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A Fundamental Issue

L2

L1

DF

Memory Wall

Data-Centric Computer Architecture: Architecture in 

the Big Data Era

◼ Computational Thinking and Data-Centric Thinking

◼ Models and Solutions

◼ Application and implementation



Connected World=Big Data

7/25/2008—Google passes 1 trillion URLs

$187/second—Cost of last Ebay outage

1 Billion—PCs and Laptops

789.4 PB—Size of YouTube

2/4/2011—IPv4 address space exhausted

340x1038—Size of IPv6 address space

100 million gigabytes—Size of Google’s index

144 million—Number of Tweets per day

1.7 trillion—Items in a startup’s DB

90PB—Facebook data holdings

4.3 Billion—Mobile devices

6.9 billion people

800 million Facebook users

3
Courtesy of Ira Hunt

Data-Centric 

Computer Architecture 

What is the 

Solution ?

What is it 

& why ?
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Computational Thinking

❑ Computer is for computing

o Mathematical Modeling

o CPU performance: speed, flops

❑ Scientific computing

o Mathematical Equations: PDE, ODE equations

❑ Non-Scientific Computing

o Graph based discrete computing

❑ Example

o Travelling salesman problem

Jeannette M. Wing. 2006. Computational Thinking. Communications of the ACM, vol.49, no.3, 33–35 4



Data-Centric Thinking

❑ Solving problem via data

o Discover relations from (massive) data

o Memory and storage system performance: Bandwidth? Miss?

❑ Deep learning and other methods

o AI, generic, probability, statistical, index, graph, etc.

❑ Internet and database applications

❑ Example

o flu epidemic

o Travelling salesman problem

Y. Liu, X.-H. Sun, Y. Wang, and Y. Bao, “HCDA: From Computational Thinking to a Generalized Thinking Paradigm,” 

Communication of ACM, accepted to appear
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Why Data Centric ?  The Memory-wall Problem

◼ Processor performance 

increases rapidly

❑ Uni-processor: ~52% until 

2004

❑ Aggregate multi-core/many-

core processor performance 

even higher since 2004

◼ Memory: ~7% per year

❑ Storage: ~6% per year

◼ Processor-memory speed gap 

keeps increasing

Source: Intel

Source: OCZ

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of ACM-IEEE Supercomputing'90, NY, Nov. 1990
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9%

◼ Can we make a big memory? 

❑ No

◼ Can we make a big cache?

❑ No

◼ Power consumption

❑ 80% of memory are not used 

during 80% of its lifetime

◼ Memory & cache become 

small per processor/core

Source: Intel

Source: OCZMemory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, Y. Chen. "Reevaluating Amdahl's Law in the Multicore Era," Journal of Parallel and Distributed Computing, 

Vol. 70, No. 2, pp183-188, 2010

Why Data Centric ?  The Memory-wall Problem



The Von Neumann Architecture   The Classical

◼ John von Neumann first authored the general requirements for 

an electronic computer in 1945

◼ Aka “stored-program computer”
❑ Both program inst. and data are kept in electronic memory

◼ Since then, all computers have followed this basic design

◼ Four main components: ALU, control unit, memory, I/O

8/16/2020 8Xian-He Sun



von Neumann Implementation

◼ Why it is Compute Centric ?
o A problem is broken into a discrete series of instructions

o Instructions are executed by CPU

o Fetch data if a computing need it

o CPU utilization, CPU scheduling

Also called Control Flow Architecture
Computational thinking

8/16/2020 9Scalable Computing Software Lab, Illinois Institute of  Technology



Other Computer Architectures

◼ The Dataflow Computer Architecture

❑ Instruction execution is solely determined by the availability 

of data

❑ Dataflow is designed to explore parallelism and maximize 

parallel computing (data move to make computing happen)

◼ Quantum Computing

❑ Quantum computers are using existing electrical technologies 

for persisted memory and storage

❑ Quantum supremacy is built based on “applications” which 

do not need inputting data

They are not data-centric

8/16/2020 10©copy right 2020 Xian-He Sun



Re-examine the von Neumann Arch.

