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Abstract

We present a multilevel high order ADI method for separable generalized Helmholtz equations. The discretization method we use is a one-
dimensional fourth order compact finite difference applied to each directional component of the Laplace operator, resulting in a discrete
system efficiently solvable by ADI methods. We apply this high order difference scheme to all levels of grids, and then starting from the
coarsest grid, solve the discretized equation with an ADI method at each grid level, with the solution from the previous grid level as the initial
guess. The multilevel procedure stops as the ADI finishes its iterations on the finest grid. Analytical and experimental results show that the
proposed method is highly accurate and efficient while remaining as algorithmically and data-structurally simple as the single grid ADI
method.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we consider the numerical solution of separ-
able generalized Helmholtz equations

2Du 1 f �x�u 1 g�y�u� r�x; y�; �x; y� [ V;

u�x; y� � b�x; y�; �x; y� [ 2V;

(
�1�

on a rectangular domainV for f �x� $ 0 andg�y� $ 0: Such
problems arise in the linearization process or the Picard
process of semilinear elliptic equations like the steady
state reaction–diffusion equations.

Eq. (1) can be solved using the following Picard iterative
process employed in Ref. [4]

�2D 1 a�un � �a 2 f �x�2 g�y��un21 1 r ; �2�
where at each iteration Eq. (2) is a Helmholtz equation solva-
ble by FFT based direct methods [2,6,11]. This Picard process
allows high order discretization and has a good computational
complexity of O�h22�log h�2� on grids with mesh sizeh.

In this paper, we present a multilevel high-order alternat-
ing direction implicit (ADI) solution method that has a
complexity of O�2h22�log h��: We first discretize the
equation by applying a one-dimensional (1-D) fourth
order finite difference to each directional component of
the Laplace operator. Unlike the popular 9-point square

stencil scheme or the 9-point cross stencil fourth order finite
central difference scheme, our discretization can be easily
combined with ADI methods to produce an accurate and
efficient solver. Further more, the directional discretization
technique is applicable to three-dimensional space (3-D) as
easily as to the two-dimensional space (2-D), without any
derivation or coefficient calculation effort. Starting from the
grid with the coarsest meshes, we then apply the high-order
difference scheme to all levels of grids and solve the dis-
cretized equation using ADI at each grid level, with the
solution from the previous grid level as the initial guess.
So our multilevel method is simple and easily implemen-
table—it requires simple data structure and incurs almost no
data structure handling overhead. ADI method has a
complexity of O�h22�log h�2� for a given error tolerance
compatible with the discretization error. Our analysis
shows that the multilevel treatment reduces the complexity
by a factor of O�2log h� to O�2h22log h�:

Our discussion of the newly proposed solution method is
focused on the 2-D problem. However as briefly discussed
in the paper, both the discretization technique and the multi-
level ADI are extendible to 3-D space with the same compu-
tational efficiency and data structure simplicity.

This paper is organized as follows. Section 2 presents a
fourth order directionally independent discretization of the
Laplace operator that allows efficient ADI methods. The
single grid and multilevel high order ADI methods and
their complexity analyses are discussed in Section 3.
Testing results are presented and discussed in Section 4
and Section 5 gives the conclusion.
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2. High order discretization

ADI methods seem difficult to be applicable to discrete
systems obtained via high order discretization since the popu-
lar fourth order 9-point scheme for the Laplace operator
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has a square stencil, difficult to be combined directly with the
ADI method to produce an efficient solver. And the cross
stencil fourth order finite central difference

2Dpi; j � h22
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not onlyhas a boundaryproblem [3] but also its penta-diagonal
directional components cannot be as efficiently solved as tri-
diagonal systems.

However, 1-D compact finite difference schemes [5,7] for
second order derivatives have been available for a long
time. One of them is the following fourth order scheme
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u00i21 � ui11 2 2ui 1 ui21

h2 : �3�

Applying this finite difference to Eq. (1) with the boundary
condition incorporated, we obtain

�2Lm21 1 F� ^ In21U 1 Im21 ^ �2Ln21 1 G�U � R; �4�
whereLn is ann × n matrix given by

Ln � 1
h2
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In denotes the identity matrix inn-dimensional space,̂ is
the tensor product notation [9],F and G are diagonal
matrices corresponding to the functionsf(x) and g(y),
respectively, andU is the solution vector.

