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Abstract—The low cost and wide availability of networks of workstations have made them an attractive solution for high performance

computing. However, while a network of workstations may be readily available, these workstations may be privately owned and the

owners may not want others to interrupt their priority in using the computer. Assuming machine owners have a preemptive priority, in

this paper, we study the parallel processing capacity of a privately owned network of workstations. A mathematical model is developed

to predict performance for nondedicated network computing. It also considers systems with heterogeneous machine utilization and

heterogeneous service distribution. This model separates the influence of machine utilization, sequential job service rate, and parallel

task allocation on the parallel completion time. It is simple and valuable for guiding task scheduling in a nondedicated environment.

Index Terms—Network cluster computing, performance modeling and analysis, nondedicated systems, workload distribution.
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1 INTRODUCTION

THE merging of two rapidly advancing technologies,
computers and communications, has resulted in a new

computing infrastructure, called network of workstations
(NOW) [1], [2]. The potential for this new computing
infrastructure has attracted recent attention. Many software
tools have been developed to support distributed comput-
ing over a network of workstations, including such widely
used tools as the Parallel Virtual Machine (PVM) software
and the Message Passing Interface (MPI) [4], [8]. A national
initiative has been called to build a national information
power grid [3]. The popularity of NOW is due to its ability
to provide significant cost effective computing, to efficiently
support both single processor interactive processing and
large batch parallel processing, and to rely on commodity
technology.

Depending on the ownership, NOW can be divided into

two categories: dedicated networks of workstations and

nondedicated networks of workstations. Dedicated NOW

uses a cluster of dedicated workstations collectively to form

a cost-effective parallel computer. On the other hand,

nondedicated NOW are targeted to utilize the abundant

computing cycles available on the network to provide

high computing power without, or with little, additional

financial investment. In a nondedicated environment,

however, workstations are privately owned and likely to

be heterogeneous. The “availability” and heterogeneity of

nondedicated network computing distinguishes itself

from dedicated parallel computing. Though performance

modeling of nondedicated computing is essential for the
success of next generation network environments (includ-
ing publicized network meta-computing, ubiquitous
supercomputing, world-wide virtual machine environ-
ments, and information power grid [3], [5]), there is no
widely accepted performance model for nondedicated
network computing. In this study, we first introduce an
analytical model to predict parallel task completion time in
a nondedicated homogeneous environment. Next, similar
analysis is extended to systems with heterogeneous
machine utilization and heterogeneous service distribu-
tions. Based on the analysis, we then propose a task
partition procedure that is optimal based on the first two
moments in a nondedicated environment. This research
results in the separation of the influence of machine
utilization, sequential job service rate, and parallel task
allocation to the parallel task completion time. It indicates
when efficient process migration is critical for the success of
nondedicated network computing. It may be used to
provide a guideline for process allocation and scheduling
in a nondedicated environment.

Performance modeling of distributed network comput-
ing has traditionally focused on dedicated systems [12],
[15]. Recently, nondedicated network computing has
received considerable attention. Much of the recent research
is observational in nature. The actual workstation usage
patterns are measured by [13], [1]; the performance
parameters and their influence on a set of applications are
reported by [14], [1] and the issues of dynamic scheduling
are addressed in [1]. These results are useful for the
development and evaluation of performance models of
privately owned NOWs. Other studies focus on modeling
the capacity of nondedicated computing for general solu-
tions. Mutka and Livny [13] identified the availability
pattern of distributed computing cycles for a cluster of
workstations. Based on months of observations, they
concluded that the distribution of unavailable time intervals
of individual machines could be approximated using
hyperexponential distributions. This conclusion seems
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reasonable since this can be interpreted as the coexistence of
different user groups in the computer resource. Leuteneg-
ger and Sun [10], [11] determined the capacity of non-
dedicated homogeneous computing environments. They
considered a discrete model where the machine owners use
their machines with a fixed probability and fixed job length.
Kleinrock and Korfhage [9] used Brownian motion to
approximate the parallel task completion time in a non-
dedicated system. Assuming parallel tasks arrive equally
during each state of the local sequential processing, they
derived analytical expressions of the approximated mean
and standard deviation of parallel completion time. While
Kleinrock and Korfhage’s model might be the most general
model available for nondedicated computing, its applica-
tion in network computing seems elusive. In distributed
computing practice, as reported by the NOW group at
Berkeley [1], unused machines can always be found on the
network if the number of workstations on the network is
more than double that of the required parallelism. Parallel
tasks are most likely to be started without any waiting. In
addition, while Brownian motion is a powerful tool for
finding the expected performance of a long process, it does
not distinguish the impact of different influential factors.

