
An Evaluation of DAOS for Simulation and Deep
Learning HPCWorkloads

Jay Lofstead
Sandia National Labs

Albequerque, New Mexico, United States
gflofst@sandia.gov

Anthony Kougkas
Illinois Institute of Technology
Chicago, Illinois, United States

akougkas@iit.edu

Luke Logan
Illinois Institute of Technology
Chicago, Illinois, United States

llogan@hawk.iit.edu

Xian-He Sun
Illinois Institute of Technology
Chicago, Illinois, United States

sun@iit.edu

Abstract
Traditionally, distributed storage systems have relied upon 
the interfaces provided by OS kernels to interact with stor-
age hardware. However, much research has shown that OSes 
impose serious overheads on every I/O operation, especially 
on high-performance storage and networking hardware (e.g., 
PMEM and 200GBe). Thus, distributed storage stacks are 
being re-designed to take advantage of this modern hard-
ware by utilizing new hardware interfaces which bypass the 
kernel entirely. However, the impact of these optimizations 
have not been well-studied for real HPC workloads on real 
hardware. In this work, we provide a comprehensive evalua-
tion of DAOS: a state-of-the-art distributed storage system 
which re-architects the storage stack from scratch for mod-
ern hardware. We compare DAOS against traditional storage 
stacks and demonstrate that by utilizing optimal interfaces 
to hardware, performance improvements of up to 6x can be 
observed in real scientific applications.

CCS Concepts: • Information systems → Distributed 
storage; Flash memory; Phase change memory; • Com-
puting methodologies → Parallel computing method-
ologies; Machine learning; Distributed computing method-
ologies.
ACM Reference Format:
Luke Logan, Jay Lofstead, Xian-He Sun, and Anthony Kougkas. 
2023. An Evaluation of DAOS for Simulation and Deep Learning 
HPC Workloads. In 3rd Workshop on Challenges and Opportunities 
of Efficient and Performant Storage Systems (CHEOPS ’23), May 8, 
2023, Rome, Italy. ACM, New York, NY, USA, 8 pages. https://doi. 
org/10.1145/3578353.3589542

CHEOPS ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0081-1/23/05.
https://doi.org/10.1145/3578353.3589542

1 Introduction
HPC systems have traditionally suffered from an I/O bot-
tleneck due to the gap between storage and CPU perfor-
mance. To lower this gap, HPC centers are adopting high-
performance storage (e.g., PMEM) and networking (e.g., 200GBe)
hardware. This hardware is typically organized in a hier-
archy [8, 10, 18–20], where data is initially buffered in a
high-performance tier and then flushed to a high-capacity
tier. This improvement in hardware provides substantial
benefits to overall application performance. However, while
performance benefits can be observed, many storage systems
were designed under the assumption that I/O is significantly
slower than compute. This assumption is no longer true, with
many works noting significant performance loss caused by
software overheads [16, 27, 34] and context switching [17, 23]
under various workloads. To fully take advantage of the low
latency and high bandwidth provided by this hardware, the
design and implementation of storage systems are being
thoroughly reconsidered.
One source of performance degradation is caused by the

storage and networking stacks provided by OS kernels. The
Linux I/O stack, for example, was designed primarily for
reliability and correctness, while maintaining acceptable
performance for general users. However, many works have
demonstrated that the Linux I/O stack causes significant
performance loss due to its lengthy I/O path [15, 26, 31],
interrupts [17, 23], and context switches [17, 23]. To improve
this, new kernel-bypass storage stacks [26, 32, 33] have been
developed to harness the characteristics of modern hardware.
One such work is the SPDK [32], which is an NVMe driver
which utilizes userspace function calls and polling instead of
system calls and interrupts to interact with hardware. Many
single-node storage systems (e.g., filesystems [15, 31] and
key-value stores [26, 27]) have been developed on top of
these kernel-bypass stacks, which have demonstrated signif-
icant improvements to I/O performance in terms of latency.
However, the evaluations of these works are only at the
single-node.

