
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING43, 169–178 (1997)
ARTICLE NO. PC971341

Limitations of Cycle Stealing for Parallel Processing on
a Network of Homogeneous Workstations1

Scott T. Leutenegger*,2 and Xian-He Sun†,3

*Mathematics and Computer Science Department, University of Denver, Denver, Colorado 80208-0189; and
†Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803-4020

The low cost and availability of clusters of workstations have
lead researchers to re-explore distributed computing using inde-
pendent workstations. This approach may provide better cost/
performance than tightly coupled multiprocessors. In practice,
this approach often utilizes wasted cycles to run parallel jobs.
In this paper we address the feasibility and limitation of such a
nondedicated parallel processing environment assuming worksta-
tion processes have priority over parallel tasks. We develop a sim-
ple analytical model to predict parallel job response times. Our
model provides insight into how significantly workstation owner
interference degrades parallel program performance. It forms a
foundation for task partitioning and scheduling in a nondedicated
network environment. A new term, task ratio, which relates the
parallel task demand to the mean service demand of nonparallel
workstation processes, is introduced. We propose that task ra-
tio is a useful metric for determining how a parallel applications
should be partitioned and scheduled in order to make efficient
use of a nondedicated distributed system. © 1997 Academic Press

1. INTRODUCTION

Most early parallel processing research focused on using
distributed systems to speed up computations. The basic
approach was to utilize many computers connected via a
local area network (LAN) to execute a parallel job. This
environment has been referred to asdistributed computing,
network computing,anddistributed network computing. With
the advent of multiprocessor architectures the majority of the
focus shifted from distributed computing to multiprocessing,
the major distinction being the tightly coupled architecture
allowing more finely grained parallelism.

Recently, a significant portion of the parallel community
has returned to the network processing approach. Network of

1This research was supported in part by the National Aeronautics and
Space Administration under NASA Contract NAS1-19480 while the authors
were in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-
0001.

2E-mail: leut@cs.du.edu.
3E-mail: sun@bit.csc.lsu.edu.

workstations (NOW) has been recognized as the primary com-
puting infrastructure for science and engineering [1]. Several
commercial and noncommercial tools have been developed to
support network computing. Widely used tools include the
Parallel Virtual Machine(PVM) software, theP4 system,Ex-
press,and themessage passing interface(MPI) [5, 6]. A major
driving force behind the reevaluation of distributed computing
is the high cost of parallel computers. Using a group of work-
stations connected via a LAN may provide better cost/perfor-
mance, or may be the only way to achieve high performance
within budget constraints for some organizations. Another
factor in favor of distributed computing is the availability of
many lightly loaded workstations. Exploiting these idle cycles
for sequential jobs has been previously studied [4, 8]. These
otherwise wasted idle cycles can be used by a distributed com-
putation to provided speedups and/or to solve large problems
that otherwise could not be tackled.

It is clear that many problems are amenable to the distributed
computing approach. However, for some applications, the in-
herent synchronization requirements, communication/compu-
tation ratio, and the granularity of parallelism may limit the
obtained performance. Even for the “good” applications, a
tacit assumption of the expected high performance is that a
system ofdedicatedworkstations are used, which may not
be true in practice. In this paper we study the performance
of distributed computing in anondedicatedsystem assuming
workstation owner processes have priority over parallel tasks.

We assume the parallel application considered belongs to
the class of programs that can run efficiently in a dedicated
distributed computing environment. We do not consider the
effects of synchronization, communication, or granularity of
parallelism. Given the program executes efficiently in a
dedicated system, we wish to provide a guideline of the
feasibility and limitation of parallel processing in a non-
dedicated distributed environment.

By considering embarrassingly parallel applications with no
parallel overheads we provide an upper bound on expected
performance. One of our main conclusions is that in order
for good speedups to be achieved on a nondedicated parallel
environment without task migration, the amount of work in the
parallel job must be significantly large to absorb workstation

169

0743-7315/97 $25.00
Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.

