
SCALABLE COMPUTING

SO FTWARE LABO RATO RY

©copy right 2020 Xian-He Sun 1

Data Flow under the

von Neumann Computer Architecture
冯·诺依曼体系结构下的数据流动

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu

Keynote at CCF ACA 2020

August 13, 2020

mailto:sun@iit.edu

8/16/2020 ©copy right 2020 Xian-He Sun 2

A Fundamental Issue

L2

L1

DF

Memory Wall

Data-Centric Computer Architecture: Architecture in

the Big Data Era

◼ Computational Thinking and Data-Centric Thinking

◼ Models and Solutions

◼ Application and implementation

Connected World=Big Data

7/25/2008—Google passes 1 trillion URLs

$187/second—Cost of last Ebay outage

1 Billion—PCs and Laptops

789.4 PB—Size of YouTube

2/4/2011—IPv4 address space exhausted

340x1038—Size of IPv6 address space

100 million gigabytes—Size of Google’s index

144 million—Number of Tweets per day

1.7 trillion—Items in a startup’s DB

90PB—Facebook data holdings

4.3 Billion—Mobile devices

6.9 billion people

800 million Facebook users

3
Courtesy of Ira Hunt

Data-Centric

Computer Architecture

What is the

Solution ?

What is it

& why ?

8/16/2020 Scalable Computing Software Lab, Illinois Institute of Technology

Computational Thinking

❑ Computer is for computing

o Mathematical Modeling

o CPU performance: speed, flops

❑ Scientific computing

o Mathematical Equations: PDE, ODE equations

❑ Non-Scientific Computing

o Graph based discrete computing

❑ Example

o Travelling salesman problem

Jeannette M. Wing. 2006. Computational Thinking. Communications of the ACM, vol.49, no.3, 33–35 4

Data-Centric Thinking

❑ Solving problem via data

o Discover relations from (massive) data

o Memory and storage system performance: Bandwidth? Miss?

❑ Deep learning and other methods

o AI, generic, probability, statistical, index, graph, etc.

❑ Internet and database applications

❑ Example

o flu epidemic

o Travelling salesman problem

Y. Liu, X.-H. Sun, Y. Wang, and Y. Bao, “HCDA: From Computational Thinking to a Generalized Thinking Paradigm,”

Communication of ACM, accepted to appear

1

10

100

1000

10000

100000

1000000

10000000

1980 1985 1990 1995 2000 2005 2010 2015

P
e
rf
o
rm

a
n
ce

Year

25%/year

52%/year
23%/year

12%/year

Memory

Uni-processor

Multi-core/many-core

processor

7%/year

60%/year

Leiserson, Charles E., et al. "There’s plenty of room

at the Top: What will drive computer performance

after Moore’s law?." Science 368.6495 (2020).

Why Data Centric ? The Memory-wall Problem

◼ Processor performance

increases rapidly

❑ Uni-processor: ~52% until

2004

❑ Aggregate multi-core/many-

core processor performance

even higher since 2004

◼ Memory: ~7% per year

❑ Storage: ~6% per year

◼ Processor-memory speed gap

keeps increasing

Source: Intel

Source: OCZ

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of ACM-IEEE Supercomputing'90, NY, Nov. 1990

1

10

100

1000

10000

100000

1000000

10000000

1980 1985 1990 1995 2000 2005 2010 2015

P
e
rf
o
rm

a
n
ce

Year

25%/year

52%/year
23%/year

12%/year

Memory

Uni-processor

Multi-core/many-core

processor

7%/year

60%/year

Leiserson, Charles E., et al. "There’s plenty of room

at the Top: What will drive computer performance

after Moore’s law?." Science 368.6495 (2020).

9%

◼ Can we make a big memory?

❑ No

◼ Can we make a big cache?