9

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3578353.3589542
https://doi.org/10.1145/3578353.3589542
https://doi.org/10.1145/3578353.3589542
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578353.3589542&domain=pdf&date_stamp=2023-05-08


Due to the significant performance impacts of kernel-
bypass and hardware optimization on single-node storage
stacks, distributed storage stacks are also emerging which
are designed specifically for modern hardware. Many well-
established storage systems are being patched to better sup-
port modern hardware. One such system is CephFS [5],
which is a distributed filesystem which recently replaced
kernel-level filesystems for storing metadata in NVMe and
PMEM with kernel-bypass technologies [2]. However, since
existing systemswere already largely designed towards slower
storage mediums, other works have re-architected the stor-
age stack completely [3, 7, 24]. For example, the Distributed
Asynchronous Object Store (DAOS) [24] by Intel is a state-
of-the-art storage system which re-architects the I/O path
entirely to account for the high performance of modern hard-
ware.

Whilemany distributed storage stacks have been proposed
to take advantage of modern hardware, the impact of these
different optimizations have not been well-evaluated for a
variety of workloads. For the most part, evaluations of stor-
age systems which incorporate kernel-bypass technologies
are limited to single-node cases, and many of these evalua-
tions are over emulated hardware [14, 15, 22, 31] using only
synthetic workloads [13]. Overall, from the existing work, it
is not clear the extent to which re-desigining storage stacks
for modern hardware has affected the performance of real
distributed scientific applications.
In this work, we aim to quantify the extent to which re-

architecting storage stacks for modern hardware impacts the
performance of real simulation and deep learning HPC work-
loads. To do this, we provide a comprehensive evaluation of
DAOS 2.0: a state-of-the-art distributed storage stack which
has been built specifically for modern hardware. We quan-
tify the performance impacts of DAOS’s diverse software
stack optimizations compared to traditional kernel-based
approaches over modern storage and networking hardware,
including NVMe and PMEM.We demonstrate that DAOS out-
performs traditional storage systems, such as OrangeFS, by
as much as 15x under various synthetic and real workloads
on high-performance storage hardware.

2 Background & Related Work
There has been growing interest in optimizing storage stacks
to maximize the bandwidth and latency potential of storage.
This effort has spanned from OS-level changes to device
drivers to entire distributed storage system designs. Various
works have proposed new storage stack designs, and some
work has been done to evaluate the implications of these
new designs at the distributed level.

2.1 Distributed Storage Stacks
While many changes have been made to the design of single-
node storage stacks, the impacts of these changes must also

be understood at the distributed level. Due to the success
of single-node I/O stack optimizations, distributed storage
stacks are also evolving to optimize for the high-performance
of modern storage hardware. Some storage systems are being
patched to utilize these new interfaces while makingminimal
changes to their overall design, whereas other systems have
been developed entirely from scratch.
Traditional Storage Stacks: OrangeFS [4] and BeeGFS
[9] are both traditional high-end computing storage sys-
tems. OrangeFS has shipped with the Linux kernel since 4.6
and provides a userspace FUSE plugin for performing I/O.
BeeGFS comes with a custom kernel module which acts as
a kernel-level filesystem. When performing I/O, OrangeFS
and BeeGFS divide data into stripes and distributes them
among storage servers. The locations of stripes are managed
by the metadata servers, which are by default co-located
with the storage servers to achieve scalability. Both these
systems currently utilizes the I/O interfaces provided by de-
fault with the OS, and have not specifically been optimized
to support high-performance modern hardware, outside of
RDMA capabilities.
Patched Storage Stacks: CephFS [5] is a POSIX-compliant
file system built on top of Ceph’s distributed object store, RA-
DOS. CephFS endeavors to provide a state-of-the-art, multi-
use, highly available, and performant file store for a variety
of applications, including traditional use-cases like shared
home directories, HPC scratch space, and distributed work-
flow shared storage. CephFS has recently replaced kernel-
level filesystems for storing metadata with kernel-bypass
technologies [2], including the SPDK [32] and DAX [12]. The
work demonstrated significant performance improvement
of their kernel-bypass storage backend. The evaluation of
this work was primarily over a 16-node cluster using RAM
and HDD, and was not evaluated over PMEM. One synthetic
experiment was conducted over NVMe.
Modular Storage Stacks: Recent efforts have been aiming
to provide modularized storage stacks in order to combat
software overheads caused by the OS kernel and provide
workload- and hardware-specific customization. Mochi [30]
provides a diverse set of building blocks, which can be com-
posed by users to rapidly build highly customized distributed
storage systems. LabStor [26] proposes an extensible plat-
form to facilitate the rapid development of new, hardware-
optimized, workload-specific storage stacks. Users can de-
velop a wide variety of storage modules, ranging from per-
node I/O schedulers to distributed storage systems, which
can then be composed to form highly optimized I/O stacks.
The evaluations of these works were primarily over emulated
hardware and NVMe.
DAOS: TheDistributedAsynchronousObject Store (DAOS) [24]
is a state-of-the-art storage system developed by Intel to
take full advantage of modern hardware, such as NVMe
and PMEM. DAOS requires the existence of either NVMe
or PMEM for acting as a persistent cache to metadata. For