170 LEUTENEGGER AND SUN

owner interferences. We make modeling assumptions that
are favorable to the distributed computing approach. The
optimistic assumptions, enumerated in Section 2.1, imply that
our conclusions are even stronger than stated.

The primary and unique factor in the performance of a
nondedicated system is how intrusive the parallel programs are
to the owners of the workstations and vice versa. The priority
of the parallel tasks relative to the priority of processes initiated
by the owner of the workstation can have a significant impact
on the performance of both the parallel job and the owner’s
serial jobs. We assume that a workstation owner is not tolerant
of other people using their workstation, and hence surmise that
the most appropriate model for such a system is to assume
that workstation owner processes have priority over processes
belonging to a parallel job. Hence, use of the workstation
will interfere with parallel program performance. Although
we give priority to workstation owner processes, memory and
cache effects will degrade workstation performance. We do
not consider the impact on the workstation owner; this issue
is addressed in [2].

The major goal of this paper is to provide insight into how
significantly workstation owner interference degrades parallel
program performance. We seek to answer the question,
“When is distributed network computing a viable approach in a
nondedicated environment where workstation owner processes
have priority over parallel tasks?” Note that an alternative
approach is to migrate parallel tasks when workstation owners
start using the machine. A trace-driven simulation study of
this approach is found in [2]. In fact, we show that unless
parallel jobs are of sufficient size a nondedicated environment
without task migration will not provide acceptable speedups,
and hence task migration is necessary.

In addition to deriving an analytical model for qualitative
and quantitative performance prediction, we also use simu-
lation to consider workstation workloads with high variance.
We expect that a large variance in workstation process de-
mand should further reduce the utility of parallel computing
when workstation owner processes have priority over tasks
belonging to parallel jobs. A new term,task ratio, is intro-
duced, along with new metrics that incorporate the utilization
of workstations by owner processes. We find that the task ratio
plays an important role in the overall performance, possibly as
important as the communication/computation ratio in a dedi-
cated system. The analytical model provides the relationships
between the identified parameters and shows how these param-
eters influence the overall response time. The model could be
used to find guidelines for task partitioning and scheduling in
a nondedicated network environment.

In addition to our analysis, a hypothetical local computation
[11] problem is implemented with PVM on systems with from
1 to 12 homogeneous workstations. These initial experimental
results confirm the qualitative results from the analytical
model.

This paper is organized as follows. In Section 2 we present
the analytical model and introduce new parameters and metrics

for nondedicated distributed computing. The results from
our analysis are presented in Section 3. Experimental results
with PVM on 12 homogeneous workstations are presented in
Section 4, sensitivity to the variation in workstation owner
demands is presented in Section 5, and our conclusions are in
Section 6.

2. MODEL DESCRIPTION, ANALYSIS,
AND SIMULATION

In this section we describe our system model, our analysis
technique, and our simulation model. We make simplifying
assumptions that favor the distributed computing approach.
In particular, we assume that a parallel job is composed
of tasks (one per workstation), and the computation
is perfectly balanced among these tasks. In addition, the
parallel job is composed of one single parallel phase with
no communication or synchronization requirements other than
the final synchronization, which occurs when all of the
tasks have completed. Hence, we are assuming perfect
parallelism of the problem. This model is simplistic, but
provides the best case scenario for a distributed computing
environment. In addition, by not incorporating communication
or synchronization requirements into the model we are able
to attribute all degradation of parallel program performance
to workstation process interference. Since our assumptions
are always optimistic with regard to the parallel computation,
the model predictions provide an upper bound on expected
performance.

We assume there are homogeneous workstations in
the system and that there is one owner per workstation.
Workstation owners are in a continuous cycle of thinking (idle
time) and then use time. We assume there is one parallel job
being executed on the system at a time. The demand of a job
is the total computing cycles (time) needed for the job.

We first describe our deterministic model, which assumes
that workstation owner processes demands are deterministic.
This model provides an upper bound on expected performance,
since all assumptions favor the parallel computation. We next
describe our simulation model, which allows for hyperexpo-
nentially distributed workstation owner process demands. The
simulation model is used to demonstrate the sensitivity of ex-
pected performance to workstation owner process variance.

