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Abstract

The Parallel Diagonal Dominant (PDD) algorithm is an efficient tridiagonal solver. In
this paper, a detailed study of the PDD algorithm is given. First the PDD algorithm is
extended to solve periodic tridiagonal systems and its scalability is studied. Then the
reduced PDD algorithm, which has a smaller operation count than that of the conventional
sequential algorithm for many applications, is proposed. Accuracy analysis is provided for a
class of tridiagonal systems, the symmetric and skew-symmetric Toeplitz tridiagonal systems.
Implementation results show that the analysis gives a good bound on the relative error, and
the PDD and reduced PDD algorithms are good candidates for emerging massively parallel
machines.

Keywords: Parallel processing; Parallel numerical algorithms; Scalable computing; Tridiago-
nal systems; Toeplitz systems

1. Introduction

Solving tridiagonal systems is one of the key issues in computational fluid
dynamics (CFD) and many other scientific applications [20,11]. Many methods
used for the solution of partial differential equations (PDEs) rely on solving a
sequence of tridiagonal systems. The alternating direction implicit (ADI) method
[16] requires solution of tridiagonal systems alternately in each coordinate direc-
tion. Discretization of partial differential equations by compact difference schemes
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[18] also leads to a sequence of tridiagonal systems. Tridiagonal systems also arise
in multigrid methods, wavelet collocation method, and in ADI or line-SOR
preconditioners for conjugate gradient methods. In addition to PDE’s, tridiagonal
systems also arise in many other applications [1].

Solving tridiagonal systems is inexpensive on sequential machines. However,
because of their sequential data dependencies, tridiagonal systems are more
difficult to solve efficiently on parallel computers. For this reason, intensive
research has been done on the development of efficient parallel tridiagonal
solvers. Many algorithms have been proposed {13,8]. Among them, the recursive
doubling reduction method (RCD), developed by Stone [15], and the cyclic
reduction or odd-even reduction method (OER), developed by Hockney [9], are
able to solve an n-dimensional tridiagonal system in O(log n) time using n
processors. These are effective algorithms for fine grained computing. Later,
several algorithms were proposed for medium and coarse grain computing, i.e. for
the case of p<n or p <« n, where p is the number of processors available
[5,10,22]. The algorithm of Lawrie and Sameh [10] and the algorithm of Wang [22]
can be considered substructuring methods (or, in a more general term, divided-
and-conquer method). These algorithms partition the original problem into sub-
problems. The sub-problems are then solved in parallel, and their solutions
combined to form the final solution.

Recently, Sun, Zhang, and Ni [20] proposed three new parallel algorithms for
solving tridiagonal systems. All three algorithms are substructuring methods and
are based on Sherman-Morrison matrix modification formula [3]. Two of these, the
proposed parallel partition LU (PPT) algorithm and the parallel hybrid (PPH)
algorithm are fast and able to incorporate limited pivoting. The PPT algorithm is a
good candidate when the number of processors, p, is small, while the PPH
algorithm is a better choice when p is large.

The third algorithm proposed is the parallel diagonal dominant (PDD) algo-
rithm, designed for strictly diagonally dominant problems. This PDD algorithm is
the most efficient. Compared with other tridiagonal solvers, which require at least
O(log p) communication phases, the PDD algorithm has only a small fixed
communication cost independent of the number of processors, and requires only a
slightly more computation than that in the best sequential algorithm. In fact, the
PDD algorithm is perfectly scalable, in the sense that the communication cost and
the computation overhead do not increase with the problem size or with the
number of processors available [19].

Scalability has become an important metric of parallel algorithms [6,19]. The
PDD algorithm is perfectly scalable and highly efficient, making it an ideal
algorithm on massively parallel architectures, for problems to which it is applica-
ble. However, the PDD algorithm is relatively new and applicable only in certain
conditions. In this paper we give a detailed study of the PDD algorithm. We study
application of the PDD algorithm and provide a formal accuracy analysis for
Toeplitz tridiagonal systems. The PDD algorithm described here is slightly differ-
ent from the algorithm proposed in [20]. A detailed study is provided here for new
applications, such as periodic systems, and systems with multiple right hand sides.
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More importantly, as a result of this study, we were led to a new algorithm, the
reduced PDD algorithm. This algorithm, also described here, maintains the same
communication cost as the PDD algorithm, but has a smaller operation count. In
fact, its operation count is even smaller than that of the Thomas algorithm [16], the
conventional sequential algorithm, for periodic systems with multiple right hand
sides. This low operation count makes the reduced PDD algorithm an effective
algorithm for many systems arising in PDEs.

This paper is organized as follows. Section 2 introduces the sequential and
parallel PDD algorithms. The applications of the PDD algorithm are discussed in
Section 3. This section also gives the variant of the PDD algorithm needed for
periodic systems and the reduced PDD algorithm. Section 4 gives an accuracy
analysis for both the PDD and reduced PDD algorithms. Experimental results on
an Intel /iPSC860 multicomputer are presented in Section 5. Finally, Section 6
provides conclusions and final remarks.

2. The parallel diagonal dominant algorithm

We are interested in solving a tridiagonal linear system of equations
Ax=d, (1)

where A is a tridiagonal matrix of order n

A= - . =[a,, b, ¢], (2)

C

n—2

n-1 n—1

x=(x4-",x,_ )" and d=(d,, --,d,.,)". We assume that A, x, and d have
real coefficients. Extension to the complex case is straightforward.