10



NVMe, the SPDK can be used for interacting directly with
NVMe while bypassing the kernel. For PMEM, DAX can be
used for mapping PMEM directly into DAOS’s address space,
minimizing kernel overheads.

DAOS has two storage concepts: pools and containers. A
DAOS pool abstracts over the storage hardware for a subset
of storage nodes. A pool can contain a variety of different
storage hardware. The storage in a DAOS pool is tiered based
off of the type of storage (e.g., NVMe vs PMEM). There can
be up to a few hundred pools. A DAOS container, which is a
transactional object store, can be allocated from a DAOS pool.
A DAOS container represent many different storage systems.
For example, a container can be exposed as a filesystem
or a key-value store. There can be up to a few hundred
containers. Each container can store billions of objects (e.g.,
files). By default, DAOS recommends 6% of a container’s
allocated space be PMEM/NVMe while 94% be allocated to
mass storage (e.g., HDD). This ensures that all metadata will
be stored in high-performance tiers, while all data operations
are stored in slower, high-capacity tiers. Metadata is required
to be stored in either PMEM or DRAM, and it is assumed
that a user’s pool will contain a sufficient amount of space
to store metadata.

DAOS provides a variety of interfaces for interacting with
containers, including POSIX,MPI-IO, HDF5, Spark andHadoop.
For POSIX, both a FUSE filesystem and an interceptor (which
can be loaded using LD_PRELOAD) are provided. The filesys-
tem interceptor is intended to reduce the overheads imposed
by FUSE. Unlike a typical parallel filesystem such as Or-
angeFS, DAOS stores variable-sized blobs of information and
does not use fixed-sized striping. This avoids high-latency
accesses for I/O operations smaller than the stripe size.
Existing Benchmarks: Recently published works have
aimed to measure the performance implications of DAOS
over real hardware at scale. Most of these works are an anal-
ysis of the DAOS components themselves [13], comparing
DAOS only against itself. Some work has been done to com-
pare the performance of DAOS against other storage systems
for IOR-based workloads. The IO500, for example [25], uti-
lizes the IOR and mdtest benchmark suites to generate syn-
thetic workloads to stress the boundaries of storage systems.
In 2019, DAOS received top marks compared to other sub-
missions in the 10-node challenge. Other works use a similar
approach to compare DAOS against Lustre using IOR [28].
While these works are informative on the best ways to tune
DAOS and providing an indication of the types of work-
loads DAOS will work well for, the existing benchmarks do
not demonstrate the implications of DAOS underneath real
workloads.

2.2 Motivation
While many proposals have been made to change the way
storage systems are designed to incorporate the high-performance
of modern storage hardware, it is not well-understood how

these design choices have impacted the performance of real
scientific applications over real modern hardware. Evalu-
ations of hardware-optimized storage stacks have primar-
ily been in a single-node setting, where network costs are
avoided entirely. Evaluations which show distributed im-
pacts are typically conducted over emulated hardware or
only NVMe. Lastly, the existing evaluations are based solely
on synthetic workloads (e.g., IOR), and do not measure the
performance impact on real simulation and deep learning
HPC applications. To truly understand the performance im-
pacts of optimizing storage stacks for modern hardware, an
evaluation across storage systems using real hardware and
applications is necessary.

3 Evaluations
Hardware: We ran all our experiments on a 3-node cluster.
Each node contains 512GB RAM, 8x 256GB of Intel Optane
DC Persistent Memory, and 16x 4TB NVMes. Each node has
2x Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz, which is 48
cores and 96 threads per-node and 144 cores in total. The
network interconnect is 100GBe.

Software: For our experiments, we use Centos8 with ker-
nel 4.18. We install DAOS 2.1.104-tb, OrangeFS 2.9.8, and
BeeGFS 3.7.1. For benchmarks, we use IO500 (isc’22 branch)
and DLIO (commit: 2a5ed47). We use mpich 3.3.2 for all
experiments. Each experiment is executed 3 times and the
average is reported.

