume that the buffers can fit up to 4 I/O phases

before they exceed their capacity. Finally, as a reference, we
measured the I/O bandwidth and the interference factor of our
hypothetical system for all combinations of four applications
and two buffers (e.g., 1 app on 1 buffer achieves 298MB/s
and has a slowdown of 1.79x compared to the baseline, etc.).
Results shown at the top of Figure 5 are real measurements
of a system equipped with two SSD-based burst buffers.

DataWarp schedules applications through the central batch
scheduler (e.g., Slurm) based on the remaining capacity of the
buffers. Each application asks for a reservation of predefined
buffer capacity. Once the resources are available, the appli-
cation acquires the reservation and it can freely write data
to BBs. Otherwise, the application (“app” for the rest of the
paper) will remain in the batch scheduler’s queue until BB
capacity becomes available. In our example, DataWarp will
pick apps 1 and 2 based on FCFS order and will deploy two
PFSs on the 2 available BBs (i.e., one for each application).
This will lead to collocation of the apps on the buffers and
therefore increased interference. The rest of the apps will be
waiting for the buffers to become available. Upon completion
of the first two apps, DataWarp will flush the contents of the
buffers to the remote PFS and proceed with the next two apps.
This process will be repeated for the last two remaining apps.

1) Harmonia - Maximum Buffer System Efficiency: In
this policy, Harmonia aims to optimize the buffering system
efficiency by maximizing the buffer utilization (i.e. minimizing
idleness) while at the same time maximizing the average
available capacity of the disks. To maintain high available
remaining capacity, Harmonia hides flushing behind compu-
tation phases of the same or another running application, and
thus, keeps the buffers busy at all times. This policy is ideal
when most of the apps share similar characteristics and no
one app requires special treatment. The cost function in the
DP algorithm (i.e., Cij from eq. 3) is defined as:

Cost(i, j)Buffer−Efficiency =
BU + CR

2
(4)

where BU is the average buffer utilization and is calculated
as the ratio of the time when buffers are serving an app over the
completion time of the last app, CR is the average remaining
capacity of the buffers. Harmonia considers if scheduling the
ith I/O phase on the jth buffer will increase the buffer utiliza-
tion while maintaining the same or smaller average remaining
capacity leading to better buffer efficiency. In our example,
Harmonia, under this policy will schedule app 1 at t=0 and
will run on top of both buffers hence maximum I/O bandwidth.
App 2 will start at t=2, effectively overlapping its computation
phases with the I/O phase of app 1. Additionally, the buffers
will start flushing as soon as data are available, practically at
t=3, and it will keep flushing during both computations and
I/O phases. The rest of the apps will be scheduled once one of
the previous apps finishes. This ensures the constraints of our
buffering system are intact. The number of concurrent accesses
on one buffer are kept low (one I/O phase and flushing) and
thus, the interference factor remains low.



2) Harmonia - Application Priority: In this policy, Harmo-
nia aims to provide system administrators the infrastructure to
prioritize the buffer access of specific applications. Each I/O
phase is flagged with a priority either given by the user or auto-
matically extracted by Harmonia’s I/O phase detection. Under
this policy, Harmonia will first sort all I/O phases according to
the priority and then execute them exclusively on the buffers
guaranteeing maximum bandwidth and zero interference. For
I/O phases with same priority, Harmonia offers two modes:
equally share the available buffering resources (default mode)
or execute them in first-come-first-serve (FCFS) fashion. The
first mode maintains the defined priority whereas the second
respects fairness. If an I/O phase with higher priority comes
to the system, it will be scheduled before earlier submitted
phases. Note that Harmonia will not interrupt a running I/O
phase to place a higher priority one. Instead, it will re-schedule
all remaining phases along with the new incoming ones by
enforcing the new priority order. In our example, let us assume
that after sorting applications based on priority, we have the
following pairs (app-priority): app1-p5, app2-p4, app3&4-p3,
app5-p2, and app6-p1. This dictates exactly how each I/O
phase should be scheduled. Note that for app 3 and 4 that have
the same priority 3, Harmonia schedules them to start at t=6
by sharing the two available buffers and after ensuring that the
last I/O phase of the app with higher priority is completed and
properly flushed (i.e., at t=7 flushing happens overlapped with
computation). Whenever possible, overlapping of computation
with I/O or flushing helps the overall average completion time
without violating the priorities.