2.1. The matrix partition technique

To solve Eq. (1) efficiently on parallel computers, we partition A4 into submatri-
ces. For convenience we assume that n =p-m, where p is the number of
processors available. The matrix A4 in Eq. (2) can be written as

A=A+AA,

where A is a block diagonal matrix with diagonal submatrices ALi=0,---,p—1).
The submatrices A(i =0, -+, p — 1) are m X m tridiagonal matrices. Let ¢, be a
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column vector with its ith (0 <i<n — 1) element being one and all the other
entries being zero. We have

AA:[amem’ Cm—lemfl’ aZmelm’ C2m—162mfl’. : "c{pAl)m—le(p—l)mfl]
~ eZ’;—I -
€
=I/ET,
e(Tp—l)m—I
L e(Tp—l)m ]

where both VV and E are n X 2( p — 1) matrices. Thus, we have
A=A+ VE".
The Sherman and Morrison [14] matrix modification formula for rank-one

updates, subsecquently generalized by Woodbury [23], enables us to solve Eq. (1),
assuming that all of the A,’s are invertible. We have

x=A"'d=(A+VE") 4, (3)

x=A'd-A"WA+EA W) ETdd. (4)

Note that I is an identity matrix and Z = I + E74 "'V is a pentadiagonal matrix of
order 2(p —1). Let

At =d (5)
AY =V (6)
h=E"3 (7)
Z=I1+ETY (8)
Zy=h 9
Ax=Yy. (10)
Eq. (4) becomes
x=%-Ax. (11)

In Egs. (5) and (6), x and Y are solved by the LU decomposition method. By
the structure of A and V, this is equivalent to solving

ALED, 0@, W] = [d([), im€o, C(H—l)m—lem—l] > (12)

i=0,-+,p—1. Here ¥ and d are the ith block of ¥ and d, respectively, and
v, w are potentially nonzero column vectors of the ith row block of Y. Eq. (12)
implies that we only need to solve three linear systems of order m with the same
LU decomposition for each i (i =0,---, p — 1). In addition, we can skip the first
m — 1 forward substitutions for the third system, since the first m — 1 components
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of the vector on the right-hand side are all zeros. 4 and Z are obtained without
computation.

2.2. The PDD algorithm

Solving Eq. (9) is the major computation involved in the conquer part of our
algorithms. Several different approaches have been proposed for solving this
equation, resulting in several different algorithms for solving tridiagonal systems
[20]. The matrix Z in Eq. (9) has the form

1 W@, o |
el 1 0w
e 0 1w, 0
7=
1 0 w2
t 'f(ﬂl]-— 12) 0 1 Wl(np—_‘lz )
0 pfp~D 1
L .
where ¢, w') for i =0,-- -, p — 1 are solutions of Eq. (12) and the 1’s come from

the identity matrix I. In practice, the magnitude of the last component of »9,
v, and the first component of w', w{’, may be smaller than machine accuracy
when p < n, especially for diagonal dominant tridiagonal systems. In this case, w"
and v{) | can be dropped, and Z becomes a block diagonal system consisting of
(p — 1) independent 2 X 2 blocks. Thus, Eq. (9) can be solved efficiently on
parallel computers, which leads to the highly efficient paralle! diagonal dominant
(PDD) algorithm.

In the sequential PDD algorithm, since Y has at most two nonzero entries in
every row, and Z is a diagonal block matrix with 1’s as diagonal elements, (9) takes
five arithmetic operations per row, and the evaluation of (10) takes four operations
per row. Thus we conclude that the sequential PDD algorithm takes 17n — 9n /p —
4p — 9 arithmetic operations.

The PDD algorithm, using p processors, consists of the following steps:

Step 1. Allocate A, d”, and elements a,,, ¢, ,,_; to the ith node, where
O<i<p-1
Step 2. Solve (12). All computations can be executed in parallel on p processors.
Step 3. Send 1y’ ¢§ from the ith node to the (i — th node, for i =1,--+, p — 1.
Step 4. Solve

1) ()
1 Woii (Y2 | _ [Em1
UE)[+” 1 y21+1 x~(()i+])
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in parallel on the ith node for 0 </ <p — 2. Then send y,; from the ith node to
the ({ + Dth node, for i=0,---, p - 2.
Step 5. Compute (10) and (11). We have

20

Ax = [l,u) w(:)](y@’l)) O = O A
] y bl .

In all of these operations, each processor communicates only with its two neighbor-
ing processors.

Though recent advances in interprocess communication, such as circuit switch-
ing and wormhole routing, have reduced communication costs, it remains an
intrinsic overhead in parallel computing. Moreover, the improvement in communi-
cation capabilities has been quite modest compared with the dramatic improve-
ments in processing speed. For most distributed-memory computers, the time to
communicate with nearest neighbors is found to vary linearly with problem size [4].
Let § be the number of bytes to be transferred. Then the transfer time to
communicate with a neighbor can be expressed as a + S8, where « is a fixed
startup time and B is the incremental transmission time per byte. Assuming 4 bytes
are used for each real number, Steps 3 and 4 take a+ 88 and a + 48 time
respectively. The parallel PDD algorithm has 17n/p — 4 parallel operations and
has communication time 2(a + 63).