Experiment Setup: In each experiment, we run the work-
load generator with 128 processes. In each test, we co-locate
the application with the storage/metadata servers. Caches
are cleared before every experiment. We use the default con-
figuration for OrangeFS and BeeGFS in all experiments. For
OrangeFS, a 64KB stripe size is used and libaio is used as
the I/O backend. BeeGFS is also configured with a 64KB
stripe size, but automatically scales I/O threads depending
on the current workload. We use only one NVMe per-node
for these tests. More detail about experimental setup is in
each evaluation.

3.1 IO500
In this evaluation, we perform a stress test of the different
storage stacks to understand the baseline performance char-
acteristics of each system. To do this, we use the IO500 [21],
which is a community benchmark designed to stress storage
systems. We compare DAOS, OrangeFS [4], and BeeGFS [9]
running over RAM, PMEM and NVMe, each using RDMA-
capable networks. OrangeFS and BeeGFS are traditional par-
allel filesystems which are designed to be used in high-end-
computing environments. Neither system has been specif-
ically optimized for modern storage hardware, outside of
RDMA capabilities. For OrangeFS and BeeGFS, we use EXT4
as the filesystem for interacting with storage (for PMEM,
DAX is enabled). A stripe size of 64KB is used and data is

11



B
an

dw
id

th
 (G

B
ps

)

0

2

4

6

8

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(a) IOR-Easy Write

0

2

4

6

8

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(b) IOR-Hard Write

B
an

dw
id

th
 (G

B
ps

)

0

2

4

6

8

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(c) IOR-Easy Read

0

2

4

6

8

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(d) IOR-Hard Read

Th
rp

t (
kI

O
P

s)

0

25

50

75

100

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(e) Mdtest Easy Write

0

10

20

30

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(f) Mdtest Hard Write

Th
rp

t (
kI

O
P

s)

0

25

50

75

100

125

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(g) Mdtest Easy Read

0

10

20

30

40

NVMe PMEM DRAM

Theoretical Daos OrangeFS BeeGFS

(h) Mdtest Hard Read

Figure 1. IO500 over various hardware and storage systems. DAOS outperforms OrangeFS and BeeGFS by at least 10x in
every workload.

distributed among the metadata servers in a round-robin
fashion. Metadata and data servers are co-located. For DAOS,
we use the SPDK for storing data on NVMe and DAX for stor-
ing data on PMEM. For the NVMe case, DAOS is configured
with 50GB of PMEM and 5TB of NVMe; the majority of I/O
will be to the NVMe instead of the PMEM. We run the IO500
for 5 minutes for each test. We measure I/O bandwidth and
metadata throughput for the various workloads executed
by the IO500. We also measure the theoretical bandwidth
and throughput of the underlying hardware using the dd
tool over the device file for the PMEM and NVMe devices

per-node. The measurement of theoretical bandwidth does
not account for network impacts.
From Figure 1, it can be observed that DAOS provides

performance benefits across the different benchmarks. In
terms of bandwidth reported in the IO500-Easy experiment,
DAOS outperforms OrangeFS by 10x over NVMe and by 15x
over PMEM. IO500-Easy performs a workload which is opti-
mal towards parallel filesystems such as OrangeFS, making
large, sequential, and aligned I/O. However, although it is
the best-case scenario for OrangeFS, DAOS’s leaner I/O stack
still provides significant performance improvements. This

12



Ti
m

e 
(m

in
s)

0

5

10

15

20

DAOS OrangeFS BeeGFS

I/O Compute

(a) CosmicTagger for various storage systems

Ti
m

e 
(m

in
s)

0

2

4

6

8

10

12

EXT4 BDEV SPDK

I/O Compute

(b) CosmicTagger for various DAOS storage backends

Figure 2. CosmicTagger for various storage systems and storage backend configurations of DAOS. For (a), DAOS performs 2x
faster than the traditional storage stacks. For (b), The storage backend varies between SPDK, Linux block layer, and the EXT4
filesystem. SPDK performs up to 55% faster than others as the storage backend. Much of the performance gained in (a) is due
to the benefits of SPDK.