The purpose of this study is to analyze the nature of
nondedicated computing so that we are able to develop a
practical approach to performance estimation and so that
we can make appropriate decisions for the distribution of
parallel tasks. Following [1] and [11], we assume that
parallel tasks are only assigned to idle machines. Based on
predetermined machine usage patterns, we derive simple
formulations to predict the parallel task completion time
under different circumstances. The mean, standard devia-
tion and the distribution of parallel task completion time are
analyzed. The effects of heterogeneity, machine utilization,
number of workstations, task partitioning and allocation,
and other parallel considerations are also discussed.
Partitioning and scheduling policies for parallel tasks are
developed based on the finding from the analytical model
developed. Experimental results show that the proposed
analytical formulation is reasonably precise, which may
provide a practical solution for estimating parallel comple-
tion time in a nondedicated environment.

This paper is organized as follows: In Section 2, an
analytical model for estimating parallel task completion
time in a nondedicated distributed computing environment
is developed. The analytical model is carefully examined
and evaluated in Section 3 for homogenous systems with
homogeneous machine usage patterns. Effects of different
factors on the parallel task completion time are examined.
The analysis is then extended to systems with heteroge-
neous machine usage patterns in Section 4. In this section,
optimal partitioning of parallel tasks based on the first and
second moments are discussed. The main results are
summarized in Section 5. Finally, conclusions are given in
Section 6.

2 PERFORMANCE MODELING AND ANALYSIS

In this section, we describe our system models, verify the
system assumptions, and deduct probabilistic formulas for
parallel task completion time. We assume that the parallel

task is composed of one single parallel phase with no
communication or synchronization requirements other than
the final synchronization, which occurs when all of the tasks
are completed. Part of the communication delay is
implicitly included in the service rate. We assume the
computing system is homogeneous. That is, all the
machines on the network have the same computation
power. This assumption will be lifted in Section 4. The
machine owners’ local sequential jobs have preemptive
priority over processes belonging to parallel tasks. The
arrival of the owner’s sequential jobs at workstation k is
assumed to follow a Poisson distribution with rate �k. A
newly arriving sequential job must wait if another
sequential job is in process. Otherwise, it will start
processing immediately by using the unused machine or
by preempting a parallel task. We assume that the execution
time of the owner jobs at workstation k follows a general
distribution with mean 1=�k and standard deviation �k. �k
is also called the service rate at workstation k since it
directly depends on the computational power of the
machine. Based on our assumption, the owner job process
is an M/G/1 queuing system. Note that the hyperexpo-
nential machine usage pattern observed by Mutka and
Livny [13] can be explained by the notion that there are
different, independent classes of users and that each class of
users assumes the exponential distribution, but with a
unique parameter set. The general service assumption in
our model is a generalization of the observed usage pattern.
As discussed in Section 1, we also assume that the parallel
task is only initiated on unused machines. This assumption
agrees with the conclusion made by [11] that parallel tasks
should be initiated on lightly loaded machines and should
be migrated (to other resources) when the load on a
machine becomes heavy in a network environment.

We assume that the parallel task requires a total
processing time W and is partitioned into m subtasks,
w1; w2; . . . ; wm, for parallel processing. Subtask wk is
assigned to workstation k and W ¼

Pm
k¼1 wk. We use Tk to

represent the total time required to finish parallel subtask k

at workstation k. We list the notation to be used through out
this paper in the following:

. W Total demand of the parallel task.

. wk Demand of the parallel subtask on workstation k.

. m Number of workstations in the system.

. S The number of interruptions encountered.

. �k Rate of the job arrival Poisson distribution at
workstation k.

. � Sequential job service rate at workstation k.

. �k Utilization rate at workstation k.

. �k Standard deviation of service time on work-
station k.

. Tk Parallel task completion time on workstation k.

. E(.) Expectation operator.