2.3. Scalability analysis

As parallel machines with more and more processors are becoming available,
the performance metric scalability is becoming more and more important. The
question is how an algorithm will perform when the problem size is scaled linearly
with the number of processors. Let T(p, W) be the execution time for solving a
system with W work (problem size) on p processors. The ideal situation would be
that when both the number of processors and the amount of work are scaled up by
a factor of N, the execution time remains unchanged:

T(INXp. NXW)=T(p, W) (13)

How to define problem size, in general, is a question still being debated.
However, it is commonly agreed that the floating point (flop) operation count is a
good estimate of problem size for scientific computations. To eliminate the effect
of numerical inefficiencies in parallel algorithms, in practice the flop count is
based upon some practical optimal sequential algorithm. In our case, the Thomas
algorithm [16], the LU decomposition method for tridiagonal systems, was chosen
as the sequential algorithm. It takes 81 — 7 floating point operations, where the 7
can be neglected for large n. As the problem size W increases N times to W', we
have

W'=NX8n=2_8n

n=N-n.
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Let 7,,, represent the unit of a computation operation normalized to the

communication time. The time required to solve (1) by the PDD algorithm with p
Processors is

(N
T(p, W)= (17; —4)7(.(,mp+2(a+()ﬁ),
P

and

n

T(NXp, NX W):(17 *4)7(.(,,n,,+2(a+63)

N-p
N-n
= 17N-p =4 Teomp T 2(a +6B)
n
= (17— —4)7(.0”,,, +2(a +68)
P
—T(p, W).

Thus the PDD algorithm is perfectly scalable. Similar arguments can be applied to
periodic systems (see Section 3) with the same result.

Eq. (13) is true if and only if the average unit speed of the given computing
system is a constant, where average unit speed is defined as the quotient of the
achieved speed of the given computing system and the number of processors.
Scalability has been formally defined [19] as the ability to maintain the average
unit speed. Let W be the amount of work of an algorithm when p processors are
employed in a machine, and let W’ be the amount of work of the algorithm when
p'=N-p processors are employed to maintain the average speed, then the
scalability from system size p to system size N:-p of the algorithm-machine
combination is defined as

Np-W N-W
p-W W

Y(p. NXp)=
The average unit speed can be represented as

A S(p, W)= —r7—,
( ) p-T(p, W)
where W is the problem size, p is the number of processors, and T(p, W) is the

corresponding execution time. From our previous discussion of the PDD algo-
rithm, when W' = N - W, we have T(N X p, W') = T(p, W). Therefore

A_S(N 74 i i
X "y = =
SS(NXp, W) N-p-T(Nxp.W') N-p-T(p, W)
N-p-W w

N-T(p. W) p-T(p. W)’
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That is W' = N-W has maintained the average unit speed, and the scalability is
N-W N-W

W N-W
Thus the PDD algorithm is perfectly scalable.

¥(p, NXp)=

3. Special applications

In this section, we first discuss some tridiagonal systems arising in CFD
applications, the symmetric and skew-symmetric Toeplitz tridiagonal systems. Then
two variants of the PDD algorithm, the reduced PDD algorithm and the PDD
algorithm for periodic systems, will be presented.

3.1. Toeplitz tridiagonal systems

A Toeplitz tridiagonal matrix has the form

L
Amoy
A= : : ) =[A’77’Y]-
Y
A om

Symmetric Toeplitz tridiagonal systems often arise in solving partial differential
equations and in other scientific applications. The compact finite difference
scheme [18] is a relative new scheme for discretizing PDE’s. Because of its
simplicity and high accuracy, it is beginning to be widely used in practice.

Using the compact scheme, the general approximation of a first derivative has
the form:

Bfl stafl  +fl+afl  +Bfl.>
fi+3 _fzas fwz‘fr—z fl+l_fi—1
+a

—c +b
“Ton 4h 2h

Letting
0 14 b ! 0
a =, =Y, a=—, = c=V,
3 A 9 9
the scheme becomes formally sixth order accurate and the resulting system is
[, 1, 1], a symmetric Toeplitz tridiagonal system. Similarly, the general approxi-
mation of a second derivative has the form

Bfiy+af  +fl +afls,+Bfl\:

fi+3_2fi+fi—3 f[+2—2fi+fi—2 fi+l_2fi+fi—l
5 +b > +a 5 .
9h 4h h




X.-H. Sun / Parallel Computing 21 (1995) 124]1-1267 1249

For

12 3
==, b=—, c=0,

11 11
a sixth order difference scheme is obtained, and the tridiagonal system is symmet-
ric and Toeplitz, [, 1, 71.

Now discretizing in time, the one dimensional wave equation u, = a -u, and the
heat equation u,=a -u,, . where u,, u_and u,__  are the differential of u on time
and on space, can be represented as

2 0
a—ﬁ, B8=0, a

X

W' l'=u"+Ata “u'l,
and
Wl =u"+At-a-ul,

respectively. Using the compact scheme, «? and u” . are defined by symmetric
Toeplitz tridiagonal systems. Therefore, the solutions can be obtained by solving a
sequence of symmetric Toeplitz tridiagonal systems.
Skew-symmetric Toeplitz tridiagonal systems also arise in solving PDEs [16]. For
instance, to solve the advection equation u, + a -u, = f, we begin with the formula
‘= u(t+k, xlz u(t, x) +O(k?)

for u, evaluated at (¢ + 5k, x). We also use the relation

u,

1
t+5k,x

u (t+k, x)+u(t, x R
= ( 3 ol )+()(k”)

u(t+k, x+h)y—u(t+k, x—h) u(t,x+h)—u(t, x—h)
+
2h 2h

1

2

Il

+0(k>) + O(h?).

