
CARE: A Concurrency-Aware Enhanced Lightweight
Cache Management Framework

Xiaoyang Lu
Department of Compute Science
Illinois Institute of Technology

Chicago, Illinois
xlu40@hawk.iit.edu

Rujia Wang
Department of Compute Science
Illinois Institute of Technology

Chicago, Illinois
rwang67@iit.edu

Xian-He Sun
Department of Compute Science
Illinois Institute of Technology

Chicago, Illinois
sun@iit.edu

Abstract—Improving cache performance is a lasting research
topic. While utilizing data locality to enhance cache performance
becomes more and more difficult, data access concurrency provides
a new opportunity for cache performance optimization. In this
work, we propose a novel concurrency-aware cache management
framework that outperforms state-of-the-art locality-only cache
management schemes. First, we investigate the merit of data
access concurrency and pinpoint that reducing the miss rate
may not necessarily lead to better overall performance. Next, we
introduce the pure miss contribution (PMC) metric, a lightweight
and versatile concurrency-aware indicator, to accurately measure
the cost of each outstanding miss access by considering data
concurrency. Then, we present CARE, a dynamic adjustable,
concurrency-aware, low-overhead cache management framework
with the help of the PMC metric. We evaluate CARE with
extensive experiments across different application domains and
show significant performance gains with the consideration of data
concurrency. In a 4-core system, CARE improves IPC by 10.3%
over LRU replacement. In 8 and 16-core systems where more
concurrent data accesses exist, CARE outperforms LRU by 13.0%
and 17.1%, respectively.

I. INTRODUCTION

Intensive research has been conducted to address the memory
wall problem [50], of which improving locality and concurrency
are two fundamental approaches. Cache hierarchies utilize data
locality to minimize the long delay of off-chip main memory
accesses. Significant research focuses on taking advantage of
data locality, resulting in many schemes that detect memory
access patterns, so that cache eviction and insertion decisions
can be determined by the reference predictions to reduce cache
miss rate [8], [11], [13], [14], [15], [17], [18], [19], [20],
[21], [23], [25], [26], [27], [33], [35], [36], [38], [39], [41],
[45], [47], [48], [51], [53]. Although such locality-based cache
management frameworks may reduce the number of misses,
we find that considering both locality and concurrency can
further improve the state-of-the-art locality-only optimizations.

Modern high-performance processors support data access
concurrency [12] with advanced caching techniques such as
multi-port, multi-bank, pipelined, and non-blocking cache. As
a result, multiple outstanding cache accesses can be generated
by one processor and overlapped with each other. With data
access concurrency in the memory hierarchy, the cost of a
miss could vary. Some misses are isolated, some misses occur
concurrently with other hits, and some misses overlap with

other miss accesses [29]. The performance loss resulting from a
cache miss can be hidden by access overlapping. Thus, a more
accurate cost metric for cache misses may help improve cache
performance further when data concurrency and overlapping
exist [30], [34], [44], [52].

In this work, we first introduce and formally define the
concept of Pure Miss Contribution (PMC). PMC is a new cost
metric for cache misses, with a comprehensive analysis of both
hit-miss and miss-miss overlapping in the memory system.
PMC has high predictability and versatility. We observe that
the PMC values of the misses caused by the same program
counter (PC) are relatively stable; therefore, the past PMC
value can be used to predict the future PMC value of the
same load instruction. PMC is also lightweight to measure
and versatile enough to be used to build concurrency-aware
cache management frameworks. We then present CARE, a
concurrency-aware cache management framework that takes
both data locality and concurrency into account. CARE learns
the re-reference behavior and PMC value of each miss access to
guide future replacement decisions. CARE augments existing
cache insertion and hit-promotion policies to reserve a small
subset of performance-critical blocks with high locality and
high PMC, and evict dead blocks or blocks with low PMC.
CARE is also prefetch-aware, and it performs well under
prefetchers. In CARE, we also implement a Dynamic Threshold
Reconfiguration Mechanism (DTRM), which enables CARE to
better adapt to different applications and execution phases. Our
experimental results show that CARE outperforms state-of-the-
art cache management schemes. Furthermore, CARE has low
overhead and can be practically implemented in hardware. To
summarize, this paper makes the following contributions:

1) We introduce the pure miss contribution (PMC), a novel and
accurate metric to quantify the cost and performance impact
of outstanding cache misses. We describe how PMC can be
measured in modern cache hierarchies. We find that PMC is
predictable and can be used for cache optimization.
2) We present CARE, a comprehensive cache management
framework that considers both locality and concurrency. CARE
is general for all types of applications, practical with low
hardware implementation overhead, and adaptive with a novel
Dynamic Threshold Reconfiguration Mechanism (DTRM).

1



3) Our evaluations show that CARE substantially improves
upon existing state-of-the-art cache management schemes over
a wide variety of workloads in a wide range of system
configurations and performs well with data prefetching.

II. BACKGROUND AND PRELIMINARIES

A. Memory Level Parallelism

Multi-core and multi-threading designs, as well as advanced
caching techniques [7], [13], [24], [34], [37], increase data
access concurrency. As a result, a number of memory accesses
can concurrently coexist in the memory hierarchy. In this case,
some memory accesses may overlap with others, which reduces
their performance impact on cores.

Memory Level Parallelism (MLP) can be used to measure
miss concurrency. MLP captures the number of outstanding
cache misses that can be generated and executed in an
overlapped manner [16]. Some misses are isolated, while some
occur concurrently with other misses. The more cache misses
occur concurrently, the smaller the impact of each cache miss
on performance since all concurrent misses will amortize the
total memory stall cycles. Therefore, based on the MLP concept,
isolated misses are considered to hurt performance more than
concurrent misses. MLP can be measured with MLP-based
cost [34]. The MLP-based cost of an isolated miss can be
approximated by the number of miss-access cycles that the miss
spends. For concurrent misses, the data access delay is divided
equally among all concurrent outstanding misses, representing
the MLP-based cost of each concurrent miss access.

MLP-based cost can identify costly misses by considering
the miss-miss overlapping. However, we find that hit-miss
overlapping impacts the cost of misses as well, and modern
memory systems have a lot of such overlapping accesses (details
in Section III-B). Therefore, we need a holistic metric that
is able to catch all types of overlapping and provide a better
memory performance optimization guidance.

B. Concurrent Memory Access Model

To capture all types of concurrent memory accesses and
quantify their impact on performance, a concurrent memory
access model named C-AMAT was proposed [44]. In the C-
AMAT performance model, a cache access latency is composed
of two parts: 1) base access cycles, which are the minimum
time an access (hit or miss) needs to spend on a specific cache
level; 2) miss access cycles, which are the additional time spent
waiting for data in the next levels of the memory hierarchy.
For a miss access, the tag lookup time is considered to be the
base access cycles of the access. A miss access latency consists
of both base access cycles and miss access cycles. Figure 1
shows several concurrent cache accesses. Each access spends
two base access cycles, and each miss access consumes three
additional miss access cycles.

Based on the C-AMAT model, the miss access cycles can
be hidden when there is a hit-miss overlapping.1 Therefore the

1It refers to miss access cycles overlapped with the base access cycles of a
hit/miss access.

1 2 3 4 5 6 Cycle

Access C

Access B

Access A

7

non-pure miss cycles of a miss access

base access cycles of a hit access 
base access cycles of a miss access 

pure miss cycles of a miss access 
miss access cycles

miss access latency

Active non-pure miss cycles Active pure miss cycles

Fig. 1: Illustration of C-AMAT model and Pure Miss.

actual cost of the misses should be revisited. On the other side,
for a miss access cycle that does not overlap with any base
access cycle, we refer to this cycle as a pure miss cycle [28],
[29], [30], [31]. If a miss access contains at least one pure
miss cycle, this miss is categorized as pure miss. Pure miss has
a higher performance impact because pure miss cycles have
no overlapping base access cycles to hide the penalty. Similar
to miss rate, the Pure Miss Rate (pMR) can measure the cache
efficiency by considering data access concurrency. The formal
definition of pMR is as below:

Pure Miss Rate (pMR) =
Num. of Pure Misses

Num. of Total Accesses

Based on the C-AMAT model, the memory active cycles on
a memory layer are the cycles with memory activities [28].
Active miss cycles are classified into two categories: active
pure miss cycles and active non-pure miss cycles. Active pure
miss cycles are the cycles that only contain the pure miss
cycles (cycles 5 to 7 in Figure 1), and these cycles cause
more performance degradation. On the other hand, the active
non-pure miss cycles do not introduce heavy degradation, as
the miss access cycle is overlapped and hidden (cycle 4 in
Figure 1).