B
an

dw
id

th
 (G

B
ps

)

0

1

2

3

4

5

NVMe PMEM DRAM

Daos OrangeFS BeeGFS

(a) VPIC

0

2

4

6

8

NVMe PMEM DRAM

Daos OrangeFS BeeGFS

(b) BD-CATS

Figure 3. HPC workloads over different hardware and storage systems. DAOS improves performance significantly over other
other storage system types.

is likely due to the performance of OrangeFS and BeeGFS
metadatamanagement services for handling the stripes. Each
I/O is divided into 64KB stripes, each of which have to be
registered with the metadata servers.

IO500-Hard performs a less optimal workload, which gen-
erates small and unaligned I/O. In this case, DAOS outper-
forms both BeeGFS and OrangeFS by 8x on NVMe and 10x
over PMEM. There are two reasons for performance differ-
ences. First, IO500-Hard stresses metadata and small-I/O per-
formance significantly more, which accrues overheads due
to the kernel I/O stack. Second, BeeGFS and OrangeFS per-
form I/O in units of stripes (64KB). For I/O which is smaller
than this and when boundaries are misaligned, an increased
amount of I/O and metadata management occurs.
For the mdtest-easy and mdtest-hard workloads, DAOS

performs at least 18x faster than OrangeFS on both NVMe
and PMEM. This is because DAOS uses a minimalistic I/O
path for storing and querying metadata. Both BeeGFS and
OrangeFS rely on the kernel’s I/O stack. OrangeFS is a FUSE
filesystem running atop EXT4, and BeeGFS is a kernel-level
filesystem also running atop EXT4. While metadata queries
don’t (typically) go directly to disk, they must travel through
multiple levels of software and network in order to complete.

This leads to a long, expensive I/O path for every metadata
access.

In the basic synthetic stress tests, the leaner software stack
provided by DAOS significantly outperforms the traditional
storage stacks in each category of metadata throughput, la-
tency, and bandwidth. While this knowledge gives indication
that DAOS will perform well underneath real applications,
we demonstrate the performance impacts in a few real work-
loads.

3.2 Machine Learning
In this evaluation, we measure the performance impact of
DAOS compared to traditional storage stacks for a real deep
learning HPC workload. For this, we run CosmicTagger [1]
through the DLIO [11] benchmark, which is a convolutional
neural network for separating cosmic pixels, background
pixels, and neutrino pixels. The training dataset contains
430,000 samples, where each sample contains three images
of size 1280x2048. The samples are stored in an HDF5 dataset
sparsely. At each iteration, 32 images are read from the
dataset and preprocessed. Most I/Os are between 20 and
50KB in size. The total size of the dataset is 450GB. DAOS is
configured to have 50GB of PMEM and 5TB of NVMe. DAOS,

13



OrangeFS, and BeeGFS are all configured to use POSIX sock-
ets for their networking operations. DAOS uses SPDK for its
storage backend. OrangeFS and BeeGFS use EXT4 for their
storage backend.

Overall, we found that CosmicTagger completed its train-
ing 2x faster over DAOS compared to the traditional storage
stacks. CosmicTagger spends 6.5 minutes of its runtime in
computation, which involves analyzing in-memory samples
of data for the training. However, for OrangeFS and BeeGFS,
CosmicTagger spends 9 minutes of its runtime in I/O. For
DAOS, this only takes 2.5 minutes. There are three main
reasons for this performance difference. First, DAOS uses the
SPDK, which is much lighter than the EXT4 filesystem used
by OrangeFS and BeeGFS. Second, the implementation of
DAOSwas designed around the knowledge that storage hard-
ware is fast, so software overheads were minimized on the
critical I/O path. Third, the storage systems have variations
in metadata management, caching, and data distribution poli-
cies, which can result in unnecessary duplication of data and
increased networking overheads.

To quantify the impact of these differences, we re-run the
same CosmicTagger workload over various configurations
of DAOS. Since the networking backends were the same be-
tween DAOS, OrangeFS, and BeeGFS, we focus primarily on
quantifying the impact of the storage backend. We configure
DAOS to use either SPDK, Linux block layer, or the EXT4
filesystem as the storage backend.