Using these approximations for u, +a - u, =f about (¢ + 3k, x), we obtain

wnm+l _ n B2 B | n _an n+1 n
Uy Uy a1m+1 Upp—y +Lm+l Um—1 _Im +fm
k 4h 2
or, equivalently,
ar L, aA . aA aA k o
n N _ N — N N . _ n n
4 I‘m+l+lm 4 U1 = 4 lmfl+lm+ 4 ('mfl+ z(fm +fm)7

where A =k/h. The left side is an skew-symmetric Toeplitz tridiagonal matrix,
A=[9,1,-
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3.2. Periodic tridiagonal systems

Many PDE’s arising in real applications have periodic boundary conditions. For
instance, to study a physical phenomenon in an infinite region, we often model
only a small subdomain, applying periodic boundary conditions on the boundary.
The resulting linear systems have the form of

by, Cqy dy

a, by ¢

n—1

and are called periodic tridiagonal systems. On sequential machines, periodic
tridiagonal systems are solved by combining the solutions of two different right
hand sides [7], which increases the operation count from 8n — 7 to 14n — 16.

The PDD algorithm can be extended to periodic tridiagonal systems. The
difference is that, after dropping w{’, and ¢{"_,, the matrix Z becomes a periodic
system of order 2 p:

L) ()
1 W(mf 1) Co

W(p42)

m—1

SAp— 1 (p—D
Mnr—] g 1

The dimension of Z is slightly higher than in the non-periodic case, which simply
makes the load on the 0th and (p — 1)th processor identical to the load on all of
the other processors. The parallel computation time remains the same. For
periodic systems, the communication at step 3 and 4 changes from one dimensional
array communication to ring communication. The communication time is also
unchanged for any architecture supporting ring communication. Fig. 1 shows the
communication pattern of the PDD algorithm for periodic systems.

3.3. The reduced PDD algorithm

In the last step, Step 5, of the PDD algorithm, the final solution, x, is computed
by combining the intermediate results concurrently on each processor,

Ry — glky _y, NS I (k)
X=X Yei-nt Yauw
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Fig. 1. Communication pattern for solving periodic systems.

{

which requires 4(n — 1) operations in total and 4sm parallel operations, if p =n/m
processors are used. The PDD algorithm drops the first element of w, w, and the
last element of ¢, ¢,,_,. in solving Eq. (9). In Scction 4.1-4.2 we will show that, for
symmetric and skew-symmetric Toeplitz tridiagonal systems, the w, and ¢,, | can
be dropped when m is large without affecting the accuracy of the final solution.
Furthermore, we will show (Eq. (27))

1 m-1  m-1
V= . hli1 b:/ _b _h m—1
L )\(a+b2;71—1b21){2 Z /( ) ( )

i=0 i=0 i=1

So, when m is large enough, we may drop ¢, i=j, j+1,---,m~—1, and w;, i =
0,1,---,j— 1, for some integer ;> 0, while maintaining the required accuracy. If
we replace ¢, by ¢, where ¢, =¢; fori=0,1,---,j—=1,0,=0,fori=j,---,m—1;

and replace w by w. where w,=w, for i=j,---,m—1, and w,;=0, for i=
0,1,---,j—1;and use 7, w in Step 5, we have Step 5’
Ax® = [ w](}’(zk D
’ Yok
X(k)Zf(k)—Ax(k). (14)

J
This requires only 4 — parallel operation. Replacing Step 5 of the PDD algorithm
D

n
by Step 5°, we get the reduced PDD algorithm which requires 13— —4(j + 1)
P

parallel computations. The key question here is how to find the smallest integer
7> 0 which will maintain the required accuracy. This question is answered in
Section 4.3, where a formal accuracy study of the reduced PDD algorithm is given
and a simple formula provided to compute the value of j.

4. Accuracy analysis

The PDD algorithm is highly efficient, perfectly scalable, but is only applicable
when the intermediate results ¢\ |, w{", 0 <i <p — 1, can be dropped. However

this dropping may lead to an inaccurate solution. Thus an accuracy study is
essential in applving the PDD algorithm. A preliminary study of the accuracy of
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the PDD algorithm has already been done [24,2]. However, that study was for the
general case and provides only sufficient conditions to guarantee a given accuracy.
Unfortunately, the conditions given in [24,2] are difficult to verify, and the accuracy
bound given is quite loose. In this section we focus on a particular class of
tridiagonal systems, symmetric and skew-symmetric Toeplitz tridiagonal systems,
where a tighter analysis can be given.

There are four steps in our analysis. First, we give the decay rate of w{’, v%_,,
i=0,---,p—1, for symmetric Toeplitz tridiagonal systems. These are the entries
treated as zeros by the PDD algorithm. Second, the accuracy of the PDD
algorithm is studied, again for symmetric Toeplitz tridiagonal systems. Next, we
analyze the accuracy of the reduced PDD algorithm. Finally, we extend the above
results to skew-symmetric Toeplitz tridiagonal systems.

4.1. The decay rate of v,,_, and w,
Symmetric Toeplitz tridiagonal systems have the form A =[A, 9, A]=A[1, ¢, 1],

where ¢ = /A. We assume the matrix A is diagonal dominant. That is we assume
|c| > 2. To study the accuracy of the solution of Ax = b, we first study the matrix

1 1 a 1
; 1 ¢ 1 b 1 a
B = = b
: 1
Il ¢ b 1 a
where a and b are the real solutions of
b+a=c, b-a=1. (15)

Since a b= 1 and lc] > 2, we may further assume that lal >1,and | b]| < 1.
The LDL” decomposition of B is

B=1[b,1.0]x[0,a,0]x[0,1,b].