2.1. Deterministic Model Description

Our model is a discrete time model. We assume a geometric
distribution with mean 1/P for the owner think time; i.e.,
at each time unit the owner requests the processor with
probability P. When an owner process starts execution the
executing parallel task is suspended and the owner process is
immediately started. The owner process executes forunits.
Once the owner process completes execution, the parallel task
restarts execution and is guaranteed to complete at least one
unit of work before the owner may issue another process
requesting the processor.

LIMITATIONS OF CYCLE STEALING 171

The model guarantees the parallel task will complete in at
most + (×) units. Task execution time at a single
workstation is thus the sum of task demand plus the time
to complete any owner processes that occur during the tasks
tenure in the system; i.e.,

task time= + (n×), (1)

wheren equals the number of owner process requests. The
owner process can make a request after each unit of time the
parallel task uses the processor; hence the number of owner
requests is binomially distributed:

b(; n, P) =
(

n

)
Pn(1− P) −n. (2)

Thus, expected task execution time is equal to

Et = +
∑
i=0

· i · b(; i , P). (3)

The job execution time is the time until the last of the
parallel tasks completes execution. Thus, job completion time
is at least units and at most + (×) units. We first
derive the probability that job execution time equalsi and then
from these probabilities get the expectation.

Let S[n] equal the probability that an individual task is
interrupted by at mostn owner processes:

S[n] =
n∑

i=0

b(; i, p). (4)

Let C[W, n] equal the probability that all parallel tasks are
interrupted by at mostn owner processes. By independence,

C[W, n] = (S[n])W. (5)

Let Max[W, n] equal the probability that the maximum num-
ber of owner process interferences over all the parallel tasks
is equal ton:

Max[W, n] = C[W, n] −C[W, n− 1]. (6)

Using these functions, expected job execution time is cal-
culated as

Ej = +
∑
i=0

· i ·Max[W, i]. (7)

Owner utilization () can be calculated as:

= + 1/P
. (8)

Our model makes assumptions that favor the distributed
computing approach, hence the model provides a lower bound
on expected response time. In particular, the model is opti-
mistic with regard to three following points:

1. We assume that parallel task times are deterministic.
Although this is one of the goals of parallel algorithm design,
in practice there is often some imbalance of load.

2. Variance of owner process service demands. We have
assumed a deterministic owner process service demand when
in fact typical processes experience a much larger variance [9].
Assuming a distribution with more variance could cause some
parallel tasks to be delayed much longer than+ (×).

3. Guaranteeing the parallel task at least one unit of
execution between requests. In a real system owner processes
may be reissued in less time, thus parallel tasks could be
delayed longer than (×).

These assumptions together cause our parallel job response
times to be optimistic, and hence actual performance could be
worse than predicted by our observations.

2.2. Simulation Description

We have simulated the system using the CSIM simulation
language [10]. We first use the simulation to validate the
coding of our analysis. We duplicated the experiment found
in Fig. 1 of this paper and the simulation results were identical
to the analysis, thus verifying the correctness of analysis code.
We obtained confidence intervals of 1% or less at a 90%
confidence level. Confidence intervals are calculated using
batch means [7] with 20 batches per simulation run and a
batch size of 1000 samples. We did not plot the results since
they are indistinguishable from the figure.

FIG. 1. Speedup,J = 1000 units.

172 LEUTENEGGER AND SUN

We then extend our simulation to allow for workstation
owner request times to be exponentially distributed, and
workstation owner service times to be hyperexponentially
distributed. Parallel task demands remain deterministic to
provide an upper bound on performance given the variance
in the workstation owner processes. We obtained confidence
intervals of 5% or less at a 90% confidence level. Confidence
intervals for these simulations used 20 batches per simulation
run and a batch size of 3000 samples.

3. ANALYSIS RESULTS

In this section we present the results from our analysis.
We first present results for a fixed size problem, and then
discuss the impact of scaling problem size with the number of
workstations.