❑ No

◼ Power consumption

❑ 80% of memory are not used

during 80% of its lifetime

◼ Memory & cache become

small per processor/core

Source: Intel

Source: OCZMemory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, Y. Chen. "Reevaluating Amdahl's Law in the Multicore Era," Journal of Parallel and Distributed Computing,

Vol. 70, No. 2, pp183-188, 2010

Why Data Centric ? The Memory-wall Problem

The Von Neumann Architecture The Classical

◼ John von Neumann first authored the general requirements for

an electronic computer in 1945

◼ Aka “stored-program computer”
❑ Both program inst. and data are kept in electronic memory

◼ Since then, all computers have followed this basic design

◼ Four main components: ALU, control unit, memory, I/O

8/16/2020 8Xian-He Sun

von Neumann Implementation

◼ Why it is Compute Centric ?
o A problem is broken into a discrete series of instructions

o Instructions are executed by CPU

o Fetch data if a computing need it

o CPU utilization, CPU scheduling

Also called Control Flow Architecture
Computational thinking

8/16/2020 9Scalable Computing Software Lab, Illinois Institute of Technology

Other Computer Architectures

◼ The Dataflow Computer Architecture

❑ Instruction execution is solely determined by the availability

of data

❑ Dataflow is designed to explore parallelism and maximize

parallel computing (data move to make computing happen)

◼ Quantum Computing

❑ Quantum computers are using existing electrical technologies

for persisted memory and storage

❑ Quantum supremacy is built based on “applications” which

do not need inputting data

They are not data-centric

8/16/2020 10©copy right 2020 Xian-He Sun

Re-examine the von Neumann Arch.

◼ Can we make von Neumann more data centric or compute and

data equal ?

◼ Yes: focus on data and data access delay

◼ How: Advance current memory-wall solutions

Storage SystemMemory System

Computing

Unit

Data Movement
数据流动

memory hierarchy

Memory/Storage

Unit

Computing System

8/16/2020 11©copy right 2020 Xian-He Sun

12

Memory-wall Solution: Memory Hierarchy

Reg

File

L1

Data cache

L1

Inst cache

L2

Cache

Main

Memory

DISK
SRAM DRAM

Data Locality

8/16/2020 Xian-He Sun

Advanced Solution: Deep Hierarchy & Concurrency

Deep Memory-Storage Hierarchy with Concurrence

Xian-He Sun and Dawei Wang, "Concurrent Average Memory Access Time," in IEEE Computers, vol.47, no.5,

pp.74-80, May 2014. ©copy right 2020 Xian-He Sun

Assumptions

➢ Memory

Hierarchy:

Locality

➢ Concurrence:

Data access

pattern

o Data stream

Multi-Issue

Multi-Threading

Multi-Core

Speculative Execution

Runahead Execution

Pipelined Cache

Non-Blocking Cache

Data Prefetching

Write Buffer

Pipeline

Non-Blocking

Prefetching

Write Buffer

Parallel File

Systems

Out-of-Order Execution

Multi-Level Cache

Multi-Banked Cache

Multi-Channel

Multi-Rank

Multi-Bank

CPU

Processor

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory (DRAM)

Persistent Memory (NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes, …)

13

©copy right 2020 Xian-He Sun 14

Advanced Solution: ASIC from CPU side

◼ GPU, DSP, AI Chip

❑ GPU is a chip tailored to graphics

processing, DSP is for signal

processing, and AI chip is designed

to do AI tasks

◼ Limited data-centric

❑ Assume data are on the chip

◼ Limited application

❑ Accelerator

❑ Data intensive?

8/16/2020

©copy right 2020 Xian-He Sun 15

New Solution: PIM chip

◼ PIM
❑ Processing in memory (also called processor

in memory) is the integration of a processor

with RAM on a single chip.

❑ NDP (Near-memory Data Processing)

❑ ISP (In-Storage Processing)

◼ Computer power is weak
❑ A full kitchen needs a refrigerator

◼ A helper/mitigator

8/16/2020

Basic Idea: Separate CPU & Memory

Memory Stall Time (MST)

D. Wang & X.-H. Sun, "APC: A Novel Memory Metric and Measurement Methodology for Modern Memory

System," in IEEE Transactions on Computers, vol. 63, no. 7, pp. 1626-1639, July 2014

©copy right 2020 Xian-He Sun

CPU.time = IC × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time

◼ Let reducing MST be the final goal of memory systems

❑ Reduce data access delay

❑ Separate the concern of memory systems

◼ The measurement of memory system performance

❑ AMAT (Average Memory Access Time)

AMAT = Hit time + MR×AMP

❑ C-AMAT (Concurrent-AMAT)