Birkhoff and Varga showed in Ref. [1] that when the

directional components�2Lm21 1 F� ^ In21 and Im21 ^

�2Ln21 1 G� of the discretized equation are symmetric,
positive definite and commutative, the Peaceman–Rachford
[10] ADI method has a convergence rate ofO�2�logh�21�:
Thus these positive definite and commutative conditions are
essential for a high convergence rate. The commutativity
condition is obvious with the tensor product notation. The
positive definite condition also holds, as we shall see below.

Remark 1. The matrices �2Lm21 1 F� ^ In21 and
Im21 ^ �2Ln21 1 G� are symmetric and positive definite.

Proof. We prove the above statement only for the matrix
�2Lm21 1 F� ^ In21: The proof for the matrixIm21 ^

�2Ln21 1 G� is similar and thus omitted.
Since F is diagonal and positive definite, it suffices to

show that2Lm21 is positive definite. Now letPm21 denote
the matrix

Pm21 �

p1;1 p1;2
… p1;m22 p1;m21

p2;1 p2;2
… p2;m22 p2;m21

p3;1 p3;2
… p3;m22 p3;m21

· · … · ·

pm21;1 pm21;2
… pm21;m22 pm21;m21

0BBBBBBBBB@

1CCCCCCCCCA
where pi;j � sin ��ijp�=m� for i; j � 1;2;…;m2 1: A
straightforward calculation shows thatP21

m21Lm21Pm21 �
L; whereL is a diagonal matrix given by

L �

l1 0 0 … 0 0

0 l2 0 … 0 0

0 0 l3
… 0 0

· · · … · ·

0 0 0 … lm22 0

0 0 0 … 0 lm21

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

and

li �
12cos

ip
m

� �
2 12

5 1 cos
ip
m

� � h22 , 0;

for i � 1; 2;…;m2 1: For matrix Pm21; we have that
P21

m21 � �2=m�PT
m21: Thus, PT

m21Lm21Pm21 � �m=2�L; and
Lm21 � �2=m�Pm21LPT

m21: Therefore2Lm21 is symmetric
and positive definite. A

It is clear from the proof given above that these symmetric
and positive definite properties will also hold for 3-D
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problems when the compact finite difference (3) is applied
to the 3-D Laplace operator.

3. Multilevel high order ADI methods

3.1. Single grid high-order ADI

Applying the Peaceman–Rachford ADI method to the
discrete Eq. (4) on a rectangular grid with uniform meshs
hx andhy on thex- andy-directions, respectively, we obtain

�rn 1 A1�Un1�1=2� � �rn 2 A2�Un 1 R

�rn 1 A2�Un11 � �rn 2 A1�Un1�1=2� 1 R

(
�5�

where A1 and A2, respectively, denote the two terms
�2Lm21 1 F� ^ In21 and Im21 ^ �2Ln21 1 G� on the left
hand side of Eq. (4). By the analysis in Section 2,A1 andA2

are symmetric, positive definite, and commutative. There-
fore, the ADI method (5) with Wachspress parameters
[12,13] has a convergence rate of O�2�log h�21� for h�
max{hx;hy} : Thus, denoting the convergence rate on a
grid with mesh sizeh by r(h), we can assume that

r�h� $ 2C0�log h�21 �6�
for some constantC0 . 0:

If the error of the initial guess ise0�h� and the iteration
stopping error tolerance ises�h�; then by the definition of the
convergence rate [8], the number of iterations equals

log �e0�h�=es�h��
r�h� :

With estimate (6), we arrive at

Iterations# C1�log h�log
es�h�
e0�h� ; �7�

where C1 � 1=C0: Each ADI iteration consists of solving
four tri-diagonal systems, two for evaluating the right
hand sizes of Eq. (5) necessitated by using the compact
finite difference (3), and two for inverting�rn 1 A1� and
�rn 1 A2� in the left hand sides of Eq. (5). Solving these
four tri-diagonal systems is the major computation cost of
each ADI iteration. Hence the computation cost per ADI
iteration is O�h22� and bounded byC 02h22 for some constant
C 02 . 0: Then by Eq. (7), the computation cost for the ADI
method (5) to stop at tolerancees�h� with a starting error of
e0�h� is

C2h22�log h�log
es�h�
e0�h� ; �8�

where C2 � C1C 02: For instance, if the error tolerance is
chosen to bees�h� � h4 and the initial error is assumed to
be e0�h� � 1; then the ADI has a complexity of
O�h22�log h�2�:

For 3-D problems, we choose the following ADI for

discretized equations�A1 1 A2 1 A3�U � R;

Un11 � Un 2 2r2
nQ�rn�{ �A1 1 A2 1 A3�Un 2 R} ; �9�

whereQ is a matrix function given by

Q�r� � �A1 1 r�21�A2 1 r�21�A3 1 r�21
:

When A1, A2 and A3 are symmetric, positive definite and
pairwisely commutative, Douglas gave a set of parameters
[4] with which the 3-D ADI method (9) has a convergence
rate also of O�2�log h�21�: Then its complexity is

O h23�log h�log �es�h�=e0�h��
� �

by an analysis similar to that for the 2-D ADI.