Thus
B '=1[0,1,b] 'x[0,a,0] "xj[b,1,0]" (16)
1 b b2 (=0)" (g
) I b - (=b)"T a”!
1 ~b
1 a

|

—b 1
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Let d =(1,0,---,0)7. Then

n—1 n—1 n—1 n—1 r
Brld=—| L%, Lb¥/(=b), Lb¥/b% .., L b/ (=b)""
=0 i=1 =2 i:n-]
Let
b 0 0 b
0 0 . . . . 0 .
AB=1|- - - - . A=1|0(1,0,---,0)=VET, (17)
0 0 0 0
and
B=B+4B=[1,c,1].
Then, by the matrix modification formula (4), the solution of By =d is
- P
y=B"'d=(B+VE") d
- . RS B
=B 'd-B W(I+E"B"W) E'Bd,
where
(I+EBW) = ——2
a+byr_p*’
ld- Z?;()leI
a
B _ b n—1 .nfl ) n—1 T
B W= —| Lp* Lb¥/(=b), . L b¥/(=b)""
d\i=0  i=1 i—n—1
and
Z:T ()leI
R U AN o Y P L
) a a+bx' )p¥
(_b)n—l
The last element of y is
_Ep)T )T bEeY  (=h) a )
Vet a a 4+ br b .  \a+boi b

(18)

(_b)n-l 1
p 1575 b7 (notea-b=1). (19)
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Thus,
lblﬂ—-l i
|Y,,_1|S_=|b| .
lal

The first element of y is

Yo b2 1 b(1 - b*")
Yo= T, (1+b2>:;';0‘b2") T 1o pH
2
[ val = %—l} <Ibl.
For the original system Ax =d, A = A[l, ¢, 1], the first element of x is
A

The last element of x is
’ ynfl
'xn—l = /\

Using similar arguments, we can prove that for d =(0,...0, 1)", Ax=d has
solution

Yn—d+1
X; = —A— (20)
In particular
X, = Yo Xo= Ynod
b T

Combining these we have the following lemma:

Lemma 1. For any diagonal dominant, symmetric Toeplitz tridiagonal matrix A =
[A, m, A, the first element and the last element of the solution of equations Ax = d is
less than | bV /Aal for d =(0,...,0,1) and d =(1, 0,...,0) respectively, where a
and b are the solutions of Eq. (15) and n is the order of matrix A.

The decay rate analysis given in this section is based on the matrix modification
formula (4), which is the basic tool used in this study. Different approaches are
available. For instance, the convergence rate of the sequences taken from the
diagonals of the LU factorization of a tridiagonal, Toeplitz matrix [12] can be used,
instead of the modification formula, in the analysis to achieve the same results.

4.2. Accuracy of the PDD algorithm

Since for Toeplitz tridiagonal systems, each submatrix A4,, i=0,---,p — 1, has
the same structure as A, based on Lemma 1, we have the following theorem:
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Theorem 1. For any diagonal dominant, symmetric Toeplitz tridiagonal matrix
A=1[X, m, A, if b ' /a is less than machine accuracy, where a and b are the
solutions of equation (13), then the PDD algorithm approximates the true solution to
within machine accuracy.

Proof. By the structure of matrix 4 and V, for any symmetric Toeplitz matrix
A =[A, m, Al, solving Eq. (6) is equivalent to solving

Ai[ly(i)' %’(i)] = [/\e()' Aem*}]’ (21)
i=0,--,p—1{see Eq. (12)). Solving Eq. (21) is in turn equivalent to solving
A,i[l'(“’ W(’)] = [e[J’ Cm’l]’

i=0,---,p—1, where A,=[1, /A, 1]. By lemma 1, if b™ '/a is less than
machine accuracy, the last element of solution v” and the first element of solution
w® =0, -+, p— 1, are less than machine accuracy. That is these elements can be
dropped from matrix Z (see Eq. (9)) without influencing the accuracy of the final
solutions, which concludes our proof. 0O

Theorem 1 says that if ¢,,_,, w, are less than machine accuracy, the PDD
algorithm gives a satisfactory solution. In most scientific applications, the accuracy
requirement is much weaker than machine accuracy. We now study how the decay
rate of t,,_,, w, influences the accuracy of the final solution. Our study starts at
the matrix partition formula (4).

Let

y=(I+E4 vy 'Ei-'q. (22)
Substituting y into Eq. (4), we have

x=A"'d—A "W,

Elx=E'A"'"d—E'"A"'V-y (23)

=(I+EAW)y—E4 V-y=y.
Let y* be the corresponding solution of the PDD algorithm,
o -1 .
y'=(I+E'A"'"WV-D) E'A7'd,

where D is the 2(p — 1) X 2(p — 1) matrix which contains all the vf_ |, wf’
elements. Combined with Eq. (22) we have

(I+EA"WYyy—(I+E™A"'V-D)y" =0.
That is

(v =yv)=(I+E"A"'V~D) 'D-v.
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Let x* be the corresponding final solution of the PDD algorithm. Then
x*=Ad-A"W-y*,
x—x*=/f"V(y*—y)
—A"W(I+EA-'V-D) 'D-E'x.
Thus,
lx—x"1|
Il x|l

The inequality (24) holds for general tridiagonal systems. In the following we
assume the special structure of symmetric Toeplitz tridiagonal system in computing
the norm of the right hand side. We use the 1-norm in our study. As discussed in
the last section,

< A~'V(1+E",-D) 'DET|. (24)

(I+EA"'v-p) ' =

Z—l

p—1
where Z; are 2 X 2 matrices:

1 Wr(ni)l)

V()
vy 1

Z =

!