The C-AMAT concurrent memory access model is general
and can be applied to each level of the memory hierarchy.
In multi-core systems, the model works by tracking the
overlapping from each core. In other words, the pure miss
in a multi-core system contains at least one miss access cycle
without any overlapped base access cycles from the same core
that overlaps with. We find that the concepts in C-AMAT
can capture all types of memory access overlapping. If we
can quantify the cost of memory misses with all types of
overlapping, we can use the metric to enable cache optimization
further. In this work, we present pure miss contribution metric
(details in Section IV), which is inspired by C-AMAT model,
and it shows the great potential to be incorporated with cache
optimization frameworks.

C. Locality-based Cache Management

Locality-based cache management schemes are designed to
increase performance by reducing the total number of misses.
The ideal upper bound for such schemes is Belady’s optimal
replacement (OPT) [10], which always evicts the block with
the largest future usage distance. Recent locality-based cache

2



management studies have focused on exploring prediction-
based schemes to reduce the number of cache misses [17],
[19], [40], [42], [45], [48].
Re-reference prediction. Several replacement studies are
designed based on the re-reference prediction of cache blocks,
determining the lifetime of the blocks in the cache. SRRIP
[19] statically predicts an “intermediate” re-reference interval
at cache insertion time and updates the re-reference prediction
on subsequent accesses. DRRIP [19] is proposed to improve
performance by selecting the inserting position among different
policies. Recent studies exploit long-term information to
increase prediction accuracy by analyzing the cache blocks
that have been evicted. SHiP [48] and SHiP++ [53] provide a
finer granularity re-reference prediction by correlating the re-
reference behavior of cache blocks to the PCs and learning the
past behavior of SRRIP. SHiP uses a history table (SHCT) to
learn the re-reference characteristic for each signature. SHCT
updates on cache hits and block evictions. The re-reference
characteristic of each incoming block is predicted by indexing it
into the SHCT. SHiP++ enhances SHiP re-reference predictions
and SHCT training, further improving the last-level cache hit
rate on SHiP. Jain and Lin propose Hawkeye [17]. Hawkeye
simulates and learns Belady’s optimal solution for a long history
of memory accesses to predict the re-reference characteristic of
future accesses. Hawkeye formulates the re-reference prediction
as a binary prediction problem. If the incoming block is
predicted to be “cache-friendly”, it will be inserted with a
high priority. Otherwise, “cache-averse” blocks will be marked
as eviction candidates. Following in the footsteps of Hawkeye,
Mockingjay [41] mimics Belady’s optimal solution effectively
and introduces a cache replacement policy based on multi-class
re-reference prediction.
Machine learning for re-reference prediction. In recent
years, machine learning is also widely used to increase the
effectiveness of cache management. Teran et al. [45] propose us-
ing perceptron learning for re-reference prediction. Perceptron
learning can find independent correlations between multiple
input features related to block re-reference, guaranteeing
accurate re-reference prediction. Glider [42] uses an offline
attention-based long short-term memory (LSTM) model to
improve prediction accuracy and gain insights. Then these
insights are fed into an Integer Support Vector Machine (ISVM)
that matches the LSTM’s prediction accuracy. While machine
learning models such as perceptron and ISVM can be trained
online, this requires the involvement of a large number of
prediction tables, which imposes a non-negligible overhead,
especially in multi-core systems. Sethumurugan et al. [40] use
reinforcement learning to learn a cache replacement policy.
Based on the insights derived from the neural network, a cost-
effective cache replacement policy RLR is proposed.

The overhead of machine learning-based techniques is
difficult to justify, including the training overhead, computation
cost, and model size. Our design focuses on efficiency and
lightweight, which is more practical to be implemented on
latency-critical cache hierarchy without any pre-processing
overhead.

D. Cost-based Cache Management

Unlike locality-based cache management schemes that focus
on reducing cache misses, several works improve cache
performance by selectively eliminating expensive misses. LACS
[22] is proposed based on the observation that the more
instructions the processor issues during the miss, the more
likely it is to hide the penalty for that miss. Consequently,
LACS utilizes the number of instructions issued during an
LLC miss to estimate the miss cost. While simple, the cost
estimation model of LACS is not cycle-accurate, it is impossible
to estimate the penalty of the misses on performance accurately.
The MLP-aware cache replacement policy SBAR [34] takes
into account the concurrency of the cache misses and observes
that some misses occur alone while some occur concurrently
with others. It improves performance by reducing the number
of costly isolated misses. However, as we discussed in Section
II-A, MLP does not consider hit-miss overlapping. Therefore,
the MLP-aware replacement policy can be further improved.

III. MOTIVATION

A. The Limitations of Locality-based Cache Management

Modern mainstream processors contain many cores and run
different applications concurrently. Therefore, the shared LLC
can observe very mixed access patterns. The mixed access
patterns can downgrade the effectiveness of locality-based
schemes since most of them make predictions only dependent
on one specific access pattern. In addition, at the LLC, the
recency-friendly access patterns get filtered by upper-level
caches, which makes it even harder to directly get benefits
from locality-based schemes [48], [49]. On the other hand,
locality-based schemes all have a simple optimization goal:
reducing the number of misses. It works fine for sequential
memory accesses but could be better for handling prevailing
concurrent cache/memory activities.

B. The Limitations of MLP-based Cache Management

In a scalable system with memory access concurrency, not all
cache misses will have the same impact on performance [30],
[34]. Eliminating isolated misses (high-cost) helps performance
more than eliminating concurrent misses (low-cost). According
to the above assumption, an MLP-aware cache replacement
algorithm [34] was proposed to reduce the number of high-cost
misses.

We introduce the definition of MLP-based cost in Section
II-A. We show how MLP-based cost is calculated in a single-
core system using the study case in Figure 2. The case in a
multi-core system is similar since we only analyze the memory
concurrency coming from each core independently. Here, B, F
are hits; A, C, D, and E are misses. Each access consumes two
base access cycles, and each miss access has six additional
miss access cycles. All the accesses are at the same cache level
in the memory hierarchy.

When considering the definition of MLP-based cost, access
A is a miss with the highest MLP-based cost. Because there are
no miss access cycles from other misses that overlap with A’s
miss access cycles from cycle 3 to cycle 6, and the miss access

3



1

Access C

Access B

Access A
non-pure miss cycles of a miss access

base access cycles of a hit access 
base access cycles of a miss access 

pure miss cycles of a miss access 

Active non-pure miss cycles Active pure miss cycles
2 3 4 5 6 7 8 9 10 11 12 13 14 Cycle

Access E

Access F

Access D

Fig. 2: Study case of concurrent memory accesses from a single
application.

TABLE I: MLP-based cost analysis of the study case.

Miss MLP-based cost
A 1 + 1 + 1 + 1 + 1/2 + 1/2 = 5
C 1/2 + 1/2 + 1/3 + 1/3 + 1/3 + 1/3 = 7/3
D 1/3 + 1/3 + 1/3 + 1/3 + 1/2 + 1/2 = 7/3
E 1/3 + 1/3 + 1/3 + 1/3 + 1/2 + 1/2 = 7/3

cycles of access A only overlap with the miss access cycles of
access C in cycle 7 and cycle 8. Therefore, the MLP-cost of
access A is 5. From cycle 7 to cycle 8, the miss access cycles
of access C overlap with the miss access cycles of access A,
so the MLP-based cost of access C in these two cycles is 1
(1/2×2). In addition, the miss access cycles of C still overlap
with D’s and E’s miss access cycles from cycle 9 to cycle 12.
Therefore, the MLP-based cost of access C in these four cycles
is 4/3 (1/3× 4). To sum up, the MLP-based cost of access
C is 7/3. D and E have a similar situation to C, and their
MLP-based costs are also 7/3. The quantitative MLP-based
cost analysis is summarized in Table I.

If we re-evaluate the misses in this case study with the C-
AMAT-based model, only access C, D, and E are pure misses.
Access C has three pure miss cycles (cycles 10-12), and both
access D and E have five pure miss cycles (cycles 10-14).
Even though the MLP-based cost of access A is the highest, it
does not hurt the performance the most. All of the miss access
cycles of A are overlapped with base access cycles of B, C,
D, E, and F. Furthermore, although the MLP-based costs of
access C, D, and E are the same, they have different pure miss
cycles and have various contributions to the total active pure
miss cycles. This is because that MLP-based cost calculates
the cost by analyzing the miss-miss overlapping but does not
consider hit-miss overlapping.