3.2. Multilevel ADI

With a rectangular mesh applied to the domain, we obtain
a grid, which is designated as the finest grid. We choose
every other grid point in each direction to form the next
coarser level grid, a subset of the original grid with double
mesh sizes, and no extra data structure is needed for this grid
level. By the same procedure, we designate a sequence of
grids, each a subset of the immediate finer level grid with
double mesh sizes. All of them need no extra data structure
other than an index of one single integer number. The
number of grid levels is chosen to be of O�2log2 h�;
namely, the coarsest grid has a size close to 2× 2.

Our multilevel procedure starts from the coarsest grid
level. On all the grids, applying discretization scheme (3)
to Eq. (1), we obtain discrete equations with the same matrix
form as Eq. (4) of different problem sizes. ADI method (5) is
then employed to solve the discrete equation on each grid
level, with the solution of the equation at the immediate
coarser grid level interpolated to the current grid level as
the initial guess. The interpolation method is chosen in such
a way that it has a fourth order interpolation accuracy, and
the ADI iteration stopping tolerancees is chosen to be of the
same order as that of the discretization. This multilevel ADI
method solves the equation from the coarsest grid level to
the finest, and the whole multilevel process ends after the
ADI method finishes its iterations on the finest level.

Unlike conventional multigrid methods, our newly
proposed solver is a one-way multilevel method, of both
algorithmic and data-structural simplicity. Its implemen-
tation needs only one subroutine and one loop more than
the single grid ADI method (5)—an interpolation sub-
routine and a loop that goes through all grid levels. Such
simplicity provides great potential for its applicability in
complex systems and in combination with parallel and/or
domain decomposition methods.

While conventional multilevel methods are mainly utiliz-
ing the smoothing effect [14] of the single grid solvers (or
relaxation schemes in the language of multilevel methods)
to achieve computation reduction, our method relies on the
initial error reduction via interpolation from coarser grids to
reduce the iteration numbers on finer grids. To analyze the
computation complexity of this multilevel ADI method
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more closely, we denote the true solution of the original
differential Eq. (1) byu, denote the exact numerical solution
of the discrete Eq. (4) on a grid with mesh sizeh by uh,
denote the approximate ADI solution of the discrete
equation at the same grid level byUh, and denote the initial
guess solution interpolated from the immediate coarser grid
to the current grid byÛh:

The discretization scheme (3) is of order four, which
means that there exists a constantC3 . 0 such that

k uh 2 u k# C3h4
:

The iteration stopping error tolerancees�h� is chosen to be of
the same order as that of the discretization. Thus, we have that

k Uh 2 uh k# C4h4

for some constantC4 . 0: Therefore,

k Uh 2 u k#k Uh 2 uh k 1 k uh 2 u k# �C3 1 C4�h4
:

This inequality holds for every grid level. Hence for the
immediate coarser grid, we have that

k U2h 2 u k# 16�C3 1 C4�h4
:

The solution at the immediate coarser grid is interpolated to
the current grid as the initial guess solution in such a way
that it maintains fourth order accuracy, i.e. this initial guess
Ûh satisfies

k Ûh 2 U2h k# C5h4

for some constantC5 . 0: By definition, the error of the
initial guess isk Ûh 2 uh k; so

e0�h� � k Ûh 2 uh k#k Ûh 2 U2h k 1 k U2h 2 u k

1 k u 2 uh k# C5h4 1 16�C3 1 C4�h4 1 C3h4

� �17C3 1 16C4 1 C5�h4
:

Then the ratio of the initial error to the iteration stopping
error tolerance satisfies

e0�h� : es�h� #
17C3 1 16C4 1 C5

C4
: �10�

Then by Eq. (7), the number of iterations needed at grid
level with mesh sizeh is

Iterations# C1�log h�log
C4

17C3 1 16C4 1 C5
� 2C6log h;