❑ APC (Access Per memory active Cycle) = 1/C-AMAT

Under von Neumann

16

©copy right 2020 Xian-He Sun

Reduce Memory Stall Time

Memory stall time

The Traditional AMAT model

Memory stall time

Y. Liu and X.-H. Sun, "Reevaluating Data Stall Time with the Consideration of Data Access Concurrency,"

Journal of Computer Science and Technology (JCST), March 2015

𝐶𝑃𝑈.𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 × 𝐴𝑀𝐴𝑇 × 𝐶𝑦𝑐𝑙𝑒.𝑡𝑖𝑚𝑒

The New C-AMAT model

CPU.time=IC×(CPIexe+ fmem×C−AMAT×(1–overlapRatioc-m))×Cycle.time

◼ Reducing MST becomes reducing C-AMAT

17

Reduce C-AMAT

◼ C-AMAT is Recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT MR C AMAT

C
= +

1

1

 1 1
1

1 1

m

M

CpMR pAMP

MR AMP C
 =

X.-H. Sun, “Concurrent-AMAT: a mathematical model for Big Data access,” HPC-Magazine, May 12, 2014

With Clear Physical Meaning

◼ H is hit time

◼ MR is the miss ratio

◼ CH is the hit concurrency

◼ κ is the overlapping ratio (pure miss cycles over miss cycles)

◼ A pure miss cycle is a miss cycle with no hit

𝐶 − 𝐴𝑀𝐴𝑇2 =
𝐻2

𝐶𝐻2
+𝑀𝑅2 × 𝜅2 × 𝐶 − 𝐴𝑀𝐴𝑇3

18

C-AMAT : Four Types Cycle Analysis

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” submitted for

publication ©copy right 2020 Xian-He Sun

◼ Data (memory) centric analysis: memory cycles

◼ Memory cycles can see the overlapping

19

C-AMAT is Recursive: Data Access Time

L1

Cache L2
Cache

L3

Cache
Main

Memory

(DRAM)

1 clk
Hit Time

2

Hit Concurrency

10 clks 20 clks 300 clks

3 4 6

◼ Concurrent Average Memory Access Time (C-AMAT)

=
H1

CH1

+MR1 × κ1 ×
H2

CH2

+MR2 × κ2 ×
H3

CH3

+MR3 × κ3 ×
HMem

CHMem

◼ Example

❑ Miss Rate: L1=10%, L2=5%, L3=1% pMR, pAMP, AMP, CM, Cm: L1=7%, 10, 10, 5, 4

❑ 𝜅: 𝐿1=0.56, L2=0.6, L3=0.8 L2=3%, 60, 40, 9, 6

❑ C-AMAT≈0.696 L3=0.8%, 400, 300, 16, 12

8/16/2020 20©copy right 2020 Xian-He Sun

Optimization: Layered Performance Matching

1

1
exe memIPC f

LPMR
APC

=

1
2

2

exe memIPC f MR
LPMR

APC

=

1 2
3

3

 exe memIPC f MR MR
LPMR

APC

=

▪ Match the data request and supply at each layer

▪ C-AMAT can increase supply with effective concurrency and locality

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates

of computing

components

Supply rates

of L1 cache

Request rates

of L1 cache

Request rates of

Last level cache

Supply rates of

Last level cache

Supply rates of

main memory

APC1

APC2

APC3

Y. Liu, X.-H. Sun. “LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching

Perspective,” IEEE TPDS, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019

LPM with C-AMAT

Layered Performance Matching (LPM)

◼ The Matching ratio values of request and supply at each layer are

given and the matching process is well designed & analyzed

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” submitted for publication

©copy right 2020 Xian-He Sun

Simulatable Measurable Controllable Optimizable

Deep Memory-Storage Hierarchy: a general match

DMSH with Concurrence

Y. Liu and X.-H. Sun, “CaL: Extending Data Locality to Consider Concurrency for Performance Optimization,”

IEEE Transactions on Big Data, vol. 5, no. 2, pp. 273-288, June 2018

©copy right 2020 Xian-He Sun

◼ Do we need to use all layers every

time?

NO

◼ Flexible tier selection with no

inclusive

◼ Concurrent accesses now can

concurrently access on different tiers

◼ Tier: memory device with different

performance

◼ Layer: memory hierarchy with data

inclusiveness

◼ A general match in Deep Memory-

Storage Hierarchy (DMSH)

L1

Cache

L2 Cache

L3 Cache

Main Memory

(DRAM)

Persistent Memory

(NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes,…)

Persistent memory blurs memory & storage

23

24

Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an

application’s data access requirement for any matching

parameter T1 > 0, then this memory system has removed the

memory wall effect for this application.

X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in Proc. of LCPC2016, Sept.