3.1. Fixed-Size Speedup

For a fixed-size job the desired goal of parallelizing the
program is to achieve faster execution times, hence we use
expected speedup as our primary metric. Since the standard
definition of speedup does not take into consideration the
cycles consumed by the (higher priority) owner processes, we
also define the metricweighted-speedup. We also consider
the metrics efficiency andweighted-efficiencyto illustrate
more concretely the achieved percent of optimal performance.
Specifically, once again let equal the total job demand,
the number of workstations,Ej the expected job completion
time, and the owner process utilization of the workstations.
Then

Task Ratio

Speedup

Weighted-Speedup

Efficiency

Weighted-Efficiency

=

=
Ej

=
(1−)Ej

= /

Ej

= /

(1−)Ej
.

The expected speedup and efficiency metrics are of interest
if a user wishes to determine the benefit of parallelizing the
job relative to running the program on a single dedicated
machine. The weighted metrics incorporate utilization to
clearly demonstrate how effectively the parallel program is
able to use the idle system cycles. We focus primarily on
the weighted metrics since they provide a better metric for
determining how well the distributed computing approach can
utilize idle cycles.

In Fig. 1 we plot speedup versus the number of workstations
assuming parallel job demand () equal to 1000 units and
owner processes demand () equal to 10 units. The top curve

is the theoretical optimal speedup, i.e., unitary linear, and the
next curves from top to bottom are for workstation utilizations
of 1%, 5%, 10%, and 20% (the same order is used in Figs. 2–
7 as well). For a given utilization we assume all workstations
have the same owner process utilization. The speedup curves
are concave increasing; i.e., the benefit of adding more nodes
decreases as nodes are added, despite ignoring overhead for
parallelizing the program (synchronization, communication,
nonbalanced load, etc.). At 100 nodes the speedup for a system
with only 1% utilization is only 61% of the optimal speedup;
for a 20% utilization the speedup is only 32.5% of the optimal
speedup. To present the efficiency of the system, i.e., how
close to optimal speedups are achieved, we plot efficiency
versus number of nodes in Fig. 2.

In both of the preceding plots we compare the performance
of the parallel program executed on a system of workstations
with a given owner utilization to that of the same program
executed on a single node with no owner utilization. To focus
on how effective distributed computing utilizes wasted cycles
we consider the weighted-speedup and weighted-efficiency
metrics. In Figs. 3 and 4 we plot weighted-speedup and
weighted-efficiency versus the number of nodes for the same
parameters as in Figs. 1 and 2. Note that the weighted-
efficiency is still only 61.5% (41%) for a utilization of 1%
(20%). Hence, even once owner utilization is taken into
consideration achieved performance is significantly worse than
optimal.

One cause for the degradation of performance is that the
probability of one of the workstations experiencing a transient
period of high utilization increases as the number of nodes
increases. Since the parallel job must wait for each task to
complete execution, just one workstation experiencing a tran-
sient high utilization will slow down the entire computation,
hence performance degrades as the number of workstations
increases.

FIG. 2. Efficiency, J = 1000 units.

LIMITATIONS OF CYCLE STEALING 173

FIG. 3. Weighted speedup,J = 1000 units.

A second more subtle cause of performance degradation
results from a decrease in the ratio of parallel task time to
owner process task time (task ratio). To demonstrate this
effect consider what happens if we increase the parallel job
demand from 1K units to 10K units. In Figs. 5 and 6 we plot
the weighted-speedup and weighted-efficiencies for the same
experiment as in Figs. 3 and 4, except job demand equals 10K.
The weighted-speedups and weighted-efficiencies for a job
demand of 10K units are much higher than their counterparts
in Figs. 3 and 4. For equal to 10K, equals 100 units for
a 100 workstation system, whereasequal to 1K results in
a equal to 10 units for a 100 workstation system. Tasks of
demand 10 units experience a proportionally larger delay by
owner processes than tasks requiring 100 units.

To more clearly illustrate the point, we plot weighted-
efficiency versus the task ratio for a system with 60 worksta-

FIG. 4. Weighted efficiency,J = 1000 units.