◼ Can we make von Neumann more data centric or compute and 

data equal ?

◼ Yes: focus on data and data access delay

◼ How: Advance current memory-wall solutions

Storage SystemMemory System

Computing

Unit

Data Movement
数据流动

memory hierarchy

Memory/Storage

Unit

Computing System

8/16/2020 11©copy right 2020 Xian-He Sun
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Memory-wall Solution: Memory Hierarchy

Reg 

File

L1

Data cache

L1

Inst cache

L2 

Cache 

Main 

Memory  

DISK
SRAM DRAM

Data Locality

8/16/2020 Xian-He Sun



Advanced Solution: Deep Hierarchy & Concurrency

Deep Memory-Storage Hierarchy with Concurrence

Xian-He Sun and Dawei Wang, "Concurrent Average Memory Access Time," in IEEE Computers, vol.47, no.5, 

pp.74-80, May 2014.                                         ©copy right 2020 Xian-He Sun

Assumptions

➢ Memory 

Hierarchy: 

Locality

➢ Concurrence:

Data access 

pattern

o Data stream

Multi-Issue

Multi-Threading

Multi-Core

Speculative Execution

Runahead Execution

Pipelined Cache

Non-Blocking Cache

Data Prefetching

Write Buffer

Pipeline

Non-Blocking

Prefetching

Write Buffer

Parallel File

Systems

Out-of-Order Execution

Multi-Level Cache

Multi-Banked Cache

Multi-Channel

Multi-Rank

Multi-Bank

CPU

Processor

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory (DRAM)

Persistent Memory (NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes, …)

13
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Advanced Solution: ASIC from CPU side

◼ GPU, DSP, AI Chip

❑ GPU is a chip tailored to graphics 

processing, DSP is for signal 

processing, and AI chip is designed 

to do AI tasks

◼ Limited data-centric

❑ Assume data are on the chip

◼ Limited application

❑ Accelerator

❑ Data intensive?

8/16/2020
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New Solution: PIM chip

◼ PIM
❑ Processing in memory (also called processor 

in memory) is the integration of a processor 

with RAM on a single chip.

❑ NDP (Near-memory Data Processing)

❑ ISP (In-Storage Processing)

◼ Computer power is weak
❑ A full kitchen needs a refrigerator

◼ A helper/mitigator

8/16/2020



Basic Idea: Separate CPU & Memory

Memory Stall Time (MST)

D. Wang & X.-H. Sun, "APC: A Novel Memory Metric and Measurement Methodology for Modern Memory 

System," in IEEE Transactions on Computers, vol. 63, no. 7, pp. 1626-1639, July 2014

©copy right 2020 Xian-He Sun

CPU.time = IC × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time

◼ Let reducing MST be the final goal of memory systems

❑ Reduce data access delay

❑ Separate the concern of memory systems 

◼ The measurement of memory system performance

❑ AMAT (Average Memory Access Time)

AMAT = Hit time + MR×AMP

❑ C-AMAT (Concurrent-AMAT)

❑ APC (Access Per memory active Cycle) = 1/C-AMAT

Under von Neumann

16
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Reduce Memory Stall Time

Memory stall time

The Traditional AMAT model

Memory stall time

Y. Liu and X.-H. Sun, "Reevaluating Data Stall Time with the Consideration of Data Access Concurrency," 

Journal of Computer Science and Technology (JCST), March 2015

𝐶𝑃𝑈.𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 × 𝐴𝑀𝐴𝑇 × 𝐶𝑦𝑐𝑙𝑒.𝑡𝑖𝑚𝑒

The New C-AMAT model

CPU.time=IC×(CPIexe+ fmem×C−AMAT×(1–overlapRatioc-m))×Cycle.time

◼ Reducing MST becomes reducing C-AMAT

17



Reduce C-AMAT

◼ C-AMAT is Recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT MR C AMAT

C
= +  

1

1

 1 1
1

1 1  

m

M

CpMR pAMP

MR AMP C
 =  

X.-H. Sun, “Concurrent-AMAT: a mathematical model for Big Data access,” HPC-Magazine, May 12, 2014