3) Harmonia - Maximum Application Bandwidth: In
this policy, Harmonia aims to maximize the bandwidth each
application gets by the buffering layer. It can achieve this
by scheduling I/O phases exclusively. In other words, under
this policy, Harmonia tries to offer higher parallelism while
minimizing the interference factor If . The cost function in
the DP algorithm is defined as:

Cost(i, j)MaxAppBW =

∑n
1

IOSize
CompletionTime

n
(5)

where n is the number of I/O phases to be scheduled.
Effectively, this policy looks on how much I/O the app did at
its completion time. This policy might schedule an I/O phase
later if that ensures maximum buffer bandwidth. The overall
goal is to equally offer all scheduled applications maximum
bandwidth. The selection of which application goes first is
performed randomly. This policy is ideal for crucially sensitive
applications to latency and critical mission applications. In our
example, each app is scheduled to have access to both buffers
maximizing the bandwidth during an I/O phase. Harmonia
carefully overlaps computation phases with I/O phases or
flushing while maintaining the constraint of the policy. To be
able to offer maximum bandwidth, we can see that up to 2
concurrent applications are scheduled. For instance, at t=3,
app 1 and app 2 are running with only app 1 being in an I/O
phase. Under this policy, no I/O phase will tolerate interference
with another I/O or flushing in contrast with the first policy.

4) Harmonia - Application Fairness: In this policy, Har-
monia aims to offer absolute fairness in terms of waiting
and execution time to all scheduled applications. Resources
are divided equally into all applications. Harmonia ensures
that it does not violate the constraints though. In our study
in Section III-B we found that more than three applications
on one buffer node is really hurtful in terms of performance
(i.e., If greater than 5x). This policy takes into account this
fact when dividing the resources. If the total number of I/O
phases to be scheduled cannot fit into the available buffers,
Harmonia randomly selects which ones to schedule at this
point in time and which ones later. The randomness ensures
that no application will be favored over time. The cost function
in the DP algorithm is defined as:

Cost(i, j)Fairness = CtimeLastApp− CtimeFirstApp (6)

where Ctime is the completion time of the application. Com-
pletion time encapsulates both the wait time to be scheduled
and the bandwidth available to each application since it is
a function of both. This cost represents the time distance
between the first and the last application to finish. Typically,
a totally fair system will have this distance equal to zero.
All applications are expected to have the same completion
time. This policy is effective in homogeneous systems and also
to applications that can sacrifice high performance in favor
of earlier access to the buffers. In our example, Harmonia
first checks if the 6 applications violate the constraint of up
to 3 apps to 1 buffer. Coincidentally in this case, Harmonia
can indeed start all 6 applications at the same time t=0 by
scheduling apps 1-3 on the first buffer and apps 4-6 on the
second buffer node. Another constraint is that the buffers can
fit up to 4 I/O phases before they run out of space. Harmonia
will choose to tolerate added interference and will start a
background flushing (notice that between t=7 and t=9 the
I/O overlaps with flushing which continues during the next
computation). The decisions made by Harmonia result in a
situation where all 6 applications are allowed to continue
execution even though they get less bandwidth and thus,
extended I/O phases due to interference.

5) Harmonia - Minimum Application Stall Time: In
this policy, Harmonia aims to minimize the average time
applications spend in waiting to be scheduled or prolonged
I/O phases due to interference. The cost function in the DP
algorithm is defined as:

Cost(i, j)StallT ime =

∑n
1 (Wtime + Itime)

n
(7)

where Wtime is the time waiting to be scheduled and Itime

is the extra time that the I/O phase will need to finish due to
interfering with one or more other I/O phases. Harmonia will
try to balance performance and stall time by sacrificing some
bandwidth. However, since this policy takes into account all
different types of stalling including the Itime, Harmonia needs
to find the best possible way to collocate apps while offering
a reasonable performance. The goal of this policy is to offer
minimum stall time on average. The selection of which app



starts first is random ensuring that in a period of time all apps
will experience similar stall time. In our example, Harmonia
will schedule app 1 on the first buffer at t=0, app 2 on the
other buffer at t=1, and app 3 on the first buffer overlapping
computation and I/O with app 1. Each individual buffer, at
any time slice t will either execute an I/O phase or will be
flushing its contents while overlapping with computations.
Additional discussion: Throughout this section we described
Harmonia’s scheduling policies using a motivating example
with write I/O phases. However, our policies work great for
read operations as well. Instead of a write I/O phase followed
by a flushing, read operations involve a prefetching (i.e.,
loading of the data) before the read I/O phase. The benefits of
each policy remain the same. Each type of I/O (e.g., read or
write) is identified through the I/O phase detection and there-
fore Harmonia is able to pro-actively fetch the required data.
Furthermore, for workloads that require reading after writing,
Harmonia employs a hinting system where an I/O phase is
marked as ”cached” or ”flushable”. Using the hints, Harmonia
will not schedule other I/O phases on the same buffer until it
is safe to do so allowing an application to cache data for future
read operations. Lastly, for asynchronous I/O calls, Harmonia
can utilize the traffic service classes implemented in InfiniBand
networks (i.e., traffic class field TClass in Mellanox) to handle
both I/O and compute traffic. The pragmas that describe the
start-end of an I/O phase are inserted normally, as if the
calls were synchronous. Harmonia’s 2-way design allows the
scheduler to track when the actual I/O happens by utilizing
information from the Buffer Monitor component.