FIG. 5. Weighted speedup,J = 10,000 units.

tions in Fig. 7. (The plot for weighted-speedups is identical
except they-axis is scaled from 0 to 60 instead of 0 to 1.)
From the figure we conclude that in order to achieve acceptable
efficiency, and thus good speedups, we must ensure that the
parallel task demand is sufficiently large relative to the average
demand of owner processes; i.e., we must ensure a large task
ratio.

In the previous experiment we fixed the number of work-
stations to equal 60. In Fig. 8 we plot the weighted-efficiency
versus task ratio for various system sizes for an owner utiliza-
tion of 10%. Curves from top to bottom are for 2, 4, 8, 20, 60,
and 100 workstations. Sensitivity to the task ratio increases
with system size.

One of the main conclusions from these experiments is that
in order to achieve good speedups for fixed size problems, it
is essential that the task ratio be sufficiently large. Similar to

FIG. 6. Weighted efficiency,J = 10,000 units.

174 LEUTENEGGER AND SUN

FIG. 7. Effect of task ratio, 60 workstations.

the computation to communication ratio being an important
consideration for parallel computations, the task ratio is an
important factor in nondedicated distributed computing.

3.2. Scaled Problem Size

We now consider the effect of scaling the problem size with
the number of nodes. We assume job demand scales linearly
with the number of workstations. This type of scaling has
been calledmemory-boundedscaleup [11]. With memory-
bounded scaleup and perfect parallelism, ideally, we may be
able to complete times the amount of work in the same
time as the original problem on a single workstation by using
a system with nodes [11]. In Fig. 9 we plot job execution
time versus the number of workstations assuming job demand
is equal to 100 units times the number of workstations. Since
the problem size scales, the parallel task demand is a constant

FIG. 8. Effect of task ratio, number of workstations varied.

FIG. 9. Effect of scaling problem.

100 units, and hence, the task ratio is fixed at 10. Curves
from top to bottom are for utilization of 20%, 10%, 5%, and
1%. Initially there is a sharp increase in response time as
system size increases, but the increase diminishes as system
size becomes large. For system utilizations of 1, 5, 10, and
20%, the response time for a problem using 100 workstations
increases by 14, 30, 44, and 71% relative to the response time
for a problem using one workstation with the same owner
utilization. In other words, the distributed computing approach
offers the potential to increase the problem size by a factor of
100 and only increase response time by 44% assuming all
workstations have a utilization of 10%.

Memory-bounded scaleup exhibits better performance than
fixed-size computing since the task ratio is fixed, while the
task ratio in fixed-size computing decreases with an increase
in the number of workstations. We also considered larger
job demands and found the increase in response time to be
even less. Hence, we conclude that the distributed computing
approach offers significant potential for scalable computing
even if workstation owner processes are granted priority over
parallel tasks.

4. EXPERIMENTAL VALIDATION

In this section we present results from experimental studies
to validate the analysis. In these initial studies we focus only
on fixed size problems. We have chosen to implement our
parallel program using the PVM package [5]. We chose the
PVM package based on the package being well known and
highly available. We made no attempt to compare the PVM
package with any other distributed computation packages.

To isolate the effects of workstation owner interference
we assume that the parallel program is a local computation
problem [11]. That is, the problem has perfect parallelism and
no interprocess communication. The parallel program forks

parallel tasks, one for each workstation in the system, and

LIMITATIONS OF CYCLE STEALING 175

each task executes independently. Each parallel task is “niced”
(runs at low priority) granting workstation owner processes
priority over the parallel tasks.

Our primary metrics are maximum task execution time
and speedup. To measure the interference of workstation
owner processes, our experimental study is focused on the
maximum task execution time. This time was obtained by
having each task record the system time when it started
computation and noting the system time immediately when
completing computation. Each of the parallel tasks then return
their task execution time to the master process which selects
and reports the maximum. By considering the maximum task
execution time we isolate the impact of workstation owner
process interference.