From Figure 2, it is clear there are significant variations in
overall performance due to the choice of local storage back-
end. It can be seen that SPDK performs 35% faster than the
Linux kernel block layer and 55% faster than the EXT4 filesys-
tem. Both kernel-level filesystems and the Linux block layer
have been noted to impose several overheads [26], such as
memory allocations, interrupts, and context switches. When
using EXT4, CosmicTagger spends 5 minutes in I/O, com-
pared to the 9 minutes spent by OrangeFS and BeeGFS. This
explains about half of the performance lost by the traditional
storage stacks in this workload. The remaining time is due
to metadata performance from handling the metadata for
stripes. Overall, by using the I/O stack optimizations pro-
vided in DAOS, a performance benefit of up to 2x can be
observed in a real deep learning workload when running
over modern hardware.

3.3 Simulation
In this evaluation, we quantify the benefit of an optimized
storage stack on common checkpoint-restart simulationwork-
loads experienced in HPC. To do this, we run two common
HPC workloads: VPIC [6] and BD-CATS [29]. VPIC is a par-
ticle simulation code where each process produces particle
data and writes them at each time step. VPIC writes 8 mil-
lion particles where each particle is a vector of 8 floating
point values per-process. We run VPIC for 16 time steps.
BD-CATS reads the data generated by VPIC to perform a

parallel clustering algorithm. Both VPIC and BD-CATS pri-
marily perform large, aligned I/Os to HDF5 files. The total
I/O performed was 500GB for both VPIC and BD-CATS.

From Figure 3, it can be observed that, for both VPIC and
BD-CATS, DAOS is about 6x faster than both OrangeFS and
BeeGFS over NVMe and PMEM. VPIC and BD-CATS spend
roughly 20% of their time in computation, so the majority
of the bottleneck is in I/O. The I/O performance benefit is
mainly due to the fact BeeGFS and OrangeFS have a signif-
icant metadata cost to keep track of stripes, which are dis-
tributed and queried among servers during reads and writes.
Overall, OrangeFS and BeeGFS service 8 million metadata
operations (1 per 64KB stripe). As shown in the IO500 results,
metadata operations are in the order of roughly 5-6 kIOPS for
OrangeFS and BeeGFS. Their lengthy, kernel-based I/O path
causes significant software overhead on themetadata servers,
which is where performance degradation arises. Overall,
even high-bandwidth HPC workloads can experience great
performance benefits by using hardware-optimized storage
stacks.

3.4 Discussion
DAOS achieves remarkable performance on PMEM and state-
of-the-art NVMes when compared to traditional, kernel-
reliant storage stacks such as OrangeFS and BeeGFS. This
can be attributed to a number of factors. DAOS was designed
specifically for modern hardware characteristics and reduces
the software overhead on the critical I/O and metadata path
significantly. Hardware-specific I/O interfaces (e.g., SPDK,
DAX) are used to avoid the overheads of the kernel stack
and avoid unnecessary duplication of data. This accelerates
metadata and small I/O operations, which also causes per-
formance impacts in bandwidth-sensitive workloads. Perfor-
mance is also gained due to differences in metadata man-
agement, data placement, and caching. DAOS, for example,
doesn’t rely on the OS for caching, and provides its own spe-
cific cache which supports PMEM, increasing cache capacity
and reducing data duplication. This makes DAOS suit the
access characteristics of deep learning I/O workloads better,
and can result in significant performance benefits due to the
reduced metadata cost and software overhead.
However, while DAOS achieves high performance in a

small-scale cluster with state-of-the-art hardware, these eval-
uations do not necessarily reflect the same reality as scale
reaches thousands of nodes and as storage hardware becomes
more diverse. When increasing scale, network topology and
network speed will likely be more impactful and result in a
smaller performance gap between DAOS and the traditional
storage stacks. In addition, many clusters employ HDDs as
the primary storage of data due to capacity constraints, and
use NVMe and PMEM only for intermediate buffering of
data. Our evaluations assume the datasets fit entirely within
NVMe and PMEM and do not go into the complexity of stor-
age tiering across PMEM, NVMe, and HDDs. If the dataset

14



is primarily stored on HDDs, the effects of improved meta-
data performance and software overheads will likely reduce
significantly. For traditional clusters which are based pri-
marily on DRAM and HDDs, the performance of DAOS and
traditional storage stacks will likely be much more similar.

