\\SCALABLE COMPUTING ILLINOIS INSTITUTE
SOFTWARE LABORATORY OF TECHNOLOGY

LABIOS: A Label-Based I/O System

Anthony Kougkas, Hariharan Devarajan, Jay Lofstead*, and Xian-He Sun
lllinois Institute of Technology, *Sandia National Laboratories

Wednesday, June 26th, 2019
HPDC'2019 Phoenix, AZ

Storage
Malleability

Asynchronous I/O

Highlights
Resource
Heterogeneity

Data Provisioning

Storage Bridging

7/2/2019 Slide 2

“The tools and cultures of
HPC and BigData
analytics have diverged,
to the detriment of both;
unification is essential to
address @ spectrum ot

major research domains.”
- D. Reed & J. Dongarra

3/5/2019 Slide 3

Requirements

3/5/2019

Diversity of

/O

Slide 4

Feature
Data

consistency

Data
access

Global

namespace

Fault
tolerance

Scale

Locality

Ease of use

I/O Requirement

Data passed to the 1/O
system must be consistent
between operations.

Multiple processes must be
able to operate on the
same data concurrently.

Data identifiers must be
resolved and recognizable
in a global namespace that
can be accessed from
anywhere.

Data must be protected
against faults and errors.

Support for extreme scale
and multi-tenancy

Jobs are spawned where
data reside.

Interface, user-friendliness
and ease of deployment.

HPC
Strong, POSIX

Shared

concurrent

Hierarchical,
Directory,
Nesting

Special
hardware,
check-pointing

Few large
jobs, Batch
processing

Remote
storage

High-level I/O
libraries

Cloud

Eventual,
Immutable

Multiple
replicas

Flat

Replication,
Data
partitioning

Many small
jobs, lterative

Node local

Simple data
formats

Optimizations

Tunable consistency

Collective I/O,
Concurrent handlers,
Complex locks

Namespace
partitioning, Client-
side caching,
Decoupling data-
metadata, Connectors

Erasure coding

Job scheduling, I/O

buffering, Scale-out

Data aggregations

Amazon S3,
Openstack Swift

LABlOS . * Distributed, scalable, and

adaptive storage solution

LO bel = Bosed * Fully decoupled architecture
I/O Sysfem * Software defined storage (SDS)

* Energy-aware enabling power-

capped I/O

* Reactive storage with tunable
/O pertormance

* Flexible AP iy —
e Intersection of HPC and BigData

Slide 5

3

How to efficiently utilize and share |/O resources?

Key Challenges

How to leverage storage heterogeneity?

How to provide an elastic storage system?

How to support a wide range of I/O interfaces?

How to balance energy — performance?

/O is a logistics problem

And people are really good at this.

A simple analogy (betore)

» Sending a qift * Pertorming 1/O
* Drive to three difterent retailers Three different data sources
 Purchase items independently * Acquire data elements
* Decide what package to use Data representation (file, object, etc)
 Decide which delivery provider * Storage device (SSD, HDD, etc)
* Decide options (priority, etc) * Storage semantics

7/2/2019 Slide 8

A simple analogy (now)

» Sending a gift via an online retailer ¢ Performing |/O with LABIOS

« Add items to cart Create labels
* Specily details (payment info, etc) * Define label attributes
« Submit order Push labels to queue

7/2/2019 Slide 9

/O requests are transformed into a configurable unit, called a (data) Label.
* Alabel is a tuple of an operation and a pointer to the data.
« Resembles a shipping label following a Post Office package.

Labels are pushed to a distributed queue.

Data or contents are pushed into a warehouse.

A dispatcher distributes labels to the workers.

Workers execute labels independently (i.e., fully decoupled).

Overview

api:init()

[
[_api:fwrite)
[api:fread()
[

[

api:get() ‘
apizput() —— 5

api::labio_read()

api::labio_write()

Instructions—» Work |
— orKer Foo
7/2/2019 Data

LABIOS Data Model - Labels

Storage-independent abstraction expressing /O intent.

Exclusive to each application.

Immutable, independent of one another, and cannot be re-used.

Label structure includes:
* Type

Unique identifier

Source and destination

* memory address, file path, server IP, network port
Function pointer (user-defined or pre-defined)

* all functions are store in a shared program repository
Set of flags indicating label’s state

* queued, scheduled, pending, cached, invalidated, etc.,

A tuple of one or more operations and a pointer to its input data.