�11�
where the positive constant

C6 � C1log
17C3 1 16C4 1 C5

C4
:

And by estimates (8) and (10), the computation cost of the
ADI iterations at grid level with mesh sizeh is
2C7h22log h for someC7 . 0: The interpolation cost is
proportional to the number of grid points, and thus can be

assumed to beC8h22
: Then the total computation cost on a

grid of mesh sizeh is bounded by

�C8 2 C7 log h�h22 # 2C9h22 log h �12�
for some constantC9 . 0:

The above estimates of iteration numbers and compu-
tation costs on a grid of meshh are valid for all levels except
the coarsest grid level, since on the coarsest level, the initial
guess is not obtained from interpolation. Thus the ratio of
initial error to error tolerance may not necessarily satisfy
expression (10) and hence ADI could possibly take more
iterations than expression (11) on the coarsest grid.
However, since the number of levels is chosen in such a
way that the coarsest grid has very few grid points as
described in the first paragraph of this section, the compu-
tation cost on the coarsest grid is of O(1) and thus negligible.

Add up the computation costs at all grid levels, we obtain

2C9{ h22 log h 1 �2h�22 log �2h�1 �4h�22 log �4h�1 …}

# 2C9 log h{ h22 1 h22
=22 1 h22

=42 1 …}

for the total computation cost, which is bounded by
21:4C9h22 log h by an easy calculation. Thus, we have
shown that the computation complexity of this multilevel
ADI is O�2h22 log h�:

4. Numerical testing

Two equations with known solutions have been chosen to
test the accuracy and efficiency of the High-order ADI
(HADI) and the Multilevel High-order ADI methods
(MHADI). The two problems are

(i)2Du 1 �ecos�x� 1 cos�y�1 y�u� r
with u�x; y� � �x 1 y�3:5�cos�x�2 1�;

(ii)2Du 1 �cos�x�1 ey�u� r
with u�x; y� � sin �2x 1 3y�:
Experimental tests have been conducted on an IBM RS/

6000 to measure the number of iterations, execution time,
and numerical errors. For comparison, we have also solved
the two problems using the Picard method (2) with a fourth
order FFT solver at each Picard iteration.

In the tests, the coarsest of the MHADI method is chosen
to be of size 2× 2; and the iteration stopping criterion for all
three methods (HADI, MHADI and Picard) is chosen to be
the difference between the approximate solution at two
consecutive iterations, which is set toh4 for the first problem
and set to 0.1h4 for the second problem. We choose different
error tolerance because the solution of the first problem is
less smooth than the second and thus have a larger dis-
cretization error. The testing is conducted on the square
domain �0; 8� × �0;8� with the same uniform mesh sizeh
on each dimension.N � 8=h is the number of grid points
on eachx- andy-dimensions.
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If a numerical method is of orders, then the error will
decrease at a rate of�1=2�s when a uniformly spaced grid
doubles its grid points. We use this information to define our
metric

Order�n;2n� � log2
Error�n�
Error�2n�

to measure the order of accuracy of our numerical solutions.
The log plot of error against grid size (or mesh size) is
usually used to measure the order of a numerical method.
The metric Order used in Tables 1 and 2 gives the value of
the slope of thelog plot of the error vs. grid size between
each two neighbouring testing grid sizes. Since the slope of
a curve is difficult to be exactly visually determined, the
metric order is a clearer quantitative indication of the
order of a numerical method.

Tables 1–2 present the experimental results for the two
testing problems. For MHADI method, theIteration row
lists the ADI iterations on each grid level. The number in
parenthesis is calculated using formula (11) with the
unknown constantC6 calculated using the iteration number

atN � 16: For the HADI method and the Picard method, the
Iteration rows list the total ADI iterations and total Picard
iterations, respectively. For all three methods, theTimerows
give the CPU time (in seconds) taken to solve the problems,
and theError rows show the maximal errors of the numer-
ical solutions for the two problems solved on the grid of the
indicated size. The experimental results show that the newly
proposed multilevel high order ADI method is both accurate
and efficient, matching fairly well with our formal analysis.

The Picard process fails to reach the prescribed error
tolerance within 1000 iterations for the second problem,
because the values off �x�1 g�y� (which is equal to
cos�x�1 ey for problem 2) cover a very large range on
square �0;8� × �0; 8�: The Picard process (2) converges
slowly when f �x�1 g�y� has a large range of values. For
the first problem, f �x�1 g�y� � ecos �x� 1 cos�y�1 y;
having a much smaller range of values and the Picard
method converges to adequate accuracy within a reasonable
number of iterations for each grid size tested.