Figure 3 illustrates the percentage of LLC misses that have
hit-miss overlapping from the same core for a set of 4-core
multi-copy workloads with LRU policy (Section VI details
the methodology). In all benchmarks, 30% to 80% misses
have hit-miss overlapping. Therefore, in order to accurately
quantify the cost of cache misses, hit-miss overlapping cannot
be ignored. Although LLC pure misses do not directly cause
CPU stalls, LLC pure misses can seriously increase the latency
of providing data to the upper-level caches. In this work, we
develop a concurrency-aware enhanced cache management
framework for LLC to eliminate the costly pure misses and
improve the performance.

Fig. 3: Percentage of misses with hit-miss overlapping.

IV. PURE MISS CONTRIBUTION

A. Definition

In this section, we introduce Pure Miss Contribution (PMC),
which is a new metric that considers the integrated influence
of locality, concurrency, and overlapping of memory accesses.
PMC recognizes that not all outstanding cache misses have
the same cost, and identifies high-cost cache misses to better
performance optimization.

PMC is defined as the contribution of each miss to the total
active pure miss cycles from the same core. Consequently,
PMC can be used to quantify the performance impact of each
cache miss. A pure miss access has at least one pure miss cycle,
which can significantly hurt the performance. Therefore, a pure
miss contributes to active pure miss cycles with a positive
PMC value. On the contrary, if a cache miss is not a pure miss
and all its miss access cycles are overlapped with other base
access cycles, its PMC value is 0.

B. Measurement and Implementation

The algorithm to detect and measure PMC in a multi-core
system is described in Algorithm 1. It can be applied at each
level of a memory hierarchy. In particular, we use a parameter
l to indicate the specific cache level under consideration.
We declare the bit and field used for PMC calculation on
top of Algorithm 1. The NoNewAccess x bit is used to
identify the current cycle status of cache level l for core x.
If there is a new cache access from core x at cache level l,
NoNewAccess x is reset to 0 for base access cycles. Therefore,
when NoNewAccess x is 1, it means that there are no base
access cycles in any type of accesses that can be used to hide
miss access cycles.

Modern memory systems manage data in cache blocks and
utilize the Miss Status Holding Register (MSHR) [46] to handle
concurrent cache misses. An MSHR entry is allocated for a
miss access when the tag search fails to match anything, which
is during the base access cycles of a miss. MSHR can track
the information of all outstanding cache misses. A new field
PMC is added for each MSHR entry to calculate PMC.

When a miss access allocates an MSHR entry, the PMC
counter associated with the miss will be initialized to zero.
NoNewAccess x bit is used to determine whether this cycle
is an active pure miss cycle for core x. If NoNewAccess x
is set, all outstanding misses from core x in the MSHR are
pure misses that contribute to core x’s active pure miss cycles.
Therefore, we only calculate and update the PMC of each cache
block in active pure miss cycles. For concurrent pure misses,
the active pure miss cycle can be evenly divided among all

4



Algorithm 1 Measure PMC for cache misses at cache level l
(called every active memory cycle)

NoNewAccess x: single-bit cycle status identifier per core;
set if no overlapping opportunites in this cycle;
PMC: field in MSHR to calculate the pure miss contribu-
tion for a miss block; initialized to 0;
update(Nx): check the number of outstanding misses from
core x at cache level l in this cycle.

1: for x-th core in the system do
2: if NoNewAccess x is set then
3: update(Nx);
4: for i-th outstanding miss in MSHR do
5: MSHR[i].PMC += 1/Nx;
6: end for
7: end if
8: end for

.

.

.

.

.

.

.

.

.

Way n

DataTagV

Tag Set OffsetAddress

. .
.

. .
.

MSHR

Access Detector (AD)

Pure Miss Detector
(PMD)

PMC Calculation Unit
(PCU)

PMC Measurement Logic
(PML)

Select

Compare
Hit

Data

.

.

.

.

.

.

.

.

.

Way 1

DataTagV
Way 0

DataTagV

... ... ...

V Block Addr. Issued PMC
... ... ... ...

Miss

Fig. 4: PMC Measurement Structure.

concurrent pure misses. Let Nx be the number of outstanding
misses from core x at cache level l in the corresponding MSHR.
For every active pure miss cycle, the PMC counter of each
outstanding miss in MSHR is incremented by 1/Nx until the
requested data is serviced. Please note that PMC measurement
in a single-core system is a special case of multi-core (the
number of cores is 1).

Figure 4 illustrates the PMC measurement logic (PML),
which follows Algorithm 1 to record PMC values of outstanding
misses. The Access Detector (AD) can detect base access cycles
and notify the Pure Miss Detector (PMD) whether the current
cycle is an active pure miss cycle. The base access cycles
are known and fixed for any given cache level. Therefore,
the AD monitors for a fixed amount of cycles and sets the
NoNewAccess bit accordingly.

Using the information collected from the AD and the miss
information from the MSHR, PMD can identify the pure miss
accesses. PMC Calculation Unit (PCU) updates the PMC value
of each outstanding miss in each active pure miss cycle. The
PCU implements the divider through a lookup table, which
is fast in performance and cheap in hardware cost. Since the
number of MSHR entries is limited (e.g., 64), Nx is an integer

TABLE II: PMC of the study case.

Miss PMC MLP-based cost
A 0 5
C 1/3 + 1/3 + 1/3 = 1 7/3
D 1/3 + 1/3 + 1/3 + 1/2 + 1/2 = 2 7/3
E 1/3 + 1/3 + 1/3 + 1/2 + 1/2 = 2 7/3

Active pure miss cycles : 5 (cycles 10-14)

ranging from 1 to 64. Therefore, we can store all possible values
of 1/Nx in the lookup table in advance for fast access. When a
miss is served, the PMC value of the miss can be converted into
a quantized integer value and stored in the tag-store entry of
the corresponding cache block to guide the concurrency-aware
cache management framework (Section V-F).
PMC measurement in parallel multi-thread execution. In a
multi-core execution, a private instance of PML is present on
each core. If a core runs multiple threads, memory access from
any thread contributes to the memory active cycles of that core.
PMC evaluates the contribution of each cache miss to the total
active pure miss cycles from the same core. Therefore, in a
multi-threaded execution, the PMC value of each outstanding
miss can be calculated on a per-core basis.

C. Revisit the Study Case with PMC Analysis

Recalling the case study in Section III-B, we re-evaluate the
impact of each cache miss on performance according to the
definition of PMC. When considering access concurrency and
hit-miss overlapping, although access A has the highest MLP-
based cost, it does not contribute to any active pure miss cycle.
Therefore, the value of PMC for access A is 0. Access C has
three pure miss cycles (cycle 10-12); they overlap with D’s and
E’s pure miss cycles from cycle 10 to cycle 12. Therefore, the
PMC of access C in these three cycles is 1 (1/3×3). Access
D and E have the same situation, and we take access D as an
example for analysis. Access D has five pure miss cycles (cycle
10-14), which overlap with the pure miss cycles of C from
cycle 10 to cycle 12 and overlap with E’s pure miss cycles
from cycle 10 to cycle 14. So access D has a PMC value of 2.
Although access C, D, and E have the same MLP-based cost,
access D and E contribute the most to active pure miss cycles
and cause the most damage to performance.

In this case study, the sum of the PMC values of all cache
misses is 5, which equals the number of active pure miss cycles.
Table II summarizes the value of PMC and MLP-based cost
for each cache miss. Compared to MLP-based cost, PMC not
only considers the miss-miss overlapping but also captures the
hit-miss overlapping. Therefore, PMC can better reflect the
impact of each cache miss on performance.

D. Distribution of PMC

Figure 5 shows the distribution of PMC for 16 workloads
from SPEC CPU2006 [43] and 2017 [6] benchmark suite. The
results are measured with a single-core configuration. Details
about the simulation environment are described in Section VI.
LRU replacement policy is used in the LLC by default. The
y-axis represents the percentage of total LLC misses, and the
x-axis represents several bins for different PMC values.

