\ Quantifying the Overheads of the Modern Linux
\ SCALABLE COMPUTING 1/O Stack ILLINOIS INSTITUTE

SOFTWARE LABORATORY e ogan Antony Pongias FianTie OF TECHNOLOGY

llogan@hawk.iit.edu, akougkas@iit.edu, and sun@iit.edu

Abstract The Linux 1/0O Stack Bypassing the Linux 1/0 Stack

Linux is the foundation of 9 of the top 100 pub- |
lic clouds [5] and all Top500 supercomputers [7]. 64KB Read SSD
Several distributed storage services such as Ob- , Kernel Space \ i
ject Stores, Parallel File Systems, and Databases User Space: Reserve a chunk of virtual memory using an allocator function (e.g.,
(e.g., OrangeFS [1]) largely rely on the Linux T VS malloc()) and pass this virtual address, along with a length and file descriptor, to
|/O stack for their storage needs. They store User Space) ' /dev/.. | EXT4 | XES POSIX 1/0 syscalls such as read() or write() 150
data using t_he UN_IX file represent.ation and ac- . , ! “‘. VFS Layer: Update file metadata and perform journaling (if applicable). Discover the -
CEss these .f|Ies using the POSIX interface that e Orwiies | Page Cache | Direct I/O set of disk blocks to be used in the 1/O request and pass this information, along with g 00
Linux provides. Thus, the performance of the e |‘-‘ j the user's buffer and length, to either the Page Cache or Direct /0 (DIO) Layer. o
Linux /O stack is critical to the performance of \ BIO Layer . . . =
these applications as a whole. However. recent Page Cache: Construct/submit Block 1/0O requests (BlIOs) that associate pages in the =

PP . ' . \ Request Layer cache with disk blocks. |/O does not happen directly with the user’s buffer; data must 50
research has shown that the Linux |/O stack in- . ,
troduces multiple overheads that significantly re- e be copied between the cache and the user's buffer
duce and randomize the performance of 1/0 re- \ DIO .Layer: Convert the us.er’s buffer into pages and then construct/submit BlOs that 0
quests [2, 9, 8]. In this research, we quantify the associate those pages with disk blocks. Bypass XFS EXT4
software overheads in the Linux | /O stack by trac- BIO Layer: Plug/merge/split BIOs and convert BIOs into requests. Plug waits for Figure 5: Sequential Reads of 64KB from XFS and EXT4 SSDs
ing the POSIX read () /write() system calls on P e additional BIOs. Merge combines contiguous BlOs into one BIO. Split divides BlOs that
various storage devices and filesystems. By com- — are too large for underlying hardware to handle. We built a kernel module [4] that ignores the cost of
paring the amount of time spent in software versus Raw block-based storage device Request Layer: Schedule/order requests and pass requests down to the device drivers. constructing BIOs
the amount of time spent in |/O, we can gain in- \(e'g" HDD, SSD)/ Device Drivers: Send commands and handle Interrupts. Sequentia| read of 6.4MB in blocks of size 64KB on Sky|ake
sight on how much overhead the Linux 1/O stack 10% f han XES
produces and propose solutions that can mitigate Figure 2: Linux 1/O Stack o faster than
the overheads. 20% faster than EXT4

Profiling the Linux /0 Stack

Haswell Skylake DIO BIO REQ Yo DIO BIO REQ /O DIO BIO /0 DIO BIO /0 We showed the potential to boost the performance of a stor-
0s Ubuntu 18.04 Ubuntu 18.04 age server by quantifying the software overheads of the existing
Linux 4.15.0-101-generic 4.15.0-101-generic Linux 1/0 stack and proposed several ways to bypass these over-
CPU (cores) 12 12 6.9% heads. Given this, we plan to design and develop a new, high-
CPU (threads) 24 24 performance, lightweight, and robust storage software stack for
Storage Type SASHDD SATA SSD 11.3% 29.2% data-intensive computing and its new data representations.
Capacity 250GB 240GB k J

Figure 1 Chameleon Cloud [3 XFS EXT4 XFS EXT4
SSD SSD HDD HDD [1] (2020). Orangefs. OrangeFS. http://waw.orangefs.org/.