For symmetric Toeplitz tridiagonal systems v’ =wS ; =v§’ =4, and v{) | =w{’
=pW =p, fori=0,---,p— 1. So, for our applications,

1 a N I (1 -a
Z.=7Z = , Zil= . .
o (d 1) : 1—&2(—a 1)
D-ET stretches D from a 2(p— 1) X 2(p — 1) matrix to a 2(p — 1) X n matrix.
Each column of D-E T is_either identically zero or contains only one non-zero
element, b. Also, (I +ETA "W —D)"'DET is a 2(p — 1) X n matrix. Each of its
columns is either identically zero or contains at most two non-zero elements ¢y, c,,
where




X.-H. Sun / Parallel Computing 21 (1995) 12411267 1257

For our application A4,=A,, and af’=c¢\ =), i=0,--,p—1. So, 0=
vw®=w,i=0,---,p—1(see Eq. (12)). (A"'WVXI+EA"'V-D)"'D-E” is an

n X n matrix, with each column being either a zero column or containing only c,w,

c,V, Or ¢c,w, c,v respectively. Thus,
| A~'W(I+E"4,-D) 'DET||

<max{llcell+lewll e ll+1fewll}

<lc; Mwl+le el (note liwl =llell, Eq.(20)) (25)

b _
=(leyl+le Dlieldl =|T~—¢i2—|(l+ talylhel —m“v”-

From the results given in Section 4.1 (see Eq. (18)),

b(1—bm) b . |bm
e P R R TP
A(1—pXm)

A

lal =

Defining,
1 bLm b2 mot om-l -1 !
- ————— 5 H 2(=b), -, (—b)" 26

(27)

1 m—1 . . T
AMa +bI'b%) E)bzl’m’(—b)m ) ’
we have
(=b)'(1=b*m71)
1-5b2

2 m-—1

)»

)\(a_b2;n+l) =
1-b* 1+ 11" (1 =1b1™)
Aa —b>mt) (1=b%)(1—1b])
(1-161")
(1-1b1)

foll =

<

(I+1b]"") (28)

1 - b2(m+l)

1

<
lAal

1 1-|b|™ 1 lal L 1b] l)
< . - note |al|l > 1, <
nal 1 16 1-15] ¢

1
< -
[Al(lal—=1)
Combining the inequalities (24), (25), and (28) we obtain the final result
< 1] (29)
At =la)Ix(lal=1)"

lx—x"1

x|l
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and
lx—xll b - ib|"
lxll T IA(~1lalyi(lal=1) b(1 ~b>™)
l)\(‘)\\—lm ) (|a|—1)
(30)

Inequality (29) shows how the values of v,,_, and w, influence the accuracy of the
final results. Inequality (30) gives an error bound of the PDD algorithm. When
|b/A| <1, inequality (30) can be simplified to

||x—x*||< 1™
Ixll “IALCIAT =160 (lal=1) "

4.3. Accuracy of the reduced PDD algorithm

Let &, w be the vectors defined in Eq. (14), let V¥ be the corresponding matrix
in Eq. (6) consisting of all the 2(p —1) vectors, and let x’ be the solution of the
reduced PDD algorithm. Then

X=A'd-A"WU+EA'WV)YETA d.

As in Section 4.2, we let y=(/+ E’A 'W)E"4 'd. Notice that x* is the
solution of the PDD algorithm. By Egs. (4) and (23),

X —x" = (A~‘II7—A-_1V)y = (/f"l}—A.”V)ETx.
Therefore, for a given integer j > 0,

T x| -1 1 T =117 §—1 =~
—m—_il( VA WV)IIET =l A" V=A"VIi=l&-vl
1 m 1 (—b)i(l p2m= ”)
M@+ by | 2 — b2
Since
m—1 b(l bZ(m 1)) 5
+ m—i
P = bzl(Zlm Zlbl
1 lbl’(l—lbl ) L= pmt
= . +1b|"
I1—5b% 1-1b] 1-1b|
(1B =1b1I™) + B (1 - 1b ™))
1-b21(1—1|bl) ’
e I I e I (LK e S R L (e L))
ixll “{Aall1—pxm*h [(1-b%)1(1~1bl)
(1617 +1b1™)

[A(lal=1)
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By (30), inequality (32) gives the error bound of the reduced PDD algorithm.

lx—=x"l llx—=x*1 llx*—x"
31
Il = el o« (1)
[b]™ +|blj+|b|m (32)
b(1 - b>m) Al(lal—1)°
)\(I/\|*Tjgm)(|a|~1)

For a given error tolerance € > 0, the right hand side of inequality (32)

|b|” b1+ b|™
+ <€
b(1—b>") [Al(lal=1)
/\(|/\|— —:W)(lal—l)
if and only if
| lb|™ ,b(l—bz'")
| og| lAl(lal—1) € TAlal=1n) 1+1/(M|‘ —l_bz(m+1))
s log|b| ’

(33)

Inequality (33) gives a lower bound of the number of variables, j, need to be
modified in Eq. (14), for a given error tolerance € > 0.
When |b/A| <1

||x—x'||< [b|™ (1+ 1 )+ |b]’
Ixll ~Ixl(lal—-1) [Al=1b1]  IAl(lal—1)"

and we get a simpler inequality for the minimal number J,

) 1
+|A|—|b|))

When | b™| is less than machine accuracy, inequality (33) becomes the same as
inequality (34) and we have an even simpler formula:

log(1Al(lal—1)e
logib|

log(lz\l(|a|-1)(e—IbImMI(IaI—l)

j> g 5] (34)

(35)

4.4. Skew-symmetric Toeplitz tridiagonal systems

The accuracy analysis given by Sections 4.1-4.2 is for symmetric Toeplitz
tridiagonal systems. In this section we extend the results to skew-symmetric
Toeplitz tridiagonal systems. We assume that m = n/p is an even number.
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A skew-symmetric Toeplitz tridiagonal matrix 4 has the form A = [—/\,_n, Al
=A-[-1,¢c,1). Let B=[—1, ¢, 1. Then, for the corresponding matrix B (see
Section 4.1, Eq. (16))