5



0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

403.gcc

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

429.mcf

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

433.milc

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

436.cactusADM

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

470.lbm

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

473.astar

0%
10%

20%

30%
40%

50%

1 2 3 4 5 6 7 8

437.leslie3d

0%
10%

20%

30%
40%

50%

1 2 3 4 5 6 7 8

482.sphinx3

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

450.soplex

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

459.GemsFDTD

0%
10%

20%

30%
40%

50%

1 2 3 4 5 6 7 8

462.libquantum

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

603.bwaves

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

621.wrf

0%
10%

20%

30%
40%

50%

1 2 3 4 5 6 7 8

623.xalancbmk

0%

10%
20%
30%

40%
50%

1 2 3 4 5 6 7 8

649.fotonik3d

0%
10%

20%

30%
40%

50%

1 2 3 4 5 6 7 8

654.roms

Fig. 5: Distribution of PMC. (The x-axis represents the value of PMC in cycles. 1: 0-49 cycles; 2: 50-99 cycles; 3: 100-149
cycles; 4: 150-199 cycles; 5: 200-249 cycles; 6: 250-299 cycles; 7: 300-349 cycles; 8: 350+ cycles)

TABLE III: Distribution and median of PMCδ .

PMCδ 403 429 433 436 437 450 459 462 470 473 482 603 621 623 649 654
[0,50) 89.40% 62.63% 64.02% 79.57% 68.19% 60.29% 57.74% 62.17% 59.99% 79.23% 57.72% 60.69% 64.77% 63.31% 50.66% 64.17%
[50,100) 3.89% 16.49% 14.52% 10.06% 18.70% 16.78% 14.95% 13.11% 16.23% 10.06% 18.18% 15.82% 15.24% 14.80% 19.85% 14.65%
[100,150) 5.56% 12.23% 12.27% 5.42% 9.33% 12.58% 11.00% 15.86% 7.22% 6.04% 12.93% 7.59% 9.09% 14.21% 16.87% 13.95%
≥ 150 1.15% 8.65% 9.18% 4.96% 3.79% 10.36% 16.30% 8.87% 16.56% 4.67% 11.18% 15.90% 10.90% 7.68% 12.62% 7.23%
Median 2.87 31.00 33.00 1.00 21.00 33.33 35.13 40.00 33.44 5.03 36.00 32.44 26.00 33.50 48.75 31.25

The distribution of PMC for different benchmarks clearly
shows that each cache miss has a diverse impact on perfor-
mance. We can utilize PMC to grade cache misses and optimize
the performance by reducing the number of pure misses with
high PMC values.

E. Predictability of PMC

PC has been used successfully in predicting the reuse
behavior of cache blocks [17], [20], [42], [48], [53]. We also
find that the PMC value of a cache block is highly correlated
with the PC of the instruction that caused the miss, which means
that PMC has high predictability. Here, what predictability
refers to is that the PMC value is relatively stable for all
accesses for the same PC. We use PMCδ to represent the
absolute difference in PMC values between two consecutive
cache misses for the same PC. Table III shows the distribution
and median of PMCδ for different workloads in a single-core
configuration. These statistics come from our offline profiling
of all cache misses in each workload.

For all workloads, the majority of PMCδ values are less
than 50 cycles. The median PMCδ of each workload is also
relatively low, which indicates the PMC values of a PC are
almost consistent and repetitive across consecutive misses. We
also observed the same trend in the multi-core configurations,
as the PMC value is calculated on each core individually.
The predictability of PMC provides a basis for predicting the
future PMC values of the same PC. Inspired by SHiP++ [53],
we design CARE as a representative use case to utilize the
PMC metric. CARE is a management framework that enhances
SHiP++ by enabling comprehensive concurrent access pattern
analysis (more details in Section V).

Tag Set OffsetAccess

DataTagV Metadata

... ... ... ...

Last-Level Cache (LLC)

MSHR
V Block Addr. Issued PMC
... ...

PMC Measurement Logic
(PML, Sec-4.2)

RC PD
Sig-1
Sig-2

Sig-n
...

Signature History 
Table (SHT, Sec-5.2)

Signature-Based 
Predictor (SBP, Sec-5.3)

... ...

Hit or Miss?

Signature

Evict LLC block 
and update SHT

Lookup SHT

DRAM
Hit promotion 

or cache insertion
(Sec-5.4)

Dynamic Threshold 
Reconfiguration Mechanism

(DTRM, Sec-5.6)

Normal cache access (check tag, hit/miss)

Save signature in cache

signature R PMCS
14 bits 1 bit 2 bits

prefetch EPV
1 bit 2 bits

Fig. 6: Block diagram of CARE.

V. CARE: CONCURRENCY-AWARE CACHE MANAGEMENT

We introduce CARE, an LLC management framework that
considers both data locality and data concurrency. The primary
goal of CARE is to improve locality while utilizing concurrency
to reduce the overall performance penalty of cache misses.
CARE learns the re-reference characteristics and PMC values
of the cache blocks by associating each cache reference with
a PC-based signature.

A. Overview

Figure 6 shows a high-level overview of CARE. Signature
History Table (SHT) is designed to keep track of the observed
re-reference and PMC behaviors of LLC blocks by associating
them with PC signature. The purpose of Signature-Based
Predictor (SBP) is to make re-reference and PMC predictions
on cache insertions and cache hits.

For every new cache access, CARE first extracts the signature
from the PC of the cache request. The signature of the access
is used to index into the SHT. Each SHT entry tracks the

6



cache accesses associated with a specific PC-based signature.
SHT contains two counters for each signature: Re-reference
Confidence (RC) and PMC Degree (PD). RC indicates the
re-reference behavior for a signature. PD reflects the cost
degree of the cache miss associated with this signature. The
past behaviors of the PC can be used to predict the likely
re-reference and PMC characteristics of the incoming blocks.
Based on SHT, SBP predicts the behaviors of each cache block.
SBP then determines the insertion policy for cache misses and
the promotion policy for hit accesses. CARE updates and stores
the SHT on cache evictions and cache hits. To avoid the per-
block overhead, Section V-G illustrates the use of set sampling
[33], [48] to learn the caching behavior and update the SHT
with limited overhead.

CARE uses PML to compute PMC values for all outstanding
misses. The PMC values are then quantized into a 2-bit Pure
Miss Contribution States (PMCS) by a Dynamic Threshold
Reconfiguration Mechanism (DTRM) and stored in the meta-
data. In order to learn the re-reference and PMC patterns of a
signature, the signature (14-bit hash of PC [48], [53]), a single
re-reference bit (R), and 2-bit PMCS are needed to be stored
as metadata for each cache block.

B. Store and Update Access History in SHT

Metadata bits in cache blocks. The single R bit is used to
track the re-reference behavior of each cache block. For an
incoming block, the R bit is initially set to 0. When a miss is
served, CARE quantizes the value of PMC into a 2-bit PMCS
based on the comparison results of PMC and two thresholds
PMC low and PMC high. If the PMC value of a miss is
smaller than PMC low, the PMCS of the corresponding cache
block is 0. If the PMC value of a miss is larger than PMC high,
the PMCS of the corresponding cache block is set to 3. If the
value of PMC is between the two thresholds, the corresponding
PMCS is 1. Therefore, when an incoming block is inserted in
the cache, its PMCS bits are set to indicate the PMC value.
SHT entry structures. The SHT has 16K entries, each
containing a 3-bit RC counter and a 3-bit PD counter. CARE
uses the signature of the cache access to look up the SHT.
A zero RC value indicates the future blocks associated with
this signature are rarely reused. A positive RC counter implies
that the future blocks associated with this signature have data
locality, and they are likely to receive cache hits. Similar to
RC, a larger PD value means that the cache misses associated
with that signature have a high probability of having large
PMC values in the future.
Update SHT on hit accesses. If the cache block receives a hit,
the R bit of the block is set to 1. If this is the first re-reference
of the block, CARE increments the RC counter (in a saturated
manner), which corresponds to the signature of the block in
the SHT [53].
Update SHT on eviction. When a block is evicted from the
cache, if the block has never been reused since it was inserted
into the cache (R is unset), then the RC counter associated with
the signature is decremented (in a saturated manner) [48], [53].
If the PMCS of this evicted block is 0, it means that there is a

TABLE IV: Insertion and hit-promotion policy of CARE.
Higher EPV value indicates higher eviction priority.

Reuse hint Insertion policy Hit policy
High-Reuse EPV = 0 EPV = 0

Moderate-Reuse
if(Low-Cost) EPV = 3;
else if (High-Cost)
EPV = 0; else EPV = 2;

EPV = 0

Low-Reuse EPV = 3 if(EPV > 0)
EPV - -;

high probability that future misses caused by the same signature
will hardly damage performance. Therefore, the related PD
counter in the SHT is decremented (in a saturated manner).
On the other hand, if the PMCS of this evicted block is 3,
which implies that the future misses associated with the same
signature are predicted to be costly, the related PD counter is
incremented (in a saturated manner).