V. EXPERIMENTAL RESULTS

A. Methodology

Testbed: All experiments were conducted on Chameleon
systems [36]. More specifically, we used the bare metal
configuration offered by Chameleon. The total experimental
cluster consists of 1024 client MPI ranks (i.e., 32 nodes), 4
buffer nodes, and 8 PFS servers. Each node has a dual Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz (i.e., a total of 48
cores per node), 128 GB RAM, 10Gbit Ethernet, and a local
HDD for the OS. Each burst buffer node has the same internal
components but, instead of an HDD, it has a 200GB SSD. The
cluster OS is CentOS 7.1, the PFS we used is OrangeFS 2.9.6.
Software: First, we wrote our own synthetic benchmark
where we can easily execute computation and I/O phases
interchangeably. We emulated computation phases by artificial
math kernels. The configuration of our tests for Harmonia’s
evaluation is: 8 instances of the benchmark, each instance runs
with 128 processes for a total of 1024 MPI ranks, each instance
writes 192GB of data in 12 I/O phases (i.e., 16GB per phase),
our four buffer nodes have 800GB aggregate capacity and thus
can fit 48 I/O phases before they need to flush data to PFS.
We also use two real science applications: Vector Particle-In-
Cell (VPIC), a general purpose simulation code for modeling
kinetic plasmas, and Hardware Accelerated Cosmology Code
(HACC), a cosmological simulation. We run the simulations
with 1536 MPI ranks with each rank performing 32MB of
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Fig. 6. Execution time and overheads.

I/O. Both of these simulations perform I/O periodically in
time steps (i.e., iterations). We run 16 time steps for both
simulations resulting to total I/O of 768GB.
Workloads: We use four input workloads a) Compute-
Intensive: computation phases run substantially longer in time
than IO, b) Balanced: where the computation and IO phases
are approximately equal in time, c) Data-Intensive: I/O phases
run substantially longer in time than computation, d) Only-
I/O: where there is no computation between I/O. We use four
distinct metrics which can describe a wide variety of desired
goals: maximum buffer efficiency (MaxBuffEff), maximum
bandwidth (MaxBW), fairness, minimum stall time (MinStall).
The calculation of the metrics stems from equations (4)-(7).
We measure each metric for each Harmonia policy and we
compare the values with DataWarp. We also use the overall
execution time in minutes to compare timings of individual
operations such as I/O, waiting, completion time, etc.

B. Library Performance and Overheads

Figure 6 presents the breakdown of the overall average exe-
cution time of scheduling several instances of our benchmark.
Overall average time includes time waiting to be scheduled,
computation time, and time to perform I/O. Overheads include
time to complete the I/O phase detection, which is executed
offline but still needs to be measured, and time to optimally
solve the scheduling problem. We scale the number of con-
current instances (i.e., arriving to the scheduler) from 2 to 8
and we compare Harmonia’s policies to DataWarp. Note that
the buffers can fit up to 4 instances before they need to flush
data to PFS. Lastly, Figure 6’s goal is to compare Harmonia’s
policies against DataWarp and not to each other since every
one was designed to cover different workloads and scenarios.

As it can been seen, DataWarp does not impose any
overheads since it gives access to the buffers by a mounting
point. However, DataWarp does not account for interference
and will schedule the instances on all available buffers. Thus,
for 2 and 4 concurrent instances of the benchmark, DataWarp
demonstrates increased I/O time due to interference. Addi-
tionally, if there is no buffer capacity left, DataWarp will
queue the remaining applications. This can be seen in the 8
concurrent instances cases where DataWarp schedules the first
4 instances and the remaining are left to the queue resulting
in an overall average execution time of around 6000 sec. In
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contrast, Harmonia’s policies schedule I/O phases and take
advantage of any computation time to either overlap the I/O or
flushing the buffers. The overhead is the same between policies
and is about 4% of the overall execution time on average.

