
LABIOS: A Label-Based I/O System

Anthony Kougkas, Hariharan Devarajan, Jay Lofstead*, and Xian-He Sun

Illinois Institute of Technology, *Sandia National Laboratories

Wednesday, June 26th, 2019
HPDC’2019 Phoenix, AZ

Highlights

7/2/2019 Slide 2

LABIOS

Storage

Malleability

Asynchronous I/O

Resource

Heterogeneity

Data Provisioning

Storage Bridging

“The tools and cultures of

HPC and BigData

analytics have diverged,

to the detriment of both;

unification is essential to

address a spectrum of

major research domains.”

- D. Reed & J. Dongarra

3/5/2019 Slide 3

Diversity of

I/O

Requirements

3/5/2019 Slide 4

Feature I/O Requirement HPC Cloud Optimizations

Data

consistency

Data passed to the I/O

system must be consistent

between operations.

Strong, POSIX Eventual,

Immutable

Tunable consistency

Data

access

Multiple processes must be

able to operate on the

same data concurrently.

Shared

concurrent

Multiple

replicas

Collective I/O,

Concurrent handlers,

Complex locks

Global

namespace

Data identifiers must be

resolved and recognizable

in a global namespace that

can be accessed from

anywhere.

Hierarchical,

Directory,

Nesting

Flat Namespace

partitioning, Client-

side caching,

Decoupling data-

metadata, Connectors

Fault

tolerance

Data must be protected

against faults and errors.

Special

hardware,

check-pointing

Replication,

Data

partitioning

Erasure coding

Scale Support for extreme scale

and multi-tenancy

Few large

jobs, Batch

processing

Many small

jobs, Iterative

Job scheduling, I/O

buffering, Scale-out

Locality Jobs are spawned where

data reside.

Remote

storage

Node local Data aggregations

Ease of use Interface, user-friendliness

and ease of deployment.

High-level I/O

libraries

Simple data

formats

Amazon S3,

Openstack Swift

LABIOS:

Label-Based

I/O System

• Distributed, scalable, and

adaptive storage solution

• Fully decoupled architecture

• Software defined storage (SDS)

• Energy-aware enabling power-

capped I/O

• Reactive storage with tunable

I/O performance

• Flexible API

• Intersection of HPC and BigData

Slide 5

7/2/2019

Key Challenges

• How to efficiently utilize and share I/O resources?

• How to leverage storage heterogeneity?

• How to provide an elastic storage system?

• How to support a wide range of I/O interfaces?

• How to balance energy – performance?

3/5/2019 Slide 6

I/O is a logistics problem
And people are really good at this.

7/2/2019 7

A simple analogy (before)

• Sending a gift
• Drive to three different retailers

• Purchase items independently

• Decide what package to use

• Decide which delivery provider

• Decide options (priority, etc)

• Performing I/O
• Three different data sources

• Acquire data elements

• Data representation (file, object, etc)

• Storage device (SSD, HDD, etc)

• Storage semantics

A simple analogy (now)

• Sending a gift via an online retailer

• Add items to cart

• Specify details (payment info, etc)

• Submit order

• Performing I/O with LABIOS

• Create labels

• Define label attributes

• Push labels to queue

Overview

• I/O requests are transformed into a configurable unit, called a (data) Label.

• A label is a tuple of an operation and a pointer to the data.

• Resembles a shipping label following a Post Office package.

• Labels are pushed to a distributed queue.

• Data or contents are pushed into a warehouse.

• A dispatcher distributes labels to the workers.

• Workers execute labels independently (i.e., fully decoupled).

LABIOS Data Model - Labels

• Storage-independent abstraction expressing I/O intent.

• A tuple of one or more operations and a pointer to its input data.

• Exclusive to each application.

• Immutable, independent of one another, and cannot be re-used.

• Label structure includes:

• Type

• Unique identifier

• Source and destination

• memory address, file path, server IP, network port

• Function pointer (user-defined or pre-defined)

• all functions are store in a shared program repository

• Set of flags indicating label’s state

• queued, scheduled, pending, cached, invalidated, etc.,

7/2/2019 Slide 11

High-level

Architecture

• Two main ideas:

1. Split the data,

metadata, and

instruction paths.