2.1 Subtask Completion Time at a Single
Workstation

Given a workstation is idle when the parallel task arrives at
the workstation, the parallel completion time Tk at work-
station k can be expressed as:
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Tk ¼ X1 þ Y1 þX2 þ Y2 þ . . .þXS þ YS þ Z: ð1Þ

As defined in Table 1, S is the total number of
interruptions that occur during the processing of a parallel
task due to the arrival of one or more sequential jobs. Xi; Yi,
i ¼ 1; . . . ; S, represents the computing time consumed by
the parallel task and the sequential jobs, respectively. Z is
the execution time of the last parallel process that finishes
the parallel task. We have

X1 þX2 þ . . .þXS þ Z ¼ w; ð2Þ

hence

Tk ¼ wþ Y1 þ Y2 þ . . .þ YS: ð3Þ

Let ÿð0Þ ¼ 0 and ÿðSÞ ¼ X1 þX2 þ . . .þXS , for S > 0.
Then, from (2), we have random variable S 2 f0; 1; . . . ;1g
and ÿðSÞ < w, ÿðS þ 1Þ � w.

Note the assumption that the owner job arrival process
follows a Poisson distribution; Xi is an exponentially
distributed random variable. ÿðSÞ is therefore a Gamma
distributed random variable for given S ¼ s > 0. Using the
well-known result in queuing system, we have:

Proposition 1. Assume that the owner workstation process can
be treated as an M/G/1 queuing system with arrival rate � and
service rate �, then the total number of interruptions S follows
a Poisson distribution with parameter �w.

Hence, the probability function of S satisfies:

ps ¼ PrðS ¼ sÞ ¼ PrðÿðsÞ < w;ÿðsþ 1Þ � wÞ

¼ ð�wÞ
s2ÿ�w

s!
S ¼ s > 0:

ð4Þ

Note that the job completion time is

Tk ¼ wþ Y1 þ Y2 þ . . .þ YS;

where Yj, j ¼ 1; 2; . . . s, are i.i.d. random variables repre-
senting the jth busy period of the machine owner’s
sequential jobs. Under the assumption that the owner job
processing follows M/G/1, we have the following first and
second moments of Yj using existing results from queuing
theory:1

EðYjÞ ¼
1

�ÿ � ð5Þ

EðY 2
j Þ ¼

�ð�2�2 þ 1Þ
ð�ÿ �Þ3

: ð6Þ

The mean and variance of Tk can be obtained through the
following expression:

EðTkÞ ¼ EðEðTk j SÞÞ ¼ Eðwþ Y1 þ Y2 þ . . .þ YS j SÞ
¼ Eðwþ SEðY1ÞÞ ¼ wð1þ �EðY1ÞÞ

¼ 1

1ÿ �w;
ð7Þ

VðTkÞ ¼ EðVðTk j SÞÞ þVðEðTk j SÞÞ
¼ EðV ðwþ UðSÞ j SÞÞ þVðEðwþ UðSÞ j SÞ
¼ EðSVðY1ÞÞ þVðwþ SEðY1ÞÞ
¼ �wVðY1Þ þ �wE2ðY1Þ ¼ �wEðY 2

1 Þ

¼ �w�ð�
2�2 þ 1Þ
ð�ÿ �Þ3

¼ �

ð1ÿ �Þ3
ð�2 þ 1Þ

�
w;

ð8Þ

where � ¼ �=� is the workstation utilization rate, � ¼ �� is
the coefficient of variation of service. When the owner
system can be approximated by an M/M/1 queuing system,
then � ¼ �1, � ¼ 1, and

VðTkÞ ¼
2�

ð1ÿ �Þ3�
w: ð9Þ

From (7) and (8), we may conclude the following regarding
the parallel subtask completion time in a single nondedi-
cated workstation environment:

. The mean and variance of subtask completion time
are proportional to the workload of the subtask.
Therefore, the main task in estimating parallel task
completion time is to analyze the influence of the
owner workstation utilization.

. The mean parallel subtask completion time is
independent of service time variation and is the
reciprocal of the workstation utilization.

. Further, from (7) and (8), we can easily find that the
coefficient of variation of subtask complete time,
½VðTkÞ=EðTkÞ2�, goes to 0 as the parallel task time
increases. The coefficient of variation is also posi-
tively related to the utilization of individual work-
stations. Further, we know from (8) that the increase
in workstation utilization or variability in owner
sequential job service will cause more variability in
parallel subtask completion time.

The discussion now turns to parallel task completion time.