B=[b,1,0]%x][0,a,1]x]0,1, —b],
where a, b are the solutions of

b+a=c, ba=-1. (36)
Compared with the symmetric case, the difference is that we have —b in the
matrix [0, 1, —bland b -a = —1 in Eq. (36). Following the steps given in the study
of symmetric systems, we have computed the vectors of v and w in Eq. (12),
N PR e G 1)'p?

a+brr i (—1)'p¥

m—1 ) m—1 » T
X( Y (- 1), Y (=1)'b¥/(b), -,(—b>"'*l)
=0 i

i=1

1 m—1 » T
= 1V K2 .. _pym-t R
A(a+b27'=5'(—1)’b2‘)(i§)( DO () ) ’ (37)

1
Ma +bEr(~1)'b¥)

m—1 m-—1 r
<[(=D" (=) (=" L (-1, E (—1)‘b2") :
i=m—2 i=0
We can see for skew-symmetric Toeplitz tridiagonal systems v’ =w" | = 0§ =g,
and 09 | = —w{?=0® =bh, for i=0,---, p~1. Thus, the inequality (25) re-
mains true for skew-symmetric cases.

By Eq. (37), we have

B0 (5" _ ()" (1+b7)
T Ma+eEni(—)pY) AL +BHED)
_ o 1em(1+b?)]
[ Al
and
o L7 (= 1)'b —b-(1-5°")
a:LY == - = 5
PoMa+bIrG(—1)BY)  A(L+bXTD)
al ~b-(1-0°")| Ib|
=l— | < —
SN PYSR Y Rl
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For the bound of the norm of vector v (see Eq. (28)), when b-a = —1,

ol <] a ) (1+ 1)1 - 1617
“Tlaala+bTr (- 1) b (1+b3)(1—1b])
1 1_lb|2(m-+—l) 1
< . < .
[Aa(1+b2m+Dy| 1—1|b] [A(lal=1)|

The corresponding relative error is
lx—x"| 15|
< =
Il x| IA(1 = lal)(lal—=1)]
in terms of @ and b; and
fx—x"1 |b1™(1+b%) Ib1™(1+b%)
< — =
Il x|l X1 -lal)(lal-1)] b(1—b?m)
|)‘(|)‘|_ 1+ pXm+1
in terms of a and b. When |b| /| A| < 1, we have
lx—x"_ 1b1"(1+bY)
lxll  ~IACIAI=1BD(lal=1)]"

(lal-1)]

5. Experimental results

Table 1 gives the computation and communication count of the PDD algorithm.
Tridiagonal systems arising in both ADI and in the compact scheme methods are
multiple right-side systems. They are usually ‘kernels’ in much larger codes. It is
often more efficient to use a parallel tridiagonal solver for these systems than to

Table 1
Computation and communication counts of the PDD algorithm
System Matrix Best The PDD
sequential Computation Communication

Single Non-periodic 8n—17 172 _4 2a + 128
system p

n

Periodic 14n - 16 17— -4 2+ 128

p
Multiple Non-periodic (5n—3)-nl n Q2a+8n1-8)
right sides 9—+1])-nl

n
Periodic (7n—1)-nl (9—+1)-n1 (2a+8n1-B)
p
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Table 2
Computation and communication counts of the reduced PDD
System The Reduced PDD
Computation Communication
n
Single system 11—+6j—-4 2 +128
p
n
Multiple right sides (5 —+4;7+ 1) nl QQa+8n1-8)
p

remap data among processors to be able to a serial solve, especially for
distributed-memory machines where communication cost is high. The computation
and communication count for solving multiple right-side systems is also listed in
Table 1, in which the factorization of matrix 4 and computation of Y are not
considered (see Egs. (5) and (6) in Section 2). Parameter nl is the number of right
hand sides. Note for multiple right-side systems, the communication cost increases
with the number of right hand sides. Table 2 gives the computation and communi-
cation counts of the reduced PDD algorithm. As for the PDD algorithm, it has the
same parallel computation and communication counts for periodic and non-peri-
odic systems. The computation saving of the reduced PDD algorithm is not only in
step 5, the final modification step. Since we only need j elements of vector v and
w for the final modification in the reduced PDD algorithm (see Eq. (14) in Section
3), we only need to compute j elements for each column of V in solving Eq. (6).
The integer j is given by (33), (34), or (35) depending on the particular circum-
stance. In general, j is quite small. For instance, when error tolerance e equals
107#, j equals either 10 or 7 for A, the magnitude of the off diagonal elements
equals 1/3 or 1/4 respectively. The integer j reduces to 4 for 0 <X < 1/9. Notice
that when j <#n /2, the reduced PDD algorithm has a smaller operation count than
that of Thomas algorithm for periodic systems with multiple right hand sides.
While the accuracy analyses given in this study are for Toeplitz tridiagonal
systems, the PDD algorithm and the reduced PDD algorithm can be applied for
solving general tridiagonal systems. The computation counts given in Table 1 and 2
are for general tridiagonal systems. For symmetric Toeplitz tridiagonal systems, a
fast method proposed by Malcolm and Palmer [12] has a smaller computation
count than Thomas algorithm for systems with single right hand side. It only
requires 5n + 2k — 3 arithmetic, where k is a decay parameter depending on the
diagonal dominancy of the system. Formulas are available to compute the upper
and lower bounds of parameter £ [12]. The computation saving of Malcolm and
Palmer’s method is in the the LU decomposition. For systems with multiple right
hand sides, in which the factorization cost is not considered, the Malcolm and
Palmer’s method and Thomas method have the same computation count. Table 3
gives the computation and communication counts of the PDD and reduced PDD
algorithms based on Malcolm and Palmer’s algorithm. The computation counts of
the two algorithms have reduced with the fast method being used in solving the
sub-systems. Table 3 is for solving systems with single right hand side only. For
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Table 3
Computation and communication counts for symmetric toeplitz systems
Algorithm Matrix Best Parallel algorithm
sequential Computation Communication
_periodi — n
PDD . Non-periodic Sn+2k -3 1l Lok 20 +12p
Algorithm D
n
Periodic 1ln+2k 12 14— +2k 2a+128
p
reduced Non-periodic Sn+2k -3 n . 2a + 8B
— +
PDD Alg. 8p +2k +6)
n
Periodic 1ln+2k —12 8— +2k +6j 20 +88
p