7/2/2019

Slide 11

High-level
Architecture

e Two main ideas:

1. Split the data,
metadata, and
instruction paths.

Distributed | [_Warehouse] Inventory]

Queue Distributed HashMap

Decouple storage
servers from the
application.

external |
storage

7/2/2019 Slide 13

MP| Data Map
Simulati Analysis || Reduce

LABIOS Client

e Obijectives:
1. Performs system =|1. Register
initialization per- S aprD Query
application. ® 1. Build one or more labels inventory for
2. Accepts application’s 8’ 2. Apply based on request size meta info.
/O requests. % [settings a. uniquelD on timestamp
3. Builds labels based on S b. read/write/delete/flush M
the incoming I/O. = 3.Pre-load | o tsrc dest): path/pointer eta
. Modules: =[data (opt) | g flags: state/functions Copy user | |data
S b I £ 4. Setup 2. Serialize vector<Label> data from/to
o el MRineiglelr workers [3- Publish to queue warehouse.
2. Content manager — ctll.a'he'l Content
3. Catalog manager + uniquelD ; u_int6d (data)
+ type : enum Y
Y to + source : string to to to
. destination : stri .
7/2/2019 administratorfy s o veetorente| queUE warehouse inventory

|
|

Inventory
Warehouse

- - -

LABIOS Core

_

Maintain ||1. Label /=i
w= » Globa/ |Batching |
* Manages the instruction, — gpp. " \./ Time window ~ Label count
data, and metadata flow COISTY ime o mp e w0 v . = -
separatel 2. Label Perform Label Aggregation
PATTIEL. Apply [[Shuffling ¢ ¢ = superlabel
* Distributed data structures: settings ||~ Resolve Label Dependency
* Label queue I some app
. L1l same file
O Security ||| _ _ 2 _ EIET_Nodependency_
* Modules: control |3. Label Policies
. e | a. Round Rabin
Administrator Scheduling b. Random Select
* Label Dispatcher c. Constraint-based
CFG d. MinMax
_1 workerlD ->
\J to vector of labels
7/2/2019 | Worker Manager'_ T

LABIOS Server

* Manages workers
(i.e., storage servers)

* Modules:
* Worker

« Worker manager

7/2/2019

Slide 16

S from
Administrator

SSH a.Datasize
IPMI b. Count
c. N°Files .

Wake-on d. Failures

LAN

Publish
ubscribe

§
k3
-
Q
©
Q
Q
~
£
3
-
Q
<

Excellent Satisfactory

i e | ~Samserr- | Oy e

| Inventory ||Warehouse|—EX

Program | Worker
Executable| Status

Pre-loaded 5 yailability

= a. Read/Write b.C :
. Capacit

g b. Delete/Flush P y
c.Score B

User d. Load
a. K-means

b. Sort/Median

Active
Workers

Sufficient
——r—— Suspended
m m Workers

RNAL I\ NOKK

HDFS

 The storage server in LABIOS

il Varigble Value Example
) ResponSI ities: Availability -~ T-active, 0-suspended |
. o it
SeIVICE 1Is own queue Capacity ~ Double [0,1] (ratio remaining/total) 0.75
» execute labels
, Load Double [0,1] (ratio current/max queue size) 0.50
 calculate its own worker score |
and send it to the worker Speed Integer [1,5] (grouping) 4
manager periodically Energy Integer [1,5] (grouping) 3
 auto-suspend itself if there are]
no labels in its queue for a
given time window Score(workerID) = Weight; x Variable;
* connect to external storage n=1
sources
* v}:/elgh;m(? fOYSTem lgxpresses Priority Availobility ~ Capacity Load Speed Energy
the scheduling policy Low latency 0.5 0 035 0.15 0
* Final score is a double Energy savings 0 015 02 015 05
precision between O and 1 High bandwidth 0 015 015 070 0

» Higher score -> better worker

Slide 17

* Label Scheduling

LABIOS iﬂ dep'l'h * Deployment Models

« LABIOS APl example

7/2/2019 Slide 18

 Data distribution via scheduling policies:
1. Round Robin
e similar with PFS
2. Random Select
* randomly select workers

LO bel 3. Constraint-based (i.e., heuristically)

* Priorities based on higher weight in the worker score

SC h ed U | N g g ML I\-/\ Availability, load, capacity, performance
. INIVIAX

* Minimize energy consumption while maximizing
performance

» Subject to load and capacity
* NP-hard combinatorial optimization
» Multidimensional knapsack algorithm

7/2/2019 Slide 19

* [ABIOS can:

1. replace existing distributed storage
solutions

2. be used as I/O accelerator to one or
more underlying storage subsystems

* Machine model in use (motivated
by the recent machines Summit in

ORNL or Cori on LBNL):