C. Predict Access Behavior with SBP

For every cache access, SHT is indexed by a signature of the
block. SBP identifies the re-reference behavior of cache blocks
as High-Reuse if the associated RC counter is saturated at its
maximum value. A cache block is predicted as Low-Reuse
if the related RC counter is 0. All other cache accesses are
classified as Moderate-Reuse.

Similarly, SBP utilizes the PD counter to predict the impact
of each cache block on performance. Suppose the PD associated
with the signature of the block saturates to the highest value.
In that case, the cache block is predicted as High-Cost by SBP.
Suppose the signature of a block has a PD value of 0. In that
case, the associated cache block is predicted to be Low-Cost
because the misses associated with this signature are considered
less detrimental to future performance.

D. CARE Cache Management Policies

By keeping track of the reuse information, CARE can still
leverage data locality to keep High-Reuse data blocks and evict
Low-Reuse blocks. Additionally, CARE takes data concurrency
into account for the blocks predicted to be Moderate-Reuse.
CARE selectively reduces expensive misses by keeping High-
Cost blocks in the cache for a longer period while giving
the higher eviction priority to the Low-Cost blocks. To do
so, CARE implements cache management by associating each
cache block with a 2-bit Eviction Priority Value (EPV).2 The
EPV counter of a cache block reflects the eviction priorities
of the cache blocks. An EPV of zero implies that a cache
block has the lowest eviction priority. An EPV of saturation
implies that a cache block has a high eviction priority and
will be evicted sooner. CARE assigns/updates the EPV counter
for each block based on the prediction information from SBP.
Table IV shows the updated cache policies for CARE.
Insertion policy. When inserting new blocks in the cache,
unlike LRU, which inserts all cache blocks to the MRU position

2All advanced cache management schemes [17], [19], [42], [48], [53] have
a similar counter for each cache block to indicate the eviction priority of the
block. Cache management schemes implement specialized cache policies by
assigning/updating the eviction priority of each block. The EPV in CARE
does not introduce additional overhead.

7



of the “LRU chain” [19], [49], CARE dynamically learns the
re-reference and PMC information of each specific signature.
CARE inserts blocks with different EPV values according to
the predictions provided by SBP.

Blocks that are predicted to be High-Reuse are assigned
an EPV value of 0 with the lowest eviction priority. For the
blocks tagged as Low-Reuse, the corresponding EPV is set to
3, and the eviction priority is the highest. Unlike other cache
management frameworks [14], [53] that insert all predicted
Moderate-Reuse blocks into a certain position in the cache,
CARE determines the EPV value of each Moderate-Reuse
block based on the PMC prediction. The EPV value of the
Low-Cost blocks is assigned as 3, and the EPV value of the
High-Cost blocks is assigned as 0. If a Moderate-Reuse block
is neither predicted as High-Cost nor Low-Cost, its EPV value
will be set to 2.
Hit-promotion policy. The EPV of a cache block will have an
opportunity to be updated when the block is hit. The primary
purpose of the hit-promotion policy is to preserve blocks with
good locality for a long time. For a cache block that is predicted
to be High-Reuse or Moderate-Reuse, the EPV drops to 0 when
the block is hit to protect it from thrashing. The likelihood of
further reuse is quite limited for an LLC hit to a block classified
as Low-Reuse. Therefore, CARE gradually decrements its EPV
value on every hit.
Victim selection. On a cache miss, CARE selects a victim
block whose EPV is 3. If there are multiple candidates, CARE
randomly selects one victim block from the candidates. Another
solution is to consider the recency information and evict the
least recent block. Through testing, there is no discernible
performance difference between the two solutions. However,
recording the recency information for each cache block requires
a huge hardware cost. Therefore, CARE selects the candidate
randomly. If there is no block with an EPV of 3, the EPV of
all blocks in the cache set will be incremented and the search
will be repeated until the victim block is found. By increasing
the EPV value, the dead blocks can be evicted eventually.
Writeback-aware. Writeback requests are treated as non-
demand background cache requests. Such requests are rarely
re-referenced [53]. In order to not compete with valuable cache
resources, all writebacks are inserted in the cache with an
EPV of 3. The hit-promotion policy also does not apply to the
writebacks.

E. Collaboration with Prefetching

PMC measurement with prefetching. We extend the definition
of pure miss when there is a prefetcher in the system. No matter
whether a miss is a demand miss or a prefetch miss, it is a
pure miss if it has at least one miss-access cycle that does not
overlap with any hit access from the same core. Then, we are
able to calculate PMC as usual when a prefetcher exists.
CARE with prefetching. In the presence of prefetching, the
caching behavior of demand accesses and prefetch accesses
are completely different [18], [49], [53]. Therefore, it would
be beneficial to independently predict the caching behavior of
demand accesses and prefetch accesses. Inspired by SHiP++

[53], we distinguish prefetch accesses from demand accesses by
appending 1-bit prefetch into the signature. As a result, CARE
independently learns the caching behavior of load instructions
that result in both demand and prefetch accesses.

In addition, CARE applies different hit-promotion policies
for prefetch and demand requests on cache hits. We find a
prefetched block is often only accessed once by its demand
request. So, CARE sets the EPV to 3 when a prefetched block
is re-referenced by a demand request. CARE updates the EPV
to 0 to keep it in the cache for longer if subsequent demands
or prefetch requests further access the prefetched blocked.
CARE does not update the EPV of a prefetched block if it is
subsequently re-referenced only by prefetch requests.

F. Dynamic Threshold Reconfiguration Mechanism

To improve the robustness of CARE, we propose a dynamic
threshold reconfiguration (DTRM) scheme that quantizes PMC
value into PMCS to suit different workloads. With the help of
DTRM, CARE dynamically adapts two thresholds PMC low
and PMC high to achieve the purpose of increasing adaptability.
The initial PMC high and PMC low are set to 350 cycles and
50 cycles, respectively.

PMC high is used to distinguish the cache block that hurts
the performance the most. On a cache miss, if its PMC is
larger than PMC high, we consider the corresponding block to
be a costly miss and set its PMCS to 3. A 32-bit counter TCM
counts the total number of costly misses during the application
execution time.

At the end of each period (16K misses, half the number of
blocks in the LLC for single-core configuration), PMC low
and PMC high are updated based on the number of costly
misses found during the period. If the number of costly misses
is smaller than 0.5%× 16K, PMC low and PMC high are
decreased by 10 and 70 cycles, respectively. On the other
hand, if the number of costly misses is larger than 5%×16K,
PMC low and PMC high are increased by 10 and 70 cycles,
respectively. We choose the values empirically based on the
results of a large number of simulations.

At the end of each period, the update of PMC low and
PMC high drives the update of the quantization scheme
between PMC and PMCS. The updated thresholds and quanti-
zation scheme are then used throughout the next period. DTRM
can perfectly adapt to the mechanism of CARE. By cooperating
with DTRM, the robustness and resiliency of CARE are further
enhanced without any pre-processing or training overhead.

G. Hardware Cost and Complexity of CARE

We analyze the hardware cost of CARE with 2MB LLC
and 64B block size as an example setting. CARE requires
monitoring PMC for each cache miss during the execution time.
We have introduced the measurement and implementation for
tracking PMC in Section IV-B. The only needed bit per core
is NoNewAccess. To measure the PMC value of each miss, a
lookup table is used instead of a costly divider. For an LLC
with 64-entry MSHR, the cost of the lookup table is 0.25KB.

8



TABLE V: Hardware cost of CARE (16-way 2MB LLC).

Size Used for
NoNewAccess(1-bit/core) 1bit PMC
lookup table (32-bit/entry) 0.25KB PMC
PMC(32-bit/MSHR entry) 0.25KB PMC
PMC low 32bit DTRM
PMC high 32bit DTRM
TCM 32bit DTRM
EPV(2-bit/block) 8KB metadata
prefetch(1-bit/block) 4KB metadata
signature(14-bit/sampled set) 1.75KB metadata
R (1-bit/sampled set) 0.125KB metadata
PMCS(2-bit/sampled set) 0.25KB metadata
RC(3-bit/SHT entry) 6KB SHT
PD(3-bit/SHT entry) 6KB SHT
Total 26.64KB (6.76KB for concurrency-aware)

TABLE VI: Hardware costs for different replacement frame-
works (16-way 2MB LLC).