systems with multiple right hand sides, the computation counts remain the same as
in Table 1 and 2 for PDD and reduced PDD algorithm respectively.

As an illustration of the algorithm and theoretical results given by previous
sections, a sample matrix is tested here. This sample matrix

= '
a=l3-13 (38)
arises in the compact scheme, we have
[1 1] 1 1
A= 5 1, 31 5113, 1] = 2+ ([b.1.0]x [0, @, 0] X [0, 1, b] - 4B),
where AB is given by Eq. (17), and
1 3+V5 3-V5
)\=§, c=3, a= > b=—£~—. (39)

The PDD algorithm was first implemented on a Sun Sparc4 to solve the
corresponding non-periodic system of Ax =d for accuracy checking. Then the
algorithm, without taking the advantage of the Toeplitz structure, was imple-
mented on a 32-node Intel /iPSC860 to measure the speedup over the Thomas
algorithm [7], the standard sequential algorithm for periodic tridiagonal systems.
For accuracy checking, all the measured and predicted data have been converted
to a common logarithm scale to make the difference visible. Fig. 2 depicts the
decay rate of v, _, of matrix A, where the x-coordinate is the order of the
sub-system A, and the y-coordinate is the value of v,,_,. We can see that the
theoretical bound given in Section 4.1 matches the measured value closely.

Accuracy comparisons of the PDD and the reduced PDD algorithms are given
in Fig. 3 and Fig. 4 for periodic and non-periodic systems Ax = d respectively. For
the accuracy comparisons, the right-side vector, d, was randomly generated. The
x-coordinate is the order of matrix A;, and the y-coordinate is the relative error in
the 1-norm. These two figures show that our accuracy analysis provides a very good
bound.
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Fig. 2. Measured and predicted decay rate.
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Measured and predicted accuracy of the PDD algorithm.
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Measured and predicted accuracy of the reduced PDD.
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30 — T T T T T
25 t-  Speedup -o— ~
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Speedup 5 |- ]
10 |- -
5 T
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Number of Processors

Fig. 5. Measured speedup over the Thomas algorithm. Single system of order 6400.

Figs. 5 and 6 give the speedup of the PDD algorithm over the Thomas algorithm
for the corresponding periodic system. Here, speedup is defined as the single
processor execution time of the conventional sequential algorithm over the parallel
execution time of the parallel algorithm. For single system (a system with single
right hand side), the order of matrix 4 is limited by the machine memory to
n = 6400. For multiple right-sides, the system is limited to n = 128 and n1 = 4096.
From Fig. 5 we can see that the speedup of solving a single system increases
linearly with the number of processors. By the relation between speedup and
scalability [21], it confirms the ideal scalability of the PDD algorithm. Fig. 6 shows
that the linear increasing property does not hold for multiple right-side systems.
The lower speedup is due to the reduction of the matrix size and the increase of
the number of right hand sides. As seen in Table 1, the communication cost
increases linearly with the number of right hand sides. Since the Intel /iPSC860
has a very high (communication speed)/(computation speed) ratio, we can expect

15 T T i T T T
12 +  Speedup --— m
9t .
Speedup
6+ —
3+ -
1 1 1 A 1 L
5 19 15 20 25 30 35

Number of Processors

Fig. 6. Measured speedup over the Thomas algorithm, 4096 systems of order 128, factorization time not
included.
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a better speedup on an Intel Paragon or even on an Intel /iPSC2 [17] multicom-
puter.

6. Conclusion

A detailed study has been given for the Parallel Diagonal Dominant (PDD)
tridiagonal algorithm. The PDD algorithm presented is slightly different from that
originally proposed [20] and is extended to periodic systems. Based on our study,
the reduced PDD algorithm was also introduced. While maintain the communica-
tion cost of the PDD algorithm, the reduced PDD algorithm has reduced the
operation count considerably. An accuracy analysis was provided for a class of
tridiagonal systems, the symmetric and skew-symmetric Toeplitz tridiagonal sys-
tems. Implementation results were provided for both our accuracy analysis and for
the algorithms. These results showed that the accuracy analysis provides a very
tight bound and that the algorithms are quite efficient for both single and multiple
right-side systems. Thus the algorithms are good candidate for large scale comput-
ing, where the number of processors and the problem size are large. They are a
good choice for the emerging massively parallel machines. While the discussion
here was based on distributed-memory machines, the result can be easily applied
to shared-memory machines as well.

The PDD algorithm and the reduced PDD algorithm proposed in this paper can
be extended to band and block tridiagonal systems. Unfortunately our accuracy
analysis, which gives a good, simple, relative error bound, is for symmetric and
skew-symmetric Toeplitz tridiagonal systems only. It is unlikely that the analysis
can be extended to the general case by similar techniques.
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