With Clear Physical Meaning

◼ H is hit time

◼ MR is the miss ratio

◼ CH is the hit concurrency

◼ κ is the overlapping ratio (pure miss cycles over miss cycles)

◼ A pure miss cycle is a miss cycle with no hit

𝐶 − 𝐴𝑀𝐴𝑇2 =
𝐻2

𝐶𝐻2
+𝑀𝑅2 × 𝜅2 × 𝐶 − 𝐴𝑀𝐴𝑇3

18



C-AMAT : Four Types Cycle Analysis

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” submitted for 

publication                                                        ©copy right 2020 Xian-He Sun

◼ Data (memory) centric analysis: memory cycles

◼ Memory cycles can see the overlapping

19



C-AMAT is Recursive: Data Access Time

L1

Cache L2
Cache

L3

Cache
Main 

Memory

(DRAM)

1 clk
Hit Time

2

Hit Concurrency

10 clks 20 clks 300 clks

3 4 6

◼ Concurrent Average Memory Access Time (C-AMAT)

=
H1

CH1

+MR1 × κ1 ×
H2

CH2

+MR2 × κ2 ×
H3

CH3

+MR3 × κ3 ×
HMem

CHMem

◼ Example

❑ Miss Rate: L1=10%, L2=5%, L3=1%       pMR, pAMP, AMP, CM, Cm:   L1=7%, 10, 10, 5, 4

❑ 𝜅: 𝐿1=0.56, L2=0.6, L3=0.8                                                                              L2=3%, 60, 40, 9, 6

❑ C-AMAT≈0.696                                                                                                     L3=0.8%, 400, 300, 16, 12

8/16/2020 20©copy right 2020 Xian-He Sun



Optimization: Layered Performance Matching

1

1
exe memIPC f

LPMR
APC


=

1
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exe memIPC f MR
LPMR

APC

 
=

1 2
3

3

  exe memIPC f MR MR
LPMR

APC

  
=

▪ Match the data request and supply at each layer

▪ C-AMAT can increase supply with effective concurrency and locality

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates 

of computing 

components

Supply rates 

of L1 cache

Request rates 

of L1 cache

Request rates of 

Last level cache

Supply rates of 

Last level cache

Supply rates of 

main memory

APC1

APC2

APC3

Y. Liu, X.-H. Sun. “LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching 

Perspective,” IEEE TPDS, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019

LPM with C-AMAT



Layered Performance Matching (LPM)

◼ The Matching ratio values of request and supply at each layer are 

given and the matching process is well designed & analyzed  

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” submitted for publication 

©copy right 2020 Xian-He Sun
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Deep Memory-Storage Hierarchy: a general match

DMSH with Concurrence

Y. Liu and X.-H. Sun, “CaL: Extending Data Locality to Consider Concurrency for Performance Optimization,” 

IEEE Transactions on Big Data, vol. 5, no. 2, pp. 273-288, June 2018

©copy right 2020 Xian-He Sun

◼ Do we need to use all layers every 

time?

NO

◼ Flexible tier selection with no 

inclusive

◼ Concurrent accesses now can 

concurrently access on different tiers

◼ Tier: memory device with different 

performance 

◼ Layer: memory hierarchy with data 

inclusiveness

◼ A general match in Deep Memory-

Storage Hierarchy (DMSH)

L1

Cache

L2 Cache

L3 Cache

Main Memory

(DRAM)

Persistent Memory

(NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes,…)

Persistent memory blurs memory & storage

23
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Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an

application’s data access requirement for any matching

parameter T1 > 0, then this memory system has removed the

memory wall effect for this application.

X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in Proc. of LCPC2016, Sept. 