Framework Uses PC Concurrency-aware Total cost
LRU No No 16KB
SBAR(MLP) [34] No Yes 28.09KB
SHiP++ [53] Yes No 16KB
Hawkeye [17] Yes No 30.94KB
Glider [42] Yes No 61.6KB
Mockingjay [41] Yes No 31.91KB
CARE Yes Yes 26.64KB

In addition, a 32-bit wide register per MSHR entry is sufficient
to store the PMC value.

Each block in LLC is equipped with a 2-bit EPV for cache
management and a 1-bit prefetch for detecting prefetch access.
In order for SHT to learn the re-reference and PMC patterns
of the signature, a 14-bit signature, 1-bit R, and 2-bit PMCS
are needed to store for each block. CARE adopts an online
set sampling method [33], [48] to reduce the storage overhead.
In our study, CARE monitors the cache behaviors from 64
sampled sets, then updates the SHT. Therefore, only the blocks
in the sampled set need to store these 17 bits of metadata. For
a 16-way cache, the total cost of the sampled sets is 2.125KB.

The detailed hardware cost is shown in Table V. In total,
the hardware overhead of CARE is around 26.64KB, which
is only 1.3% of the capacity of a 2MB LLC. This cost scales
linearly with the LLC capacity. We marked the additional cost,
which is due to the fact that the CARE takes concurrency into
account. CARE only needs 6.76KB to support concurrency
awareness. Table VI compares the hardware costs of different
cache management frameworks. Compared with the machine
learning-based framework Glider, CARE requires much less
hardware cost.

For multi-core processors, if the size of LLC is constant, we
need to have a NoNewAccess bit for each core to detect the
overlapping and measure the PMC. In addition, each block in
the sampled sets needs to add a core tag to track which core
the access comes from.

VI. METHODOLOGY

Simulated system. We evaluate CARE against prior cache
management schemes using the version of ChampSim [4] used
for the 1st instruction prefetching competition (IPC-1 [1]).

TABLE VII: Simulated system configurations.

Processor 1 to 16 cores, 4GHz, 8-issue width, 256-entry ROB

L1 Cache private, split 32KB I/D-cache/core, 64B line,
8-way, 4-cycle latency, 8-entry MSHR, LRU

L2 Cache private, 256KB/core, 64B line. 8-way,
10-cycle latency, 32-entry MSHR, LRU

L3 Cache shared, 2MB/core, 64B line, 16-way,
20-cycle latency, 64-entry MSHR

Prefetcher L1: next-line, L2: IP-stride

DRAM

4GB 1 channel (single-core),
8GB 2 channels (multi-core),
64-bit channel, 2400MT/s,
tRP=15ns, tRCD=15ns, tCAS=12.5ns

TABLE VIII: Evaluated SPEC workloads.

Suite Workload MPKI Workload MPKI

SPEC
06

401.bzip2 1.34 403.gcc 25.55
410.bwaves 18.35 429.mcf 26.28

433.milc 19.00 436.cactusADM 4.99
437.leslie3d 6.68 450.soplex 32.69
456.hmmer 2.72 459.GemsFDTD 24.44

462.libquantum 28.03 470.lbm 28.42
473.astar 35.88 481.wrf 5.66

482.sphinx3 12.96 483.xalancbmk 26.91

SPEC
17

602.gcc s 17.77 603.bwaves s 19.00
605.mcf s 55.62 607.cactuBSSN s 3.51
619.lbm s 40.64 620.omnetpp s 9.21
621.wrf s 19.22 623.xalancbmk s 24.26

625.x264 s 1.35 627.cam4 s 4.51
628.pop2 s 2.99 649.fotonik3d s 15.67
654.roms s 24.23 657.xz s 1.58

TABLE IX: Graph datasets used in GAP workloads.

Dataset Vertices Edges Description
orkut (or) 3.1M 117.2M Social network

twitter (tw) 61.6M 1468.4M Social network
urand (ur) 134.2M 2147.4M Synthetic

ChampSim is a cycle-accurate simulator which was also used
for 3rd data prefetching championships (DPC-3 [3]) and the
2nd cache replacement championship (CRC-2 [2]). The details
of the configuration parameters are described in Table VII.
For multi-core configurations, we scale the size of the LLC in
proportion to the number of cores. To evaluate the performance
of CARE with prefetching, we follow the methodology of
CRC-2 by applying the next-line prefetching policy at L1 and
IP-stride prefetching policy at L2.
Benchmarks and workloads. We evaluate CARE using a
diverse set of memory-intensive workloads spanning SPEC
CPU2006 [43], SPEC CPU2017 [6], and GAP [9] benchmark
suites, which have at least 1 LLC miss per kilo instructions
(MPKI) in the single-core baseline system with no prefetching.
Table VIII shows LLC MPKI for the 30 evaluated SPEC
workloads in our study. For SPEC workloads, the traces are
collected with SimPoint [32] and are provided by DPC-3 [3].
For GAP workloads, we select five primitive graph algorithms
for evaluation, which are Betweenness Centrality (bc), Breadth
First Search (bfs), Connected Components (cc), PageRank (pr),
and Single Source Shortest Path (sssp). Table IX lists the graph
datasets that are used in our experiments. We use the Intel Pin
dynamic binary instrumentation tool [5] to collect the traces
of GAP workloads. We use the region-of-interest (ROI) utility

9



0.8

1.0

1.2

1.4

1.6

40
1

40
3

41
0

42
9

43
3

43
6

43
7

45
0

45
6

45
9

46
2

47
0

47
3

48
1

48
2

48
3

60
2

60
3

60
5

60
7

61
9

62
0

62
1

62
3

62
5

62
7

62
8

64
9

65
4

65
7

G
M

N
or

m
al

ize
d 

IP
C

SHiP++ Hawkeye Glider M-CARE CARE LRU

Fig. 7: Normalized IPC for all 4-core multi-copy SPEC workloads (collaboration with L1 and L2 prefetcher).

0.1

0.4

0.7

1.0

40
1

40
3

41
0

42
9

43
3

43
6

43
7

45
0

45
6

45
9

46
2

47
0

47
3

48
1

48
2

48
3

60
2

60
3

60
5

60
7

61
9

62
0

62
1

62
3

62
5

62
7

62
8

64
9

65
4

65
7

G
M

LL
C 

pM
R

LRU SHiP++ Hawkeye Glider M-CARE CARE

Fig. 8: LLC pMR for all 4-core multi-copy SPEC workloads (collaboration with L1 and L2 prefetcher).

from Pin to only profile the core algorithm (avoid intercepting
traces when loading graph dataset). For all simulations, we
warm up each core using 50M instructions from each workload,
and then run simulation over the next 200M instructions.

We use both multi-copy and mixed workloads to simulate
a multi-programmed system. An n-core multi-copy workload
has n identical copies of a memory-intensive trace, for all the
cores. Note that each trace does not start exactly at the same
time in the simulator, so the runs are not synchronized. For
an n-core mixed workload, we select n benchmarks randomly
from the 30 memory-intensive SPEC benchmarks and run one
trace in each core. We generate 100 mixed workloads in total.
For each mixed workload, if a benchmark finishes early, it
is replayed until each benchmark has finished running 200M
instructions. Our multi-core simulation methodology is similar
to the methodologies used by CRC-2 [2] and DPC-3 [3].
Compared schemes. We select LRU as the baseline for per-
formance comparison. For multi-core configurations, we report
the weighted speedup over LRU, which is commonly used to
evaluate shared caches [2], [41]. We compare CARE against
three state-of-the-art LLC management schemes: SHiP++ [53],
Hawkeye [17], Glider [42], and Mockingjay [41]. We also
extend the MLP-based cost [34] and implement a cache
management framework called M-CARE for performance
comparison. The workflow of M-CARE is similar to CARE.
The only difference from CARE is that M-CARE does not
consider PMC but uses MLP-based cost to analyze data access
concurrency and guide cache management. The impact of
analyzing hit-miss overlapping can be seen by comparing the
performance of CARE and M-CARE.

VII. RESULTS

A. CARE Performance Evaluation

We show the performance results of CARE over state-of-
the-art schemes in 4-core configuration with prefetching in this
section.

1) Multi-copy SPEC workloads: For multi-copy SPEC
workloads, Figure 7 shows the normalized IPC of schemes
followed by the geometric mean across all the SPEC workloads.

TABLE X: Average pMR and PMC for all 4-core multi-copy
SPEC workloads (collaboration with L1 and L2 prefetcher).