4 Conclusion
In this work, we quantified the value of re-architecting dis-
tributed storage systems to support the high-performance
and low-latency of modern hardware. We performed a com-
prehensive benchmark of a state-of-the-art storage system
(DAOS) and traditional storage systems (OrangeFS + BeeGFS)
using a variety of workloads over both persistent memory
and NVMe. We quantified the extent to which the software
stack optimizations proposed in DAOS affected overall per-
formance of deep learning and simulation workloads. We
found that by using SPDK, performance benefits of up to 55%
can be observed due to improving small I/O performance.
We also found significant performance increases (up to 6x)
in both simulation and deep learning workloads due to per-
formance differences in metadata management for querying
data stripes during large and small I/O operations. Overall,
we showed that real deep learning and HPC workloads can
experience performance improvements of up to 6x by using
a storage stack designed specifically optimized for modern
storage hardware.

Acknowledgements
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

References
[1] C Adams, M Alrashed, R An, J Anthony, J Asaadi, A Ashkenazi, M

Auger, S Balasubramanian, B Baller, C Barnes, et al. 2019. Design and
construction of the MicroBooNE Cosmic Ray Tagger system. Journal
of instrumentation 14, 04 (2019), P04004.

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R. Ganger, and George Amvrosiadis. 2019. File Systems Un-
fit as Distributed Storage Backends: Lessons from 10 Years of Ceph
Evolution. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). As-
sociation for Computing Machinery, New York, NY, USA, 353–369.
https://doi.org/10.1145/3341301.3359656

[3] Thomas E Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N Schuh, and Em-
mett Witchel. 2020. Assise: Performance and Availability via Client-
local {NVM} in a Distributed File System. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). 1011–1027.

[4] Michael Moore David Bonnie, Becky Ligon, Mike Marshall, Walt Ligon,
Nicholas Mills, Elaine Quarles Sam Sampson, Shuangyang Yang, and
BoydWilson. 2011. OrangeFS: Advancing PVFS. In USENIX Conference
on File and Storage Technologies (FAST).

[5] Goncalo Borges, Sean Crosby, and Lucien Boland. 2017. CephFS: a new
generation storage platform for Australian high energy physics. In
Journal of Physics: Conference Series, Vol. 898. IOP Publishing, 062015.

[6] Surendra Byna, Jerry Chou, Oliver Rubel, Homa Karimabadi, William S
Daughter, Vadim Roytershteyn, E Wes Bethel, Mark Howison, Ke-Jou
Hsu, Kuan-Wu Lin, et al. 2012. Parallel I/O, analysis, and visualization
of a trillion particle simulation. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–12.

[7] Suren Byna, Quincey Koziol, Venkat Vishwanath, Jerome Soumagne,
Houjun Tang, Jingqing Mu, Bin Dong, Richard A Warren, François
Tessier, Teng Wang, et al. 2018. Proactive Data Containers (PDC): An
Object-centric Data Store for Large-scale Computing Systems. In AGU
Fall Meeting Abstracts, Vol. 2018. IN34B–09.

[8] Jaime Cernuda, Hariharan Devarajan, Luke Logan, Keith Bateman,
Neeraj Rajesh, Jie Ye, Anthony Kougkas, and Xian-He Sun. 2021.
HFlow: A Dynamic and Elastic Multi-Layered I/O Forwarder. In 2021
IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
114–124.

[9] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody,
Robin Goldstone, Kathryn Mohror, and Weikuan Yu. 2019. I/o charac-
terization and performance evaluation of beegfs for deep learning. In
Proceedings of the 48th International Conference on Parallel Processing.
1–10.

[10] Hariharan Devarajan, Anthony Kougkas, Luke Logan, and Xian-He
Sun. 2020. Hcompress: Hierarchical data compression for multi-tiered
storage environments. In 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 557–566.

[11] Hariharan Devarajan, Huihuo Zheng, Anthony Kougkas, Xian-He Sun,
and Venkatram Vishwanath. 2021. DLIO: A Data-Centric Benchmark
for Scientific Deep Learning Applications. In 2021 IEEE/ACM 21st Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid).
IEEE, 81–91.

[12] Direct Access for files 2014. Direct Access for files. https://www.
kernel.org/doc/Documentation/filesystems/dax.txt

[13] Michael Hennecke. 2023. Understanding DAOS Storage Performance
Scalability. In Proceedings of the HPC Asia 2023 Workshops. 1–14.

[14] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic performance measurements of the intel op-
tane DC persistent memory module. arXiv preprint arXiv:1903.05714
(2019).

[15] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing soft-
ware overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 494–508.

[16] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. 2018. Design-
ing a True {Direct-Access} File System with {DevFS}. In 16th USENIX
Conference on File and Storage Technologies (FAST 18). 241–256.