We report the results from one experiment. The system
studied is composed of at most 12 Sun ELC Sparcstations. We
varied the number of workstations from 1 to 12, first ensuring
that none of the workstations are executing long running jobs.
In general the only interference is from more trivial usage such
as editing files and reading mail and news. For each number of
workstations considered we ran the parallel program 10 times
for each parameter value and calculated the mean of these
10 runs as our metric. Given the number of workstations,
the input parameter to our parallel program is the problem
size. We consider five different problem sizes; 1, 2, 4, 8, and
16 minutes are the service demands of these problems on a
single dedicated machine. No attempt was made to provide
confidence intervals or more detailed statistical analysis.

In Fig. 10 we plot the maximum task execution time
versus the number of workstations for the five different job
demands assuming a fixed problem size. The solid lines are
the measured values from our experiment. The dashed lines
are predictions from our analytical model where the input
parameter for workstation owner utilization is set to 3%. We
obtained the 3% value by computing the mean of the machine

FIG. 10. Experimental validation, response time.

FIG. 11. Experimental validation, speedups.

utilizations (by using the Unix uptime command) over two
working days when no PVM programs were executing. The
models qualitative and quantitative predictions are in close
agreement with the measured results.

In Fig. 11 we plot the speedup versus the number of
workstations. The curves from top to bottom are for perfect
speedup, then job demands of 8, 4, 2, and 1. The values plotted
were obtained from measurement of the system. In this case
we define speedup as the ratio of the maximum task execution
time using one workstation over the maximum task execution
time using workstations. The utilization of the machines
is very low and thus there is no significant degradation of
parallel program performance. In a more heavily loaded
system we would expect much more degradation. Focusing
on the 8 and 12 workstation cases we see that the speedup
decreases as the job demand decreases; i.e., the speedup
for a job demand of 1 is lower than the speedup for a job
demand of 16. This is because the task ratio is smaller
for a job demand of 1 than it is for a job demand of 16.
This experiment thus qualitatively validates the analysis. Note
that the analysis shows a more significant drop in speedup
as system size increases. Unfortunately we only have 12
homogeneous workstations with which to validate our results
and hence cannot experimentally validate this result.

5. SENSITIVITY TO WORKSTATION OWNER
PROCESS VARIANCE

As noted before, most workloads running on computers
have a significant amount of variation in processor demand.
For many systems the coefficient of variation has been
found to be around 10 [9]. In this section we study the
effect of workstation owner process variance on parallel job
performance.

We first compare weighted speedup predictions of our deter-
ministic analysis with those obtained from our simulation

176 LEUTENEGGER AND SUN

FIG. 12. Weighted speedup,J = 1000 units.

assuming a coefficient of variation (abbreviated CX in the
figures) of 5 for workstation owner process demands. In
Fig. 12 we plot the weighted speedup versus the number of
processors for a parallel job demand () equal to 1000 units
and an owner processed demand () equal to 10 units. The
dashed curves are from the deterministic analysis, CX = 0, and
the solid curves are from the simulation with CX = 5. From
top to bottom the curves are for CX = 0 utilizations of 1%,
5%, 10%, and 20%, then CX = 5 utilizations of 5%, 10%,
and 20%. The curve for CX = 5 utilization of 1% is omitted
for clarity; it is similar to the line for CX = 0 utilization
of 20%. The difference is quite substantial. For utilizations
of 5% and greater the weighted speedup actually decreases
beyond a certain number of processors. This is not due to
communication, as found in many speedup curves of real
systems, since communication costs are assumed to be zero.
Instead, this degradation is due to an increased probability of
having a workstation owner processes have a large demand
thus slowing down the parallel job. In the deterministic model
the probability of interferences also increases with the number
of workstations, but the penalty is not as high since the amount
of the workstation owner will use the workstation is bounded.
In Fig. 13 we plot results from the same experiment when
parallel job demand () is equal to 10,000 units. The curves
from top to bottom are in the same order as in Fig. 12. We see
once again that the increased variance results in substantially
less speedup potential than when workstation process demands
are deterministic.