2.2 Parallel Task Completion Time

Assuming m workstations are used for parallel computing,
T can be expressed as:

T ¼ MaxfTk; k ¼ 1; 2; . . . ;mg: ð10Þ

Assuming the usages of different workstations are
independent, the probability that parallel tasks finish within
time t is equal to

PrðT � tÞ ¼ Pr Max1�k�mfTk; k ¼ 1; . . . ;mg � tð Þ

¼
Ym
k¼1

PrðTk � tÞ:
ð11Þ

From (3),
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Tk ¼ wk þ Yk1 þ Yk2 þ . . .þ YkSk ¼ wk þ UðSkÞ; ð12Þ

where Ykj is the jth busy period at workstation k,

UðSkÞ ¼
0; if Sk ¼ 0
Yk1 þ Yk2 þ . . .þ Yksk ; if Sk > 0:

�
ð13Þ

As previously defined, we know that Yi is the busy period

random variable of the queuing system and Sk is a Poisson

random variable with rate �w. However, from queuing

theory, we know that it is difficult to find the exact

distribution of the server busy time. Even for simple M/M/

1 queuing systems, the density function of a busy period can

only be obtained through a complicated serial expression [7].
Note that PrðSk ¼ 0Þ ¼ eÿ�wk . The distribution of Tk is a

combination of random variables.

PrðTk � tÞ ¼ PrðTk � t j Sk ¼ 0ÞPrðSk ¼ 0Þ
þ PrðTk � t j Sk > 0ÞPrðSk > 0Þ

¼ eÿ�wk þ ð1ÿ eÿ�2kÞ PrðUðSkÞ � tÿ wk j Sk > 0; if t � wk
0; if t < wk:

(
ð14Þ

We need only to find the distribution of UðSkjSk > 0Þ.
Consequently, the probability that the parallel process

finishes within time t is

PrðT � tÞ ¼Qm
k¼1½eÿ�wk þ ð1ÿ eÿ�wK Þ

PrðUðSkÞ � tÿ wk j Sk > 0Þ�;
if t � wmax

0; otherwise;

8><>: ð15Þ

where wmax ¼ Maxfwkg. For a special case where the system

has a uniform machine usage pattern and equally dis-

tributed workload, w, then

PrðT � tÞ ¼
½eÿ�w þ ð1ÿ eÿ�wÞPrðUðS1Þ � � j S1 > 0Þ�m; if � > 0

0; otherwise;

(
ð16Þ

where � ¼ tÿ w.
If the distribution probability PrðUðSkÞ � ujSk > 0Þ can be

identified, the distribution of parallel task completion time

PrðT � tÞ can be calculated. The mean and the variance of the

parallel task completion time can also be calculated. How-

ever, it is difficult, if not impossible, to come up with an

explicit expression of PrðUðSkÞ � ujSk > 0Þ based on the

existing result in probability. However, the probability may

be approximated if we know the mean and standard

deviation of the random variable and if we can approximate

its distribution functions by using known ones. By using the

following equations:

EðTkÞ ¼ EðTkjSk > 0ÞPrðSk > 0Þ þ EðTkjSk ¼ 0ÞPrðSk ¼ 0Þ;
VðTkÞ ¼ VðTkjSk > 0ÞPrðSk > 0Þ þVðTkjSk ¼ 0ÞPrðSk ¼ 0Þ;

and, from results EðTk ¼ 1
1ÿ� w, PrðS ¼ 0Þ ¼ eÿ�w,

EðTkjS ¼ 0Þ ¼ w, and VðTkjS ¼ 0Þ ¼ 0, we have

EðTk j Sk > 0Þ ¼ 1

1ÿ eÿ�w
1

1ÿ �wÿ we
ÿ�w

� �
¼ wþ 1

1ÿ eÿ�w
�

1ÿ �w;

VðTk j Sk > 0Þ ¼ 1

1ÿ eÿ�w VðTkÞ

¼ 1

1ÿ eÿ�w
�

ð1ÿ �Þ3
ð�2 þ 1Þ

�
w:

Therefore,

EðUðSkÞ j Sk > 0Þ ¼ EðTk j Sk > 0Þ ÿ w ¼ 1

1ÿ eÿ�w
�w

1ÿ �
ð17Þ

and

VðUðSkÞ j Sk > 0Þ ¼ VðTk j Sk > 0Þ

¼ 1

1