2. Decouple storage

servers from the

application.

LABIOS Client

• Objectives:

1. Performs system

initialization per-

application.

2. Accepts application’s

I/O requests.

3. Builds labels based on

the incoming I/O.

• Modules:

1. Label manager

2. Content manager

3. Catalog manager

LABIOS Core

• Manages the instruction,

data, and metadata flow

separately.

• Distributed data structures:

• Label queue

• Warehouse

• Modules:

• Administrator

• Label Dispatcher

LABIOS Server

• Manages workers

(i.e., storage servers)

• Modules:

• Worker

• Worker manager

Worker

• The storage server in LABIOS

• Responsibilities:

• service its own queue

• execute labels

• calculate its own worker score

and send it to the worker

manager periodically

• auto-suspend itself if there are

no labels in its queue for a

given time window

• connect to external storage

sources

• Weighting system expresses

the scheduling policy

• Final score is a double

precision between 0 and 1

• Higher score -> better worker

7/2/2019 Slide 17

Variable Value Example

Availability 1-active, 0-suspended 1

Capacity Double [0,1] (ratio remaining/total) 0.75

Load Double [0,1] (ratio current/max queue size) 0.50

Speed Integer [1,5] (grouping) 4

Energy Integer [1,5] (grouping) 3

𝑆𝑐𝑜𝑟𝑒 𝑤𝑜𝑟𝑘𝑒𝑟𝐼𝐷 = ෍

𝑛=1

5

𝑊𝑒𝑖𝑔ℎ𝑡𝑗 × 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑗

Priority Availability Capacity Load Speed Energy

Low latency 0.5 0 0.35 0.15 0

Energy savings 0 0.15 0.2 0.15 0.5

High bandwidth 0 0.15 0.15 0.70 0

LABIOS in depth

• Label Scheduling

• Deployment Models

• LABIOS API example

Manual

Label

Scheduling

• Data distribution via scheduling policies:

1. Round Robin

• similar with PFS

2. Random Select

• randomly select workers

3. Constraint-based (i.e., heuristically)

• Priorities based on higher weight in the worker score

• Availability, load, capacity, performance

4. MinMax

• Minimize energy consumption while maximizing

performance

• Subject to load and capacity

• NP-hard combinatorial optimization

• Multidimensional knapsack algorithm

7/2/2019 Slide 19

Deployment Model

• LABIOS can:

1. replace existing distributed storage

solutions

2. be used as I/O accelerator to one or

more underlying storage subsystems

• Machine model in use (motivated

by the recent machines Summit in

ORNL or Cori on LBNL):

• Compute nodes equipped with a large

amount of RAM

• Local NVMe devices in each compute

node

• An I/O forwarding layer

• A shared burst buffer installation based

on SSD equipped nodes, and

• A remote PFS installation based on

HDDs

7/2/2019 Slide 20

• Cons

• Overheads by using compute cores to run its

services

• I/O traffic mixed with compute network

• Pros

• Fast distributed cache

• For temporary I/O

• On top of external sources

• Hadoop workloads with node local I/O

7/2/2019 Slide 21

• Cons

• Subject to I/O forwarding layer

• Limited scalability

• Pros

• Asynchronous I/O

• Non-blocking data movement

• Connect to external storage

7/2/2019 Slide 22

• Cons

• Requires additional resources (e.g., buffers)

• Storage

• Network

• Pros

• Fast scratch space

• Data sharing between applications

• In-situ visualization and analysis

7/2/2019 Slide 23

• Cons

• Increased deployment complexity

• Requires systems admins

• Pros

• Scalability

• Better resource utilization

• Higher flexibility

7/2/2019 Slide 24

LABIOS API

Example

7/2/2019 Slide 25

Testbed

• All experiments on bare

metal on Chameleon:

• 64 client nodes

• 8 burst buffer nodes

• 32 storage servers

• Cluster OS: CentOS 7.1

• PFS: OrangeFS 2.9.6

• Workloads:

• CM1 simulation

• HACC simulation

• Montage application

• K-means clustering

7/2/2019 Slide 26

Anatomy of Operations

Write and read operations decomposition

Label

Dispatching

Throughput

• Metric: Labels per second

• Dispatcher runs on a dedicated

node

• 100K auto generated labels

• Mixed read and write

• Equal size

• Linear scalability

• Round robin and random

select 55-125K

• Constraint-based more

communication intensive

• MinMax more CPU intensive

due to DP approach

Storage

Malleability

• Metric: Total I/O time in sec

• 4096 labels of 1MB each

• Vary the ratio of active – suspended workers

• Worker activation in 3 sec on average

• Worker allocation techniques

• Static: labels only on active workers

• Elastic: labels to all workers (even on

suspended paying the penalty of activation)

• When small % of workers are active, elastic

boosts performance

• When enough workers are active, activation

latency hurts performance

I/O Asynchronicity

• Metric: Overall execution time in sec

• Support of both sync – async modes

• Label paradigm fits (naturally) in

async

• CM1 simulation scaled up to 3072

processes with 16 time steps

• Each process writes 32MB of I/O

• 100GB per step for the 3072 case

• Sync mode competitive with PFS

baseline

• Async mode overlaps label execution

with computations

• 16x boost in I/O performance

• 40% reduction in execution time

7/2/2019 Slide 30

Resource Heterogeneity

7/2/2019 Slide 31

• Metric: Overall execution time in sec

• HACC simulation scaled up to 3072

processes with 16 time steps

• Update-heavy workload

• Each process updates 32MB of I/O

• Checkpoint in burst buffers

• Final flush of last checkpoint data to PFS

• 6x improvement in I/O performance

• Flushing in the background from

workers

Data Provisioning

7/2/2019 Slide 32

• Metric: Overall execution time in sec

• Montage application

• Multiple executables that share data

• 50GB of intermediate results in

temporary files in PFS

• LABIOS shares data via the

warehouse (i.e., in-memory)

• Label destination is analysis compute

nodes

• Performance acceleration

• No temporary files are created in remote

storage

• Simulation and analysis can be pipelined

• 17x boost in I/O performance

• 65% reduction in execution time

Storage Bridging

7/2/2019 Slide 33

• Metric: Overall execution time in sec

• Two modes for LABIOS:

• Node-local I/O (similar to HDFS)

• Remote external I/O (similar to HPC)

• Map processes read 32MB each and

then write them back to storage

• Reduce processes read 32MB each

• Shuffle sends 32MB through network

• Hadoop-memory optimized version

• No disk I/O for intermediate results

• LABIOS employs collective I/O to

perform data aggregations

• LABIOS successfully integrates

MapReduce with HPC

Conclusions

• Supporting a wide range of workflows with different,

often conflicting, I/O requirements under a single

platform is challenging.

• A new way to perform I/O is required. Desired

features include:

• Storage malleability

• Asynchronous I/O

• Resource Heterogeneity

• Data Provisioning

• Storage Bridging

• LABIOS provides storage flexibility, versatility, and

agility due to a new data model, the (data) labels

and its decoupled data-centric architecture.

• LABIOS can boost I/O performance on certain

workloads by up to 17x and reduce overall

execution time by 40-60%.

7/2/2019 Slide 34

Thank you

Any questions?

7/2/2019 Slide 35

We would like to thank

our sponsors the

National Science

Foundation

Find more at:

www.cs.iit.edu/~scs

www.akougkas.com/research/labios

Please come to our poster Slot #30 tonight at 6:30pm in Room 301A

LABIOS: A Label-Based I/O System

Anthony Kougkas, Hariharan Devarajan, Jay Lofstead*, and Xian-He Sun

Illinois Institute of Technology, *Sandia National Laboratories

http://www.cs.iit.edu/~scs
http://www.akougkas.com/research/labios