2016, New York, USA

Data access

flow model

Processor

side

Water flow

model

Upstream

side

Off-chip

side

Downstream

side

Layer 1 Layer 2 Layer 4Layer 3

©copy right 2020 Xian-He Sun



The Next Step: Reduce Data Movement

Memory Stall Time (MST)

CPU.time = IC × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time

◼ Separating Compute and Memory is NOT data centric, 

reducing data movement is

◼ Next step: Reducing CPIexe +MST by reducing data 

movement

◼ How? 

❑ Add Processing in Memory (PIM) into the matching

8/16/2020 25©copy right 2020 Xian-He Sun



PIM: A Part of the Sluice Gate Consideration

◼ PIM conduct computing at the memory side and reduce data 

movement

◼ PIM is less powerful and when can help is an issue

◼ When to use PIM is part of the Sluice Gate theory

◼ Similar discussions for NDP and ISP

8/16/2020 26©copy right 2020 Xian-He Sun



Next Step: Include PIM into the Picture

Memory Stall Time (MST)

CPU.time = ICexe × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time
+ ICpim × CPIpim × Cycle.timepim

◼ Add PIM into the performance formulation

◼ PIM is a way to reduce request and is a trade-off of 

computing and MST

◼ Result: data movement cost decides where to do the 

computing

8/16/2020 27©copy right 2020 Xian-He Sun



Data Flow Sluice Gate Control 

◼ Two classes of computing devises, powerful CPU (multicore, GPU, 

XPU. Etc.) and less powerful PIM (NDP, ISP，etc.)

◼ Sluice gates decide which data are processed on PIM

◼ (rest) Data flows from memory in a rhythmic, concurrent matching 

fashion, passing through sluice gates (layers) before reach a CPU, 

then return to memory

◼ A general structure:

Fin-in, fin-out, branch,

More than one PIM/NDP/ISP and more than one CPU/GPU/XPU

Staged execution

Storage is the last layer of the data movement hierarchy

8/16/2020 ©copy right 2020 Xian-He Sun 28
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Data Flow under von Neumann

◼ Memory hierarchy with PIM (von Neumann)

◼ Optimize 【compute + data access】 via Sluice 

Gate theory

◼ Data flow from memory to CPU with minimum 

MST and conduct processing in memory when 

necessary

◼ 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

Parallel or Distributed File
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Data Centric Sluice Gate Theory 

◼ Sluice Gate theory with in-place-computing
o Concurrent access at each tier, concurrent access at different tiers

◼ Data movement cost is as important as computing power

Sluice Gate Theory is the foundation of 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

C
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Global

memory

NVM
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ISP ISP
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Remote memory
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Global

memory
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Parallel or Distributed File System
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Data Centric Sluice Gate Theory 

◼ Sluice Gate theory with in-place-computing

◼ Data movement cost is as important as computing power

Sluice Gate Theory is the 

foundation of 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

C
a

p
a

c
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SCM

Remote memory

Global

memory

NVM

SSD
ISP ISP

SCM

Remote memory

Global

memory

NVM

SSD
ISP ISPISP

Parallel or Distributed File System

(e.g., arrays of HDD)

Local

memory

Local

memory

Local

memory

Local

memory

Local

memory

Network

L3 Cache

Main Memory(DRAM)

L2 Cache

L1

Cache



𝐃𝐚𝐭𝐚𝐟𝐥𝐨𝐰𝐯 Summary 

◼ Where to do computing is determine by computing and data 

movement cost

◼ Data flow through memory hierarchy via matching the request and 

supply at hierarchy layer interfaces

◼ Utilize newly proposed PIM (NDP, ISP, etc.) technology to reduce 

data movements

◼ Support advanced computer architectures, such as multicore, 

disaggregated memory, deep memory-storage hierarchy, etc.