[17] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016.
{NVMeDirect}: A User-space {I/O} Framework for Application-
specific Optimization on {NVMe}{SSDs}. In 8th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 16).

[18] Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cer-
nuda, Neeraj Rajesh, and Xian-He Sun. 2020. Chronolog: a distributed
shared tiered log store with time-based data ordering. In Proceedings
of the 36th International Conference on Massive Storage Systems and
Technology (MSST 2020).

[19] Anthony Kougkas, Hariharan Devarajan, Jay Lofstead, and Xian-He
Sun. 2019. LABIOS: A distributed label-based I/O system. In Proceedings
of the 28th International Symposium on High-Performance Parallel and
Distributed Computing. 13–24.

15

https://doi.org/10.1145/3341301.3359656
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt


[20] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Her-
mes: a heterogeneous-aware multi-tiered distributed I/O buffering
system. In Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing. 219–230.

[21] Julian Kunkel, Gerald Fredrick Lofstead, and John Bent. 2017. The Vir-
tual Institute for I/O and the IO-500. Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[22] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A cross media file system.
In Proceedings of the 26th Symposium on Operating Systems Principles.
460–477.

[23] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee, and
Jinkyu Jeong. 2019. Asynchronous I/O stack: A low-latency kernel I/O
stack for ultra-low latency SSDs. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19). 603–616.

[24] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent,
and Eric Barton. 2016. DAOS and friends: a proposal for an exascale
storage system. In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 585–596.

[25] Jay Lofstead, Georgio Markomanolis, Julian Kunkel, and John Bent.
2019. IO500 SC19 Lists. https://doi.org/10.5281/zenodo.6462493

[26] Luke Logan, Jaime Cernuda Garcia, Jay Lofstead, Xian-He Sun, and
Anthony Kougkas. 2022. LabStor: A Modular and Extensible Plat-
form for Developing High-Performance, Customized I/O Stacks in
Userspace. In The International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC’22), November 14–17,
2022. IEEE.

[27] Luke Logan, Jay Lofstead, Scott Levy, Patrick Widener, Xian-He Sun,
and Anthony Kougkas. 2021. pMEMCPY: a simple, lightweight, and
portable I/O library for storing data in persistent memory. In 2021
IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
664–670.

[28] Nicolau Manubens, Simon D Smart, Tiago Quintino, and Adrian Jack-
son. 2022. Performance Comparison of DAOS and Lustre for Object
Data Storage Approaches. arXiv preprint arXiv:2211.09162 (2022).

[29] Md Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish,
Narayanan Sundaram, Zarija Lukić, Vadim Roytershteyn, Michael J
Anderson, Yushu Yao, Pradeep Dubey, et al. 2015. BD-CATS: big
data clustering at trillion particle scale. In SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–12.

[30] Robert B Ross, George Amvrosiadis, Philip Carns, Charles D Cranor,
Matthieu Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K
Gutierrez, Robert Latham, et al. 2020. Mochi: Composing data services
for high-performance computing environments. Journal of Computer
Science and Technology 35, 1 (2020), 121–144.

[31] Jian Xu and Steven Swanson. 2016. {NOVA}: A Log-structured File
System for Hybrid {Volatile/Non-volatile} Main Memories. In 14th
USENIX Conference on File and Storage Technologies (FAST 16). 323–338.

[32] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma,
and Luse E. Paul. 2017. SPDK: A Development Kit to Build High
Performance Storage Applications. In 2017 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom). 154–161.
https://doi.org/10.1109/CloudCom.2017.14

[33] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and
Anirudh Badam. 2019. I’m Not Dead Yet! The Role of the Operating
System in a Kernel-Bypass Era. In Proceedings of the Workshop on Hot
Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19). Association
for Computing Machinery, New York, NY, USA, 73–80. https://doi.
org/10.1145/3317550.3321422

[34] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019.
Ziggurat: A Tiered File System for {Non-Volatile} Main Memories

and Disks. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). 207–219.

16

https://doi.org/10.5281/zenodo.6462493
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1145/3317550.3321422
https://doi.org/10.1145/3317550.3321422

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Distributed Storage Stacks
	2.2 Motivation

	3 Evaluations
	3.1 IO500
	3.2 Machine Learning
	3.3 Simulation
	3.4 Discussion

	4 Conclusion
	References