To determine the sensitivity of the weighted speedup to
the variance of workstation owner processes we hold all
parameters constant and vary the coefficient of variation. In
Figs. 14 and 15 we plot the weighted speedup versus the
coefficient of variation assuming parallel job demands of 1000
and 10,000 units, respectively. The curves from top to bottom

FIG. 13. Weighted speedup,J = 10,000 units.

are for utilizations of 1%, 5%, 10%, and 20%. An increase
in the variation of owner process demand quickly degrades
weighted speedup.

The proceeding experiment indicates that the task ratio
most likely needs to be increased to achieve good speedups
in a distributed system with high workstation owner process
variance. In Fig. 16 we plot the weighted efficiency versus the
task ratio for different variances. The number of processors
is set to 60, and the utilization is set to 10%. The curves
from top to bottom are for a coefficient of variation of 0, 1,
3, 5, and 10. Note, the weighted speedups can be obtained by

FIG. 14. Sensitivity to variance,J = 1000 units.

LIMITATIONS OF CYCLE STEALING 177

FIG. 15. Sensitivity to variance,J = 10,000 units.

multiplying by 60. As the coefficient of variation increases,
the task ratio needed to achieve good efficiency increases
dramatically. For example, to achieve a weighted efficiency of
80%, interpolation of our graph shows that the task ratio must
be greater than (13, 30, 200, 500) for coefficient of variations
of (0, 1, 3, 5). For a coefficient of variation of 10 the weighted
efficiency is only 71% even at a task ratio of 1000. Thus, it
is crucial to know workstation process variance in order to
determine the minimum size of a job necessary to achieve
acceptable performance.

FIG. 16. Effect of task ratio with variance, 60 workstations.

6. CONCLUSIONS AND DISCUSSION

In this paper we have introduced a simple abstract model
to determine the feasibility and limitations of parallel com-
puting in a nondedicated network environment. The model
ignores parallel processing overheads and focus on the im-
pact of the interaction between parallel jobs and the machine
owner’s local sequential tasks. The purpose of considering a
nondedicated system is to determine if idle (wasted cycles)
workstations on a network can be utilized for speedup. We
limit our study to systems where workstation owner processes
have priority over tasks belonging to parallel jobs.

For fixed-size problems we have found that good speedups
can be achieved, but only if the amount of work allocated
to each machine is sufficiently large compared to the mean
service demand of workstation processes and the variance of
workstation owner processes is low. Hence, for nondedicated
systems where the workstation owner processes have priority
over parallel tasks, the parallel task demand to owner task de-
mand ratio (task ratio) is a determining factor in performance
of the parallel program. In addition, the task ratio needed to
achieve good performance of the parallel program increases
with system utilization. Furthermore, high variance in work-
station owner process demands require the task ratio to be
significantly greater to achieve reasonable speedups. A sys-
tem with high workstation owner process variance will require
either processes migration or extremely large parallel jobs to
absorb the interferences from the workstation owners. A soft-
ware package, namely MpPVM, has been under development
to support process migration in a nondedicated network envi-
ronment [3]. Migration of parallel tasks has also been consid-
ered in [2]. Notice that the task ratio is a function of number
of workstations used in the network computing. By choosing
an appropriate number of workstations for a given application,
the analytical model proposed in this study can be used to aid
task partitioning and scheduling decisions.

For scaled problems, we have found that distributed com-
puting offers significant potential for the efficient execution of
scaled problems. In particular, assuming each workstation in
the system has a utilization of 5% (20%) and that workstation
owner process demands are deterministic, mean job response
time is only increase by 30% (71%) when the response time
of a scaled problem using 100 workstations is compared to
that of a problem using one workstation with a 5% (20%) uti-
lization. The performance difference between fixed-size and
scaled problems is due to the fact that the task ratio of scaled
problems is fixed, while the task ratio of fixed-size problems
decreases as the number of workstation increases. The results
presented in this study are based on idealized assumptions to-
ward parallel processing. They give a general upper bound of
parallel processing gain in a nondedicated environment. The
actual achieved performance of an application would be de-
pendent on its communication requirement and inherent par-
allelism and likely would be below the upper bound.

178 LEUTENEGGER AND SUN

We have introduced a performance model which is simple,
general, and keen on revealing the impact of local sequential
tasks on parallel processing in a nondedicated distributed envi-
ronment. This model demonstrates the limitation of nondedi-
cated network computing and justifies the necessity of process
migration. Actual performance prediction would require more
detailed workload characterization of both workstation owner
use and parallel job requirements.

REFERENCES

1. Anderson, T., Culler, D., and Patterson, D. A case for networks of
workstations: NOW.IEEE Micro (Feb. 1995).

2. Arpaci, R., Dusseau, A., Vahdat, A., Liu, L., Anderson, T., and
Patterson, D. The interaction of parallel and sequential workloads on
a network of workstations.Proc. of SIGMETRICS/Performance Conf.
1995.

3. Chanchio, K., and Sun, X.-H. MpPVM: A software system for
nondedicated heterogeneous computing.Proc. of the International Conf.
on Parallel Processing.1996.

4. Douglis, F., and Ousterhout, J. Transparent process migration: Design
alternative and the sprite implementation.Software Practice Experience
21, 8 (1991), 757–785.

5. Geist, G., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and
Sunderam, V.PVM: Parallel Virtual Machine—A Users’ Guide and
Tutorial for Networked Parallel Computing.The MIT Press, Cambridge,
MA, 1994.

6. Gropp, W., Lusk, E., and Skjellum, A.Using MPI: Portable Parallel
Programming with the Message-Passing Interface.The MIT Press,
Cambridge, MA, 1994.

7. Kobayashi. Modeling and Analysis.Addison–Wesley, Reading, MA,
1978.

8. Mutka, M., and Livny, M. The available capacity of a privately owned
workstation environment.Perform. Eval.12 (1991), 269–284.

9. Sauer, C., and Chandy, K.Computer System Performance Modeling.
Prentice–Hall, Englewood Cliffs, NJ, 1981.

10. Schwetman, H. Csim: A c-based process-oriented simulation language.
Proc. of 1986 Winter Simulation Conference(Dec. 1986).

11. Sun, X.-H., and Ni, L. Scalable problems and memory-bounded
speedup.J. Parallel Distrib. Comput.19 (Sep. 1993), 27–37.

SCOTT T. LEUTENEGGER received the B.S. in mathematics from the
University of Wisconsin—Madison in 1985, and the M.S. and Ph.D. in
computer science from the University of Wisconsin—Madison, in 1987 and
1990. From 1990 to 1994 he worked as a postdoctoral researcher at IBM
T.J. Watson Research Center and as a staff scientist at NASA ICASE. He
is currently an assistant professor at the University of Denver, Denver, CO.
His main research interests are in performance modeling, multiprocessor
scheduling, support of multidimensional data, parallel and distributed database
systems, and numerical solution of Markov chains. Dr. Leutenegger is a
member of the ACM and IEEE Computer Society and currently serves as
secretary/treasurer for ACMSIGMETRICS.

XIAN-HE SUN received the B.S. in mathematics from Beijing Normal
University, Beijing, China, the M.S. in mathematics, and the M.S. and
Ph.D. in computer science from Michigan State University. After graduating
from Michigan State, he joined the Ames Laboratory, operated for the
Department of Energy by Iowa State University. He was a visiting faculty
member at Clemson University and a staff scientist at ICASE, NASA Langley
Research Center. Since January 1994, he has been with the Department of
Computer Science, Louisiana State University. His research interests include
parallel processing, parallel numerical algorithms, performance evaluation,
and software systems. Dr. Sun is a guest editor for the special issue of
Journal of Parallel and Distributed Computinqon Analyzing Scalability of
Parallel Algorithms and Architectures and is on the editorial board ofJournal
of Performance Evaluation and Modeling for Computer Systems. He is a
member of New York Academy of Science, a senior member of IEEE, and is
a member of ACM, IEEE Computer Society, and PHI KAPPA PHI.

Received March 1, 1996; revised April 1, 1997; accepted April 30, 1997