[2] Cao, Z., Tarasov, V., Raman, H. P., Hildebrand, D., and Zadok, E. (2017). On the performance varia-

M h d I 61.5% tion in modern storage stacks. In 15th USENIX Conference on File and Storage Technologies (FAST 17),

Et 0odo Ogy pages 329-344, Santa Clara, CA. USENIX Association. https://www.usenix.org/conference/fast17/
technical-sessions/presentation/cao.

[3] Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik, M., Colleran, J., Gunawi, H. S.,

Prea||ocate flle Of].GB In filesystem 79 0% Hammock, C., Mambretti, J., Barnes, A., Halbach, F., Rocha, A., and Stubbs, J. (2020). Lessons learned from
’ the chameleon testbed. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC '20).
o . . S 5
Clear OS page cache before every test 93.8% 92.5% " USENIX Aszocnat;on.
4| Logan, L. (2020). https://github.com/lukemartinlogan/linux-bio-km.
Use O_DI RECT ﬂag to bypass page cache [5] RedHat (2017). The state of linux in the public cloud for enterprises. RedHat. https://www.redhat.com/
/ en/resources/state-of-linux-in-public-cloud-for-enterprises.
Seq Uential, SynChronOUS 1/0 USing POSIX : . [6] Rostedt, S. (2010). trace-cmd. RedHat. https://man7.org/linux/man-pages/manl/trace-cmd.1.html.
read () /Write O Figure 3: Sequential Writes of 10MB from XFS and EXT4 SSDs Figure 4: Sequential Reads of 10MB from EXT4 and XFS HDD [7] Top500.org (2020). Top500. https://www.top500.org/lists/top500/2020/06/.
[8] Yang, Z., Harris, J. R., Walker, B., Verkamp, D., Liu, C., Chang, C., Cao, G., Stern, J., Verma, V., and
. . . . Paul, L. E. (2017). Spdk: A development kit to build high performance storage applications. In 2017 IEEE
Vary |/O request size, fllesystem, and storage ’ 8% of time spent Creating BIOs 8% of time spent creating BlOs International Conference on Cloud Computing Technology and Science (CloudCom), pages 154~161.
Repeat each test at least 100 times ' 5 40/ £ it] | _ BIO [9] Zhang, I., Liu, J., Austin, A., Roberts, M. L., and Badam, A. (2019). I'm not dead yet! the role of the
0 . iyt . . 470 of time spent splitting/ mergin ueoin S operating system in a kernel-bypass era. In Proceedings of the Workshop on Hot Topics in Operating Systems,
69 /0 Of time Spent SplIttlng/merglng/plugglng BIOS P P g/ s g/p s&ing HotOS '19, page 73-80, New York, NY, USA. Association for Computing Machinery. https://doi.org/10.

1145/3317550.3321422.

Use trace-cmd [6] to find sources of overhead 6.2% of time spent in software

11.3% of time spent reordering/queuing requests
A significant amount of time is spent merely constructing/splitting/merging BlOs

21% of time spent in software

SSDs have fast random access This is true across storage architectures

Filesystems do not leverage the architecture of SSDs

https://lukemartinlogan.github.io/professional-website/
http://www.orangefs.org/
https://www.usenix.org/conference/fast17/technical-sessions/presentation/cao
https://www.usenix.org/conference/fast17/technical-sessions/presentation/cao
https://github.com/lukemartinlogan/linux-bio-km
https://www.redhat.com/en/resources/state-of-linux-in-public-cloud-for-enterprises
https://www.redhat.com/en/resources/state-of-linux-in-public-cloud-for-enterprises
https://man7.org/linux/man-pages/man1/trace-cmd.1.html
https://www.top500.org/lists/top500/2020/06/
https://doi.org/10.1145/3317550.3321422
https://doi.org/10.1145/3317550.3321422

	References