Compute nodes equipped with a large
amount of RAM

Local NVMe devices in each compute
node

An |/O forwarding layer

A shared burst buffer installation based
on SSD equipped nodes, and

A remote PFS installation based on

Deployment Model 00

7/2/2019 Slide 20

Compute nodes IOFwL Burst Buffers Storage servers

— l

OO [H R ssp IN [H R
0 A e B
OO " H R
OO0 |- IO > g A
HENEN it g
I:l I:l < Ik > D— M HDD
ﬂ Distributed Distributed Label ‘ Worker
m Hashmap Queue Dispatcher
___________________ LABIOS as I/0 accelerator (in compute nodes)
* Pros . C
e Fast distributed cache ons . .
+ For temporary /O . Si\ﬁl;lesods by using compute cores to run its

e Ont f ext I : : :
n Top Of externdl sources * |/O traffic mixed with compute network

* Hadoop workloads with node local I/O

7/2/2019 Slide 21

Compute nodes IOFwL Burst Buffers Storage servers

— |
ce———]

—{7ssp IN

C N [«

—|1 SSD |l<

N~

PPPY
Z >

ke et o ke
= >0|(=>D

Dlstrlbuted Distributed Label
Hashmap Queue Dispatcher

LABIOS as I/0 forwarder (in ION)

* Pros
* Asynchronous I/O

* Non-blocking data movement

« Cons
« Subject to I/O forwarding layer

« Connect to external storage Limited scalability

7/2/2019 Slide 22

Compute nodes IOFwL Burst Buffers Storage servers

|
A — < ie > A
D E— i > D_
'<" SD - [+ M7 HDD
A — A [R 1)
NRL 00 - (| CH A
OO 1 || O
[M NVMe ninlh rk >|| [+ M HDD

.Client Dlstrlbuted Distributed Label ‘ Worker
m Hashmap Queue Dispatcher

LABIOS as I/0 buffering (in burst buffers)

* Pros e Cons
* Fast scratch space * Requires additional resources (e.g., buffers)
* Data sharing between applications « Storage
* In-situ visualization and analysis * Network

7/2/2019 Slide 23

Compute nodes IOFwL Burst Buffers Storage servers

00| g 'N O
O3 =53 = —q
- < i > [:F‘
M ~ Itﬁ > D;
\'.W\‘E=
T~ O
I g
|i(> [:F— DD

Dlstrlbuted Distributed Label ‘ Worker
Hashmap Queue Dispatcher

LABIOS as Remote Distributed Storage

* Pros
* Cons

» Scalabilit
Ity * Increased deployment complexity

e Better resource utilization

* Requi t dmi
+ Higher flexibility equires systems admins

7/2/2019

Slide 24

#include <tabios.hpp>

Client client = InitClient(ip, port, connConfig);
std::string path = "pvfs2:/data/integers.dat"”;
LabelSrc src

new LabelSrc(path, src_offset, size);
LabelType type = SDS_IN SITU;

LabelFlag flags = CACHED | MPI_IO;

std: :function<int(vector<int>)> fn = FindMedian;
Label label = client.CreatelLabel(type,src,fn,flags);
Status status =client.IPublishlLabel(label);

client.WaitLabel(&status);
int median = std::static_cast<int>(status.data);

Slide 25

All experiments on bare
metal on Chameleon:

* 64 client nodes
e 8 burst buffer nodes

» 32 storage servers
Cluster OS: CentOS 7.1
PFS: OrangeFS 2.9.6

Workloads:
e CM1 simulation
« HACC simulation

* Montage application

* K-means clustering

7/2/2019 Slide 26

31%
uild
abel Put Data

2% 11%
Publish

{

Write Data
11%

Subscribe
22%

Get Data

11% Read Data

Subscribe 279%

13%

m LABIOS Client m Label Dispatcher LABIOS Worker

Slide 27

Anatomy ot Operations s

Write and read operations decomposition

Label
Dispatching
Throughput

Metric: Labels per second

Dispatcher runs on a dedicated
node

100K auto generated labels
* Mixed read and write
« Equal size

Linear scalability

e Round robin and random
select 55-125K

e Constraint-based more
communication intensive

* MinMax more CPU intensive
due to DP approach

7/2/2019

140K
120K
100K
80K
60K
40K
20K

OK

Rate (labels/sec)

RoundRobin
RandomSelect

Constraint
MinMax

6 12
Dispatcher processes

24

48

Slide 28

Storage Static (S) ——
Malleability _12¢ Elastic (E) —— 44
9 Latency
» 10+ /0 Time B2 { —~
) L
Metric: Total /O time in sec § 8 T %
4096 labels of TMB each c 3
© 6f 13 =
Vary the ratio of active — suspended workers -g CICD
Worker activation in 3 sec on average 8 4 { W
Worker allocation techniques |_|>j
 Static: labels only on active workers 2 7
* Elastic: labels to all workers (even on l
suspended paying the penalty of activation) 0 2

When small % of workers are active, elastic SE SE SE SE SE

boosts performance 12.5%25% 50% 75% 100%
Percentage of active workers

When enough workers are active, activation
latency hurts performance

7/2/2019 Slide 29

/O Asynchronicity

e Metric: Overall execution time in sec

« Support of both sync — async modes

4 - - - | . . :
01288 Compute _ Label paradigm fits (naturally) in
;8/1200 | /O 1 async

« CM1 simulation scaled up to 3072
processes with 16 time steps

* Each process writes 32MB of 1/O
* 100GB per step for the 3072 case

N
o
oo
1
1

£8 8., £8 8, £ * Sync mode competitive with PFS
pmems gmems @ baseline
25758 235355 @
384 768 * Async mode overlaps label execution
glient proces with computations

« 16x boost in I/O performance
* 40% reduction in execution time

7/2/2019 Slide 30

Resource Heterogeneity

e Metric: Overall execution time in sec

800 — — — — « HACC simulation scaled up to 3072

600 Write on BBSi(TJ%Igg,f’er; _':' processes with 16 time steps

Write on PFS (Flush) =3

e B B

PFSLABIOS PFSLABIOS PFSLABIOS PESLABIOS

384 768 1536 3072
Client processes

* Update-heavy workload
* Each process updates 32MB of 1/0O
« Checkpoint in burst buffers
* Final flush of last checkpoint data to PFS

Overall time (sec)
oo
o
o

« 6x improvement in /O performance

* Flushing in the background from
workers

7/2/2019 Slide 31

Data Provisioning

Overall time (sec)
&)
o

7/2/2019

Simulation 3

Write ==
Read

Analysis =/

=

PFSLABIOS
384

PFSLABIOS PFSLABIOS

768 1536
Client processes

PFSLABIOS
3072

Metric: Overall execution time in sec

Montage application
* Multiple executables that share data

50GB of intermediate results in
temporary files in PFS

LABIOS shares data via the

warehouse (i.e., in-memory)

Label destination is analysis compute
nodes

Performance acceleration

* No temporary files are created in remote
storage

Simulation and analysis can be pipelined
17x boost in /O performance

65% reduction in execution time

Slide 32

Storage Bridging

Disk

7/2/2019

Hadoop LABIOS LABIOS Hadoop LABIOS LABIOS
Disk Disk Memory Memory Memory

Local Remote ~ Local Remote
System - Device - Configuration

Metric: Overall execution time in sec

Two modes for LABIOS:
* Node-local I/O (similar to HDFS)
* Remote external I/O (similar to HPC)

Map processes read 32MB each and
then write them back to storage

Reduce processes read 32MB each
Shuffle sends 32MB through network

Hadoop-memory optimized version
* No disk I/O for intermediate results

LABIOS employs collective /O to
perform data aggregations

LABIOS successfully integrates
MapReduce with HPC

Slide 33

» Supporting a wide range of workflows with ditferent,
often contlicting, 1/O requirements under a single
platform is challenging.

* A new way to perform |/O is required. Desired
features include:
* Storage malleability
» Asynchronous |I/O
* Resource Heterogeneity

COI’]C'USiOnS * Data Provisioning
* Storage Bridging

 LABIOS provides storage flexibility, versatility, and
agility due to a new data model, the (data) labels
and its decoupled data-centric architecture.

 LABIOS can boost I/O performance on certain
workloads by up to 17x and reduce overall
execution time by 40-60%.

7/2/2019 Slide 34

\\SCALABLE COMPUTING ILLINOIS INSTITUTE
OF TECHNOLOGY

SOFTWARE LABORATORY

Thank you
Any questions?

LABIOS: A Label-Based |/O System

Anthony Kougkas, Hariharan Devarajan, Jay Lofstead™, and Xian-He Sun
I|||n0|s Insh’ru’re of Technology, *Sondla No’rlonal Laboro’r '

R gr e
el L -

E We would like to thank -
Find more at:
our sponsors the ..

www.cs.iit.edu/~scs
| National Science
www.akougkas.com/research/labios .
Foundation

Please come to our poster Slot #30 tonight at 6:30pm in Room 30TA

http://www.cs.iit.edu/~scs
http://www.akougkas.com/research/labios