LRU SHiP++ Hawkeye Glider M-CARE CARE
pMR 0.56 0.52 0.51 0.50 0.52 0.50
PMC 114.46 97.98 99.44 101.43 97.80 95.11

0.9

1.0

1.1

1.2

1.3

bc
-o

r

bc
-t

w

bc
-u

r

bf
s-

or

bf
s-

tw

bf
s-

ur

cc
-o

r

cc
-t

w

cc
-u

r

pr
-o

r

pr
-t

w

pr
-u

r

ss
sp

-o
r

ss
sp

-t
w

ss
sp

-u
r

G
M

N
or

m
al

ize
d 

IP
C

SHiP++ Hawkeye Glider M-CARE CARE LRU

Fig. 9: Normalized IPC for all 4-core multi-copy GAP
workloads (collaboration with L1 and L2 prefetcher).

All results are normalized to the baseline of LRU. In the
presence of prefetching, CARE achieves a geometric mean
speedup of 10.3% over the LRU on the 30 memory-intensive
benchmarks, while SHiP++, Hawkeye, Glider, and M-CARE
improve performance over LRU by 7.6%, 6.2%, 7.2%, and
7.5%, respectively.

Figure 7 demonstrates that since CARE considers both
locality and concurrency in cache management, CARE outper-
forms state-of-the-art schemes. LRU, SHiP++, Hawkeye, and
Glider are the locality-based schemes. Although Hawkeye and
Glider each perform well for some specific workloads, their
performance improvements are not consistent across different
benchmarks. Hawkeye yields performance below LRU baseline
for 7 workloads. Glider performs worse than the LRU baseline
for 5 workloads. This observation exhibits that the performance
of the locality-based schemes is limited by access patterns.
M-CARE considers the miss concurrency but ignores the hit-
miss overlapping. Therefore, M-CARE makes the replacement
decisions at a coarse granularity. The accurate analysis of
data concurrency by PMC gives the performance of CARE an
advantage in comparison to M-CARE.

Figure 8 compares the LLC pure miss rate (pMR) with
different schemes for the 30 memory-intensive SPEC workloads.

10



1.0

1.1

1.2

1.3

1.4

0 20 40 60 80 100

N
or

m
al

ize
d 

IP
C

4-core Mixed Workloads Sorted by Speedup

LRU SHiP++ Hawkeye Glider M-CARE CARE

Fig. 10: Weighted Speedup for 4-core mixed workloads
(collaboration with L1 and L2 prefetcher).

0.9

1.0

1.1

1.2

4-core 8-core 16-core

N
or

m
al

ize
d 

IP
C

LRU SHiP++ Hawkeye Glider Mockingjay M-CARE CARE

Fig. 11: Speedup for 4, 8, 16 cores (multi-copy SPEC workloads
with prefetching).

On average, CARE and Glider yield the lowest average LLC
pMR (0.50) than the other schemes. Table X shows the average
PMC value of each LLC miss. In the CARE framework, the
average PMC value is 95.11 cycles, which is less than 97.80
cycles by the second-best scheme (M-CARE in this case).
The overall performance of the cache management scheme
correlates well with the change in LLC pure misses and the
average PMC value for all LLC misses. Compared to other
schemes, CARE is not only more effective in reducing the
number of LLC pure misses, but also in reducing the PMC
values of LLC misses.

2) Multi-copy GAP workloads: Figure 9 shows the detailed
results on the multi-copy GAP workloads. On a 4-core system
with prefetching, CARE improves performance over LRU by
8.7%, while SHiP++, Hawkeye, Glider, and M-CARE improve
performance by 5.4%, 1.8%, 3.0%, and 6.7%, respectively.
The irregular access patterns of graph-analytic applications
challenge the re-reference prediction. CARE performs better
than state-of-the-art schemes, which can be attributed to the
following two factors. First is its concurrency awareness, which
minimizes the performance loss caused by misses. Second is
the conservative nature of the hit policy. When a block incurs
a hit, the eviction priority of that cache block is still reduced
even if CARE predicts that the block is Low-Reuse.

3) Mixed Workloads: Figure 10 shows the normalized
weighted IPC comparison between different schemes for 100
4-core mixed workloads. In the presence of prefetching, CARE
offers a geometric mean speedup of 12.8% over LRU, compared
with the 11.9%, 6.8%, 6.4%, and 11.4% improvements for
SHiP++, Hawkeye, Glider, and M-CARE. CARE yields the
best performance for 67 mixed workloads. CARE shows an
advantage over other schemes in providing stable performance.

0.9

1.0

1.1

1.2

4-core 8-core 16-core

N
or

m
al

ize
d 

IP
C

LRU SHiP++ Hawkeye Glider Mockingjay M-CARE CARE

Fig. 12: Speedup for 4, 8, 16 cores (multi-copy GAP workloads
with prefetching).

TABLE XI: AOCPA with increasing core numbers (collabora-
tion with L1 and L2 prefetcher).

4-core 8-core 16-core
AOCPA 260.87 413.03 674.89

B. Scalability Evaluation

1) Speedup with increasing concurrency: In the presence
of prefetching, Figure 11 summarizes CARE performance on
multi-copy SPEC workloads as we increase the number of
cores. We make three major observations from Figure 11. First,
the opportunity for cache management increases with multiple
cores due to increased pressure on the LLC. Second, CARE
outperforms every state-of-the-art cache management scheme in
all configurations. Third, as the number of cores increases, the
performance advantage of CARE becomes greater and greater.
In the 4-core configuration, CARE achieves an improvement
over LRU by 10.3% on average. As the number of cores
increases, the gains are 13.0%, and 17.1%, respectively.

Similarly, Figure 12 shows the performance improvement of
cache management schemes across GAP workloads in 4-core
to 16-core systems. The performance improvement of CARE
over other schemes increases with the number of cores. In
16-core systems, CARE outperforms LRU, SHiP++, Hawkeye,
Glider, Mockingjay, and M-CARE by 16.1%, 7.8%, 12.7%,
11.6%, 11.4%, and 7.3%, respectively.

We measure Average Overlapping Cycles Per Access
(AOCPA) on SPEC and GAP workloads to quantify the access
concurrency on LLC. AOCPA is calculated on a per-core basis.
A higher AOCPA means more data access overlapping in
the LLC that CARE can exploit. Table XI summarizes the
value of AOCPA in the presence of prefetching for multi-
core configurations. Table XI shows that as the number of
cores increases, the AOCPA increases significantly. This is
because when the LLC receives a heavier workload, the
increasing miss rate and average miss access latency lead
to more miss-miss and hit-miss overlapping cycles. Therefore,
in a multi-core system where the AOCPA is increasing,
CARE continues outperforming other locality-only based cache
management schemes and shows a huge potential for improving
the performance of data-intensive applications on large-scale
computing systems.

2) Performance without prefetching: Figures 13 and 14
show the scalability results without prefetching for SPEC and
GAP workloads, respectively. In the absence of prefetching,
the performance of CARE still scales well on SPEC and GAP

11



0.9

1.0

1.1

1.2

4-core 8-core 16-core

N
or

m
al

ize
d 

IP
C

LRU SHiP++ Hawkeye Glider Mockingjay M-CARE CARE

Fig. 13: Speedup for 4, 8, 16 cores (multi-copy SPEC workloads
without a prefetcher).

0.9

1.0

1.1

1.2

4-core 8-core 16-core

N
or

m
al

ize
d 

IP
C

LRU SHiP++ Hawkeye Glider Mockingjay M-CARE CARE

Fig. 14: Speedup for 4, 8, 16 cores (multi-copy GAP workloads
without a prefetcher).

workloads with increasing concurrency. In 16-core systems,
Figure 13 illustrates that CARE improves performance on SPEC
workloads by 19.4%, compared with a 11.9% improvement
by the second-best scheme (Mockingjay in this case). Figure
14 shows that in 16-core systems, CARE outperforms LRU,
SHiP++, Hawkeye, Glider, Mockingjay, and M-CARE across
GAP workloads by 13.0%, 5.1%, 9.1%, 8.5%, 8.1%, and 5.4%,
respectively.

VIII. CONCLUSIONS

In this paper, we emphasize the importance of data con-
currency to memory performance. We propose Pure Miss
Contribution (PMC), a comprehensive metric used to weigh the
performance cost of each cache miss. We first develop a detailed
measurement mechanism for PMC. Then, we utilize PMC to
build CARE, a locality and concurrency-aware, lightweight
cache management framework. CARE considers locality, con-
currency, and overlapping to guide cache replacement decisions.
CARE is fully tested and analyzed. It outperforms state-of-
the-art cache management schemes. Experimental and analysis
results show CARE has a true potential for data-intensive
scalable computing systems.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feedback.
This research is supported in part by the National Science
Foundation under Grants CCF-2029014, CCF-2008907, CNS-
2152497, and by the NSF supported Chameleon testbed facility.

REFERENCES

[1] “1st instruction prefetching championship.” https://research.ece.ncsu.edu/
ipc/.

[2] “2nd cache replacement championship.” https://crc2.ece.tamu.edu/.
[3] “3rd data prefetching championship.” https://dpc3.compas.cs.stonybrook.

edu/?final programs.
[4] “The champsim simulator,” https://github.com/ChampSim/ChampSim.
[5] “Pin-a dynamic binary instrumentation tool,” https://www.intel.com/

content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html.

[6] “Spec cpu2017 benchmark suite,” http://www.spec.org/cpu2017/.
[7] A. Agarwal, K. Roy, and T. Vijaykumar, “Exploring high bandwidth

pipelined cache architecture for scaled technology,” in Proceedings of the
conference on Design, Automation and Test in Europe-Volume 1. IEEE
Computer Society, 2003, p. 10778.

[8] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “P-opt: Practical optimal
cache replacement for graph analytics,” in 2021 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2021.

[9] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[10] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[11] M. Chaudhuri, “Pseudo-lifo: The foundation of a new family of replace-
ment policies for last-level caches,” in 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2009,
pp. 401–412.

[12] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proceedings. 31st Annual
International Symposium on Computer Architecture, 2004. IEEE, 2004,
pp. 76–87.

[13] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic reuse
distances,” in 2012 45Th annual IEEE/ACM international symposium on
microarchitecture. IEEE, 2012, pp. 389–400.

[14] P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache manage-
ment for graph analytics,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2020, pp.
234–248.

[15] H. Gao and C. Wilkerson, “A dueling segmented lru replacement
algorithm with adaptive bypassing,” in JWAC 2010-1st JILP Worshop on
Computer Architecture Competitions: Cache Replacement Championship,
2010.

[16] A. Glew, “Mlp yes! ilp no,” ASPLOS Wild and Crazy Idea Session,
vol. 98, 1998.

[17] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm
for improved cache replacement,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 78–89.

[18] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 110–123.

[19] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance
cache replacement using re-reference interval prediction (rrip),” ACM
SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 60–71, 2010.

[20] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2017, pp. 436–448.

[21] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement based
on reuse-distance prediction,” in 2007 25th International Conference on
Computer Design. IEEE, 2007, pp. 245–250.

[22] M. Kharbutli and R. Sheikh, “Lacs: A locality-aware cost-sensitive cache
replacement algorithm,” IEEE Transactions on Computers, vol. 63, no. 8,
pp. 1975–1987, 2013.

[23] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Transactions on Computers, vol. 57, no. 4,
pp. 433–447, 2008.

[24] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in 25 years of the international symposia on Computer architecture
(selected papers), 1998, pp. 195–201.

[25] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-
block correlating prefetchers,” in Proceedings 28th Annual International
Symposium on Computer Architecture. IEEE, 2001, pp. 144–154.

[26] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “Lrfu: A spectrum of policies that subsumes the least recently used
and least frequently used policies,” IEEE transactions on Computers,
no. 12, pp. 1352–1361, 2001.

[27] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
in 2008 41st IEEE/ACM International Symposium on Microarchitecture.
IEEE, 2008, pp. 222–233.

[28] J. Liu, P. Espina, and X.-H. Sun, “A study on modeling and optimization
of memory systems,” Journal of Computer Science and Technology,
vol. 36, no. 1, pp. 71–89, 2021.

12

https://research.ece.ncsu.edu/ipc/
https://research.ece.ncsu.edu/ipc/
https://crc2.ece.tamu.edu/
https://dpc3.compas.cs.stonybrook.edu/?final_programs
https://dpc3.compas.cs.stonybrook.edu/?final_programs
https://github.com/ChampSim/ChampSim
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
 http://www.spec.org/cpu2017/


[29] Y. Liu and X.-H. Sun, “Lpm: A systematic methodology for concurrent
data access pattern optimization from a matching perspective,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 11, pp.
2478–2493, 2019.

[30] X. Lu, R. Wang, and X.-H. Sun, “Apac: An accurate and adaptive prefetch
framework with concurrent memory access analysis,” in 2020 IEEE 38th
International Conference on Computer Design (ICCD). IEEE, 2020,
pp. 222–229.

[31] X. Lu, R. Wang, and X.-H. Sun, “Premier: A concurrency-aware pseudo-
partitioning framework for shared last-level cache,” in 2021 IEEE 39th
International Conference on Computer Design (ICCD). IEEE, 2021,
pp. 391–394.

[32] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 318–
319, 2003.

[33] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 381–391, 2007.

[34] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
mlp-aware cache replacement,” in 33rd International Symposium on
Computer Architecture (ISCA’06). IEEE, 2006, pp. 167–178.

[35] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache:
demand-based associativity via global replacement,” in 32nd International
Symposium on Computer Architecture (ISCA’05). IEEE, 2005, pp. 544–
555.

[36] K. Rajan and G. Ramaswamy, “Emulating optimal replacement with a
shepherd cache,” in 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007). IEEE, 2007, pp. 445–454.

[37] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin, “On
high-bandwidth data cache design for multi-issue processors,” in Pro-
ceedings of the 30th annual ACM/IEEE international symposium on
Microarchitecture. IEEE Computer Society, 1997, pp. 46–56.

[38] J. T. Robinson and M. V. Devarakonda, “Data cache management
using frequency-based replacement,” in Proceedings of the 1990 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, 1990, pp. 134–142.

[39] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing,” in 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 2012, pp.
355–366.

[40] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective
cache replacement policy using machine learning,” in Proceedings of
the 27th IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021.

[41] I. Shah, A. Jain, and C. Lin, “Effective mimicry of belady’s min policy,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 558–572.

[42] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
413–425.

[43] C. D. Spradling, “Spec cpu2006 benchmark tools,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 1, pp. 130–134, 2007.

[44] X.-H. Sun and D. Wang, “Concurrent average memory access time,”
Computer, vol. 47, no. 5, pp. 74–80, 2013.

[45] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[46] J. Tuck, L. Ceze, and J. Torrellas, “Scalable cache miss handling for high
memory-level parallelism,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 2006, pp. 409–
422.

[47] W. A. Wong and J.-L. Baer, “Modified lru policies for improving second-
level cache behavior,” in Proceedings Sixth International Symposium on
High-Performance Computer Architecture. HPCA-6 (Cat. No. PR00550).
IEEE, 2000, pp. 49–60.

[48] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 430–441.

[49] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer, “Pacman:
prefetch-aware cache management for high performance caching,” in

Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011, pp. 442–453.

[50] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[51] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion pseudo-partitioning of
multi-core shared caches,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 3, pp. 174–183, 2009.

[52] L. Yan, M. Zhang, R. Wang, X. Chen, X. Zou, X. Lu, Y. Han, and X.-H.
Sun, “Copim: a concurrency-aware pim workload offloading architecture
for graph applications,” in 2021 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED). IEEE, 2021, pp. 1–6.

[53] V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, “Ship++: Enhancing
signature-based hit predictor for improved cache performance,” in
Proceedings of the Cache Replacement Championship (CRC’17) held in
Conjunction with the International Symposium on Computer Architecture
(ISCA’17), 2017.

13


	Introduction
	Background and Preliminaries
	Memory Level Parallelism
	Concurrent Memory Access Model
	Locality-based Cache Management
	Cost-based Cache Management

	Motivation
	The Limitations of Locality-based Cache Management
	The Limitations of MLP-based Cache Management

	Pure Miss Contribution
	Definition
	Measurement and Implementation
	Revisit the Study Case with PMC Analysis
	Distribution of PMC
	Predictability of PMC

	CARE: Concurrency-aware Cache Management
	Overview
	Store and Update Access History in SHT
	Predict Access Behavior with SBP
	CARE Cache Management Policies
	Collaboration with Prefetching
	Dynamic Threshold Reconfiguration Mechanism
	Hardware Cost and Complexity of CARE

	Methodology
	Results
	CARE Performance Evaluation
	Multi-copy SPEC workloads
	Multi-copy GAP workloads
	Mixed Workloads

	Scalability Evaluation
	Speedup with increasing concurrency
	Performance without prefetching


	Conclusions
	Acknowledgment
	References