◼ Selective cache/buffer with multi-tiers concurrent accesses

◼ A data-centric implementation of the von Neumann computer 

architecture 

◼ PIM and Deep Memory-Storage Hierarchy

8/16/2020 ©copy right 2020 Xian-He Sun 32
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𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Application

Cache Level

◼ GPU, AI, XPU
o Challenge: CPU/Accelerator data movement

◼ FPGA, RISC-V 

o Application: Guideline

◼ General purpose multicore 

o Challenge: Fast elastic

Accelerator-based Microarchitecture ?

N. Zhang, C. Jiang, X.-H. Sun, S. Song, "Evaluating GPGPU Memory Performance Through the C-AMAT Model," in 

Proc. of ACM SIGHPC Workshop on Memory Centric Programming for HPC, with SC'17, Denver, USA, Nov. 2017

Intel CSA

©copy right 2020 Xian-He Sun



34

𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Application

Memory Level

◼ Quite open with new opportunities

◼ Challenges 

o Interface with cache and storage

o Measurement and Simulator

o Controllers

o OS 

◼ Infrastructure ?

N. Zhang, B. Toonen, X-H. Sun, B. Allcock, “Performance Modeling and Evaluation of a Production Disaggregated 

Memory System,” International Symposium on Memory Systems (MEMSYS'20), Sept. 2020 (accepted to appear)

©copy right 2020 Xian-He Sun
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𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 Implementation

I/O level

◼ Storage is the last level of the memory hierarchy (DMSH)√

◼ Start at where the data is

◼ Advantage

o Can be implemented and verified  

◼ Challenges

◼ Data management √  

◼ Network impact √

◼ Passing operation demands with data request √ 

Let us do it ?

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. "Hermes: a heterogeneous-aware multi-tiered 

distributed I/O buffering system," ACM, HPDC18, Tempe, Arizona, USA, June 2018

©copy right 2020 Xian-He Sun



Hermes: A Multi-tiered I/O Buffering System

36

◼ Selective cache, concurrent, matching

◼ Independent management of each tier

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,” 

Journal of Computer Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020

©copy right 2020 Xian-He Sun



Hermes: A Multi-tiered I/O Buffering System

A. Kougkas, H. Devarajan, and X.-H. Sun, “Bridging Storage Semantics using Data Labels and Asynchronous I/O,” ACM 

Transactions on Storage, accept to appear 37

◼ Application-aware multi-tier matching

◼ Start at the log file

◼ An example of memory/storage integration

◼ An implementation of the 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣 concept



dLabel: Data Operation with Label

◼ Data requests are transformed into (data) Label units
o A label is a tuple of an operation and a pointer to the data

◼ A dispatcher distributes labels to the workers

◼ Workers execute labels independently (i.e., fully decoupled)

A. Kougkas, H. Devarajan, J. Lofstead, X.-H. Sun; “LABIOS: A Distributed Label-Based I/O System”, in Proceedings 

of ACM HPDC ’19 (Best Paper Award)

©copy right 2020 Xian-He Sun
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Take Home Messages

▪What is data-centric architecture ?
o Reduce data movement and memory stall time (in addition to better device)

o Design an architecture to do so

▪ How to do it ? 
o Start at where the data is

o Computing side ? Storage side ?

▪ Storage side key technologies
oModeling

o Deep memory/storage hierarchy, labeled data,  ChronoLog, etc.

o Hardware/software co-design

▪Many things need to do

o The good part: Any progress is an improvement of current systems

A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh and X.-H. Sun, “ChronoLog: A Distributed Shared Tiered Log Store with 

Time-based Data Ordering,” Proceedings of the 36th International Conference on Massive Storage Systems and Technology (MSST 2020), 

Oct. 2020, (accepted to appear).
©copy right 2020 Xian-He Sun
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Conclusion
◼ Make von Neumann architecture more data centric

o 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣

◼ The I/O implementation & other applications

o Hermes: integration of calculation & storage

◼ The concept of matching and Sluice Gate Theory

o In place computing & deep memory/storage hierarchy

8/16/2020



Thank you
Any questions?
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