Harmonia’s MaxBuffEff offers competitive performance
with DataWarp for 2 and 4 concurrent instances. However,
it performs 30% faster for 8 instances since it manages to
utilize the buffers during computations. This figure reports the
average time for all applications and not of the prioritized
one, however, we include Harmonia’s Priority policy’s results
for completeness. Harmonia’s MaxBW policy demonstrates
the best overall execution time for all scales. It consistently
offers the shortest I/O time since it avoids the negative effects
of interference and outperforms DataWarp by 40% for the 8
instances. Harmonia’s Fairness offers zero waiting time on the
expense of slower I/O time since it schedules instances allow-
ing interference. The slower I/O time is especially apparent
on the 8 concurrent instances cases where it demonstrates
4100 seconds I/O time. This policy still manages to outperform
DataWarp by 10% since it avoids queuing and shows that if
the scheduler is aware of the interference in the buffers, it can
offer a scheduling scheme that can result in decent average
performance to all running applications. Harmonia’s MinStall
policy offers a competitive performance by balancing waiting
time and interference and outperforms DataWarp by 30%.

C. Scheduling Metrics

Harmonia is a burst buffer scheduler and as such we
compare its performance with scheduling metrics. We present
the results of scheduling 8 instances of our benchmark and
we compare Harmonia’s scheduling policies with DataWarp.
We used various types of input to show how the application
characteristics affect the scheduling performance.
Max Buffer Efficiency: As it can been seen in Figure 7
(a), Harmonia’s MaxBuffEff policy exhibits very high buffer
efficiency for all inputs by keeping the buffering nodes always
busy. When compared with DataWarp’s efficiency score of
55% for the compute-intensive input, Harmonia is almost 2x
more efficient. Harmonia’s Fairness is the least efficient among
all Harmonia’s policies and scored around 60% regardless
of the input. This metric is important in terms of system
utilization and power efficiency. By over-provisioning the
buffering resources and by maintaining high buffer utilization,
Harmonia can lead to more efficient systems.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Compute
Intensive

Balanced Data
Intensive

Only
I/O

D
is

ta
n

c
e

 L
a

s
t-

F
ir
s
t 

(s
e

c
)

Workload type

Datawarp
MaxBuffEff

Priority

MaxBW
Fairness
MinStall

(a) Fairness

 600

 800

 1000

 1200

 1400

 1600

 1800

Compute
Intensive

Balanced Data
Intensive

Only
I/O

S
ta

ll 
T

im
e

 (
s
e

c
)

Workload type

Datawarp
MaxBuffEff

Priority

MaxBW
Fairness
MinStall

(b) Stall Time

Fig. 8. Scheduling metrics: Fairness - Stall Time.

Max Bandwidth: As it can been seen in Figure 7 (b),
Harmonia’s MaxBW and Priority policies sustain the highest
average bandwidth. This figure presents the average bandwidth
each application experiences on average. If there would be
only one instance of the benchmark, then all solutions would
offer the same bandwidth out of all buffering nodes. However,
in this test, we schedule 8 instances of the benchmark and thus,
DataWarp can only get roughly 115MB/s across all inputs due
to interference in the data accesses and due to non-overlapping
compute-I/O phases. Harmonia, on the other hand, managed to
achieve an average bandwidth of around 350MB/s effectively
outperforming DataWarp by 3x. This metric is important in
terms of pure I/O performance. Higher achieved bandwidth
leads to lower execution time and therefore more chances to
schedule more applications within a certain period of time.
Harmonia can lead to more capable I/O buffering platforms.

Fairness: As it can been seen in Figure 8 (a), Harmonia’s
Fairness policy works as intended and performs the best for
all input workloads. DataWarp suffers in this metric since it
needs to serialize the applications in a FCFS fashion (i.e.,
based on the available buffer capacity inside the reservation),
and thus, imposes a certain order violating the fairness metric.
Lower scores in this metric means that the system schedules
incoming applications in a fairer way. DataWarp scores more
than 1500 for compute-intensive input and around 1200 for
data-intensive. Harmonia outperforms DataWarp by more than
10x. This metric reflects the behavior of the scheduler and does
not translate to higher performance or buffer efficiency. It does,
however, provide higher flexibility to system administrators
offering fair I/O buffering services across teams and projects.

Min Stall Time: As it can been seen in Figure 8 (b), under
Harmonia’s MinStall policy, applications should expect an
average stall time of around 620 seconds for all workloads
tested, whereas the same metric in DataWarp has a value of
more than 1700 seconds for compute-intensive and 1200 for
Only-I/O. DataWarp offers exclusive access to the buffers and
thus, it does not impose any extra stall time between each
I/O phase but only between different applications. On the
other hand, Harmonia schedules I/O phases independently and
therefore, the scheduler might block one application’s access
to the buffers in order to finish another application’s I/O phase.
However, Harmonia outperforms DataWarp by more than 3x
and offers applications quick access to the buffers.



