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Abstract The Linux 1/0O Stack Bypassing the Linux 1/0 Stack

Linux is the foundation of 9 of the top 100 pub- |
lic clouds [5] and all Top500 supercomputers [7]. 64KB Read SSD
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PP . ' . \ Request Layer cache with disk blocks. |/O does not happen directly with the user’s buffer; data must 50
research has shown that the Linux |/O stack in- . ,
troduces multiple overheads that significantly re- e be copied between the cache and the user's buffer
duce and randomize the performance of 1/0 re- \ DIO .Layer: Convert the us.er’s buffer into pages and then construct/submit BlOs that 0
quests [2, 9, 8]. In this research, we quantify the associate those pages with disk blocks. Bypass XFS EXT4
software overheads in the Linux | /O stack by trac- BIO Layer: Plug/merge/split BIOs and convert BIOs into requests. Plug waits for Figure 5: Sequential Reads of 64KB from XFS and EXT4 SSDs
ing the POSIX read () /write() system calls on P e additional BIOs. Merge combines contiguous BlOs into one BIO. Split divides BlOs that
various storage devices and filesystems. By com- — are too large for underlying hardware to handle. We built a kernel module [4] that ignores the cost of
paring the amount of time spent in software versus Raw block-based storage device Request Layer: Schedule/order requests and pass requests down to the device drivers. constructing BIOs
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produces and propose solutions that can mitigate Figure 2: Linux 1/O Stack o faster than
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Profiling the Linux /0 Stack

Haswell Skylake DIO BIO REQ Yo DIO BIO REQ /O DIO BIO /0 DIO BIO /0 We showed the potential to boost the performance of a stor-
0s Ubuntu 18.04 Ubuntu 18.04 age server by quantifying the software overheads of the existing
Linux 4.15.0-101-generic 4.15.0-101-generic Linux 1/0 stack and proposed several ways to bypass these over-
CPU (cores) 12 12 6.9% heads. Given this, we plan to design and develop a new, high-
CPU (threads) 24 24 performance, lightweight, and robust storage software stack for
Storage Type SASHDD SATA SSD 11.3% 29.2% data-intensive computing and its new data representations.
Capacity 250GB 240GB k J
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Use trace-cmd [6] to find sources of overhead 6.2% of time spent in software

11.3% of time spent reordering/queuing requests
A significant amount of time is spent merely constructing/splitting/merging BlOs

21% of time spent in software

SSDs have fast random access This is true across storage architectures

Filesystems do not leverage the architecture of SSDs
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