Fig. 1 is the plot of iterations versus grid size. The grid
size is in log scale. The plot shows that for the MHADI

Y. Zhuang, X.-H. Sun / Advances in Engineering Software 31 (2000) 585–591 589

Table 1
2Du 1 �ecos �x� 1 cos�y�1 y�u� r with u� �x 1 y�3:5�cos�x�2 1�

Method Grid Size 16 32 64 128 256 512

MHADI Iterationsa 5 7(6) 8(8) 7(9) 8(10) 9(11)
Time (s) 0.01 0.06 0.31 1.19 5.66 29.3
Error 3:1 × 1021 2:0 × 1022 1:3 × 1023 1:2 × 1024 6:8 × 1026 4:0 × 1027

Order 3.9 3.9 3.4 4.1 4.1

HADI Iterations 9 16 21 26 35 42
Time (s) 0.02 0.13 0.66 3.40 20.8 110
Error 3:2 × 1021 2:0 × 1022 1:3 × 1023 8:2 × 1025 5:0 × 1026 3:2 × 1027

Order 4.0 3.9 4.0 4.0 4.0

Picard Iterations 17 21 26 30 35 39
Time (s) 0.03 0.12 0.55 2.68 12.7 66.0
Error 3:3 × 1021 2:1 × 1022 1:3 × 1023 8:3 × 1025 5:1 × 1026 3:2 × 1027

Order 4.0 4.0 3.9 4.0 4.0

a The number in parenthesis is the predicted iteration numbers.

Table 2
2Du 1 �cos�x�1 ey�u� r with u� sin �2x 1 3y�

Method Grid Size 16 32 64 128 256 512

MHADI Iterations 5 6(6) 6(8) 6(9) 7(10) 8(11)
Time (s) 0.01 0.06 0.25 0.99 4.94 25.2
Error 1:7 × 1022 1:3 × 1023 7:1 × 1025 5:1 × 1026 2:9 × 1027 2:1 × 1028

Order 3.7 4.2 3.8 4.1 3.8

HADI Iterations 6 12 14 20 24 32
Time (s) 0.01 0.09 0.43 2.58 13.0 81.6
Error 2:5 × 1022 1:1 × 1023 3:2 × 1024 4:7 × 1026 5:2 × 1027 1:7 × 1028

Order 4.5 1.8 6.1 3.2 4.9

Picard Iterations 371 316 742 1000a – –
Time (s) 0.57 1.73 16.1 89.0 – –
Error 1:3 × 1022 4:7 × 1022 4:2 × 1023 1:4 × 1023 – –

a The Picard method fails to reach the error tolerance within 1000 iterations.



method the iteration numbers on the finest grid increase
slowly, slower than those of both the HADI and the Picard
methods. Such slow increase of iteration numbers is also
evident from the tables. From grid size 16–512, both the
HADI and the Picard methods have more than doubled their
iteration numbers while iterations of the MHADI method is
less than doubled. In addition to the calculated values of the
metric Order in the two tables, we also provide thelog plot
of the error versus the grid size in Fig. 2. The slopes of the
curves indicate the orders of the numerical methods.

5. Conclusion

In this paper, we have proposed a one-way multilevel
high order ADI method for separable generalized Helmholtz
equations. The equation is first discretized by a fourth order
1-D compact finite difference scheme, resulting in a linear
system efficiently solvable by ADI methods. Then we desig-
nate a sequence of grids, each a subset of its immediate finer
grid with double mesh sizes. Starting from the coarsest grid,
the fourth order discretization is applied to the differential
equation and ADI is employed to solve the discrete system

on each grid level, with the solution from the previous level
interpolated as the initial guess. The multilevel procedure
stops as the ADI finishes its iterations on the finest grid. This
proposed method is shown to be highly accurate and
efficient by formal analysis and numerical experiments.

The design of this multilevel method is focused on main-
taining the algorithmic and data-structural simplicity. Thus
the multilevel treatment is carried out in a coarse-to-fine
manner to reduce the initial errors on all grids via interpol-
ation. However, we believe that the single grid ADI solver
can also be used to design an effective smoother to further
reduce the computational complexity by combining a one
way coarse-to-fine multilevel cycle for the solution with a
V-cycle for residuals, and we leave this investigation as a
future study.
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