  

Fig. 9. VPIC: Draining Effect in Scheduling
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D. The Buffer Draining Effect

The remaining capacity of the buffers is very crucial to
scheduling. In DataWarp, applications reserve burst buffers
based on capacity. When the buffers are full, data need
to be flushed to PFS for persistency. We call this process
buffer draining. To evaluate the effect buffer draining has
on scheduling we schedule two instances of VPIC (i.e., each
with 16 time steps). Only one instance can fit in the buffers
and therefore the buffers need to flush first before scheduling
the next instance. In each step, VPIC performs computations
and then writes data to the buffers. Harmonia, leverages these
computation phases to drain the buffers and therefore it is
able to schedule both instances and hide the flushing between
each time step. Figure 9 demonstrates the results. As it can
be seen, Harmonia outperforms DataWarp by 2x. The average
completion time is reduced from 116 to 70 min in Harmonia.

One of the configurable parameters in Harmonia is the
flushing threshold. Harmonia will drain the buffers only when
they reach the remaining capacity threshold. In Figure 10 we
show the results of running HACC-IO, a pure I/O kernel with
no computation phases to overlap draining (i.e., a particular
difficult case for the buffers). We change the above threshold
from 100 to 0%. Since only one instance of the application
can fit in the total capacity of the buffers, the second instance
has to wait. In the 100% case, Harmonia behaves exactly as
DataWarp. It uses all 4 buffer nodes and gets the maximum
bandwidth. It flushes at the end before it schedules the next
application. In the 0% case, the buffers accept incoming I/O
while they are draining at the same time. This means that
interference is present and the I/O performance is affected. In
contrast, Harmonia can utilize its special backup flusher nodes.
This is a trade-off between the rate of the incoming I/O and
the buffer draining. In the 75%, when the threshold is reached,

one buffer node becomes the flusher and the incoming I/O is
directed to the remaining three with a penalty in performance.
However, as it can be seen, the overall performance when com-
pared to DataWarp (i.e., the 100% case) is higher by almost
20%. Similarly, in the 50% case, we see that I/O performance
is getting significantly worse due to the concurrent draining.
In summary, Harmonia, by grouping the available burst buffer
nodes, offers higher performance than DataWarp.

VI. RELATED WORK

IME [41], a burst buffer platform, focuses on eliminating
I/O wait times and increasing resource utilization. However,
it does not take I/O interference within devices into consid-
eration. Our study shows that the interferences largely vary
between different kinds of devices. Harmonia mitigates these
issues by implementing several interference-aware scheduling
policies optimizing global I/O performance of the system.

Traditional I/O schedulers for PFS such as ADIOS [42],
a client level I/O scheduler which provides a simple API
to handle I/O of application, allow applications to create
an I/O pipeline by using staging nodes. However, ADIOS
does not consider multiple applications running in the sys-
tem. TRIO [43], is a burst buffer orchestration framework,
to efficiently move the large check-pointing dataset to PFS.
This study focuses on PFS contention during flushing but
does not apply for contentions of BB during incoming I/O.
In [44], the authors identified and quantified the negative
effects of interference in the context of burst buffers and
proposed via simulations a scheduling technique to mitigate
such effects. Finally, [45] proposes a model to reduce I/O
congestion and defines few metrics to optimize the overall
system using a global I/O scheduler. This takes into account
within application congestion, but it does not include cross-
application interference caused due to resource contention.

How SSDs are affected when used as scratch space for
applications has been explored in [46], [47], [48]. Multiple
write and delete operations trigger SSD’s garbage collection
which degrades the performance greatly. They introduce disk
level scheduling to perform preemptive garbage collection for
better overall performance. However, they optimize I/O on a
device level which does not have the global view of the system.
Harmonia utilizes information from both the application and
buffer node level leading to better I/O scheduling.

VII. CONCLUSION

In this study, we present the design and implementation of
Harmonia, a new dynamic I/O scheduler that is interference-
aware, operates in a finer granularity, and is adaptive to the
current system status. Harmonia’s several scheduling policies
make it capable to handle a wide variety of workloads and
different scenarios giving system administrators many tools
to achieve their respective goals. By overlapping computation
and I/O phases, calculating I/O interference into its decision
making process, and by employing a novel dynamic program-
ming algorithm, Harmonia outperforms state-of-the-art burst
buffer systems by 3x leading to better resource utilization.
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