2016, New York, USA

Data access

flow model

Processor

side

Water flow

model

Upstream

side

Off-chip

side

Downstream

side

Layer 1 Layer 2 Layer 4Layer 3

©copy right 2020 Xian-He Sun

The Next Step: Reduce Data Movement

Memory Stall Time (MST)

CPU.time = IC × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time

◼ Separating Compute and Memory is NOT data centric,

reducing data movement is

◼ Next step: Reducing CPIexe +MST by reducing data

movement

◼ How?

❑ Add Processing in Memory (PIM) into the matching

8/16/2020 25©copy right 2020 Xian-He Sun

PIM: A Part of the Sluice Gate Consideration

◼ PIM conduct computing at the memory side and reduce data

movement

◼ PIM is less powerful and when can help is an issue

◼ When to use PIM is part of the Sluice Gate theory

◼ Similar discussions for NDP and ISP

8/16/2020 26©copy right 2020 Xian-He Sun

Next Step: Include PIM into the Picture

Memory Stall Time (MST)

CPU.time = ICexe × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time
+ ICpim × CPIpim × Cycle.timepim

◼ Add PIM into the performance formulation

◼ PIM is a way to reduce request and is a trade-off of

computing and MST

◼ Result: data movement cost decides where to do the

computing

8/16/2020 27©copy right 2020 Xian-He Sun

Data Flow Sluice Gate Control

◼ Two classes of computing devises, powerful CPU (multicore, GPU,

XPU. Etc.) and less powerful PIM (NDP, ISP，etc.)

◼ Sluice gates decide which data are processed on PIM

◼ (rest) Data flows from memory in a rhythmic, concurrent matching

fashion, passing through sluice gates (layers) before reach a CPU,

then return to memory

◼ A general structure:

Fin-in, fin-out, branch,

More than one PIM/NDP/ISP and more than one CPU/GPU/XPU

Staged execution

Storage is the last layer of the data movement hierarchy

8/16/2020 ©copy right 2020 Xian-He Sun 28

8/16/2020 ©copy right 2020 Xian-He Sun 29

Data Flow under von Neumann

◼ Memory hierarchy with PIM (von Neumann)

◼ Optimize 【compute + data access】 via Sluice

Gate theory

◼ Data flow from memory to CPU with minimum

MST and conduct processing in memory when

necessary

◼ 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

Parallel or Distributed File

8/16/2020 ©copy right 2020 Xian-He Sun 30

Data Centric Sluice Gate Theory

◼ Sluice Gate theory with in-place-computing
o Concurrent access at each tier, concurrent access at different tiers

◼ Data movement cost is as important as computing power

Sluice Gate Theory is the foundation of 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

C
a
p
a
c
it
y

SCM

Remote memory

PIM

Global

memory

NVM

SSD
ISP ISP

SCM

Remote memory

PIM

Global

memory

NVM

SSD

ISPISP

Parallel or Distributed File System

(e.g., arrays of HDD)

Local

memory

Local

memory

Local

memory

Local

memory

Local

memory

Network

8/16/2020 ©copy right 2020 Xian-He Sun 31

Data Centric Sluice Gate Theory

◼ Sluice Gate theory with in-place-computing

◼ Data movement cost is as important as computing power

Sluice Gate Theory is the

foundation of 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

C
a

p
a

c
it
y

SCM

Remote memory

Global

memory

NVM

SSD
ISP ISP

SCM

Remote memory

Global

memory

NVM

SSD
ISP ISPISP

Parallel or Distributed File System

(e.g., arrays of HDD)

Local

memory

Local

memory

Local

memory

Local

memory

Local

memory

Network

L3 Cache

Main Memory(DRAM)

L2 Cache

L1

Cache

𝐃𝐚𝐭𝐚𝐟𝐥𝐨𝐰𝐯 Summary

◼ Where to do computing is determine by computing and data

movement cost

◼ Data flow through memory hierarchy via matching the request and

supply at hierarchy layer interfaces

◼ Utilize newly proposed PIM (NDP, ISP, etc.) technology to reduce

data movements

◼ Support advanced computer architectures, such as multicore,

disaggregated memory, deep memory-storage hierarchy, etc.

◼ Selective cache/buffer with multi-tiers concurrent accesses

◼ A data-centric implementation of the von Neumann computer

architecture

◼ PIM and Deep Memory-Storage Hierarchy

8/16/2020 ©copy right 2020 Xian-He Sun 32

33

𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Application

Cache Level

◼ GPU, AI, XPU
o Challenge: CPU/Accelerator data movement

◼ FPGA, RISC-V

o Application: Guideline

◼ General purpose multicore

o Challenge: Fast elastic

Accelerator-based Microarchitecture ?

N. Zhang, C. Jiang, X.-H. Sun, S. Song, "Evaluating GPGPU Memory Performance Through the C-AMAT Model," in

Proc. of ACM SIGHPC Workshop on Memory Centric Programming for HPC, with SC'17, Denver, USA, Nov. 2017

Intel CSA

©copy right 2020 Xian-He Sun

34

𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Application

Memory Level

◼ Quite open with new opportunities

◼ Challenges

o Interface with cache and storage

o Measurement and Simulator

o Controllers

o OS

◼ Infrastructure ?

N. Zhang, B. Toonen, X-H. Sun, B. Allcock, “Performance Modeling and Evaluation of a Production Disaggregated

Memory System,” International Symposium on Memory Systems (MEMSYS'20), Sept. 2020 (accepted to appear)

©copy right 2020 Xian-He Sun

35

𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Implementation

I/O level

◼ Storage is the last level of the memory hierarchy (DMSH)√

◼ Start at where the data is

◼ Advantage

o Can be implemented and verified

◼ Challenges

◼ Data management √

◼ Network impact √

◼ Passing operation demands with data request √

Let us do it ?

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. "Hermes: a heterogeneous-aware multi-tiered

distributed I/O buffering system," ACM, HPDC18, Tempe, Arizona, USA, June 2018

©copy right 2020 Xian-He Sun

Hermes: A Multi-tiered I/O Buffering System

36

◼ Selective cache, concurrent, matching

◼ Independent management of each tier

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,”

Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020

©copy right 2020 Xian-He Sun

Hermes: A Multi-tiered I/O Buffering System

A. Kougkas, H. Devarajan, and X.-H. Sun, “Bridging Storage Semantics using Data Labels and Asynchronous I/O,” ACM

Transactions on Storage, accept to appear 37

◼ Application-aware multi-tier matching

◼ Start at the log file

◼ An example of memory/storage integration

◼ An implementation of the 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣 concept

dLabel: Data Operation with Label

◼ Data requests are transformed into (data) Label units
o A label is a tuple of an operation and a pointer to the data

◼ A dispatcher distributes labels to the workers

◼ Workers execute labels independently (i.e., fully decoupled)

A. Kougkas, H. Devarajan, J. Lofstead, X.-H. Sun; “LABIOS: A Distributed Label-Based I/O System”, in Proceedings

of ACM HPDC ’19 (Best Paper Award)

©copy right 2020 Xian-He Sun

39

Take Home Messages

▪What is data-centric architecture ?
o Reduce data movement and memory stall time (in addition to better device)

o Design an architecture to do so

▪ How to do it ?
o Start at where the data is

o Computing side ? Storage side ?

▪ Storage side key technologies
oModeling

o Deep memory/storage hierarchy, labeled data, ChronoLog, etc.

o Hardware/software co-design

▪Many things need to do

o The good part: Any progress is an improvement of current systems

A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh and X.-H. Sun, “ChronoLog: A Distributed Shared Tiered Log Store with

Time-based Data Ordering,” Proceedings of the 36th International Conference on Massive Storage Systems and Technology (MSST 2020),

Oct. 2020, (accepted to appear).
©copy right 2020 Xian-He Sun

©copy right 2020 Xian-He Sun 40

Conclusion
◼ Make von Neumann architecture more data centric

o 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣

◼ The I/O implementation & other applications

o Hermes: integration of calculation & storage

◼ The concept of matching and Sluice Gate Theory

o In place computing & deep memory/storage hierarchy

8/16/2020

Thank you
Any questions?

8/16/2020 Slide 41

We would like to thank
our sponsors the

National Science
Foundation

Find more at:

sun@iit.edu

www.cs.iit.edu/~scs
www.akougkas.com/research/labios

Please come to our poster tonight at 6:30pm in Room 301A

Data Flow under the von Neumann Architecture

Xian-He Sun
The SCS laboratory at the Illinois Institute of Technology

Scalable Computing Software Lab, Illinois Institute of Technology

http://www.cs.iit.edu/~scs
http://www.cs.iit.edu/~scs

