
Quantifying the Overheads of the Modern Linux
I/O Stack

Luke Logan Anthony Kougkas Xian-He Sun
llogan@hawk.iit.edu, akougkas@iit.edu, and sun@iit.edu

Abstract
Linux is the foundation of 9 of the top 10 pub-
lic clouds [5] and all Top500 supercomputers [7].
Several distributed storage services such as Ob-
ject Stores, Parallel File Systems, and Databases
(e.g., OrangeFS [1]) largely rely on the Linux
I/O stack for their storage needs. They store
data using the UNIX file representation and ac-
cess these files using the POSIX interface that
Linux provides. Thus, the performance of the
Linux I/O stack is critical to the performance of
these applications as a whole. However, recent
research has shown that the Linux I/O stack in-
troduces multiple overheads that significantly re-
duce and randomize the performance of I/O re-
quests [2, 9, 8]. In this research, we quantify the
software overheads in the Linux I/O stack by trac-
ing the POSIX read()/write() system calls on
various storage devices and filesystems. By com-
paring the amount of time spent in software versus
the amount of time spent in I/O, we can gain in-
sight on how much overhead the Linux I/O stack
produces and propose solutions that can mitigate
the overheads.

Testbed

Figure 1: Chameleon Cloud [3]

Methodology

Preallocate file of 1GB in filesystem
Clear OS page cache before every test
Use O_DIRECT flag to bypass page cache
Sequential, synchronous I/O using POSIX
read()/write()
Vary I/O request size, filesystem, and storage
Repeat each test at least 100 times
Use trace-cmd [6] to find sources of overhead
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Figure 2: Linux I/O Stack

User Space: Reserve a chunk of virtual memory using an allocator function (e.g.,
malloc()) and pass this virtual address, along with a length and file descriptor, to
POSIX I/O syscalls such as read() or write()
VFS Layer: Update file metadata and perform journaling (if applicable). Discover the
set of disk blocks to be used in the I/O request and pass this information, along with
the user’s buffer and length, to either the Page Cache or Direct I/O (DIO) Layer.
Page Cache: Construct/submit Block I/O requests (BIOs) that associate pages in the
cache with disk blocks. I/O does not happen directly with the user’s buffer; data must
be copied between the cache and the user’s buffer.
DIO Layer: Convert the user’s buffer into pages and then construct/submit BIOs that
associate those pages with disk blocks.
BIO Layer: Plug/merge/split BIOs and convert BIOs into requests. Plug waits for
additional BIOs. Merge combines contiguous BIOs into one BIO. Split divides BIOs that
are too large for underlying hardware to handle.
Request Layer: Schedule/order requests and pass requests down to the device drivers.
Device Drivers: Send commands and handle interrupts.

Profiling the Linux I/O Stack
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Figure 3: Sequential Writes of 10MB from XFS and EXT4 SSDs

2.8% of time spent creating BIOs
6.9% of time spent splitting/merging/plugging BIOs
11.3% of time spent reordering/queuing requests
21% of time spent in software
SSDs have fast random access
Filesystems do not leverage the architecture of SSDs
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Figure 4: Sequential Reads of 10MB from EXT4 and XFS HDD

.8% of time spent creating BIOs
5.4% of time spent splitting/merging/plugging BIOs
6.2% of time spent in software
A significant amount of time is spent merely constructing/splitting/merging BIOs
This is true across storage architectures

Bypassing the Linux I/O Stack

Figure 5: Sequential Reads of 64KB from XFS and EXT4 SSDs

We built a kernel module [4] that ignores the cost of
constructing BIOs
Sequential read of 6.4MB in blocks of size 64KB on Skylake
10% faster than XFS
20% faster than EXT4

Conclusion
We showed the potential to boost the performance of a stor-
age server by quantifying the software overheads of the existing
Linux I/O stack and proposed several ways to bypass these over-
heads. Given this, we plan to design and develop a new, high-
performance, lightweight, and robust storage software stack for
data-intensive computing and its new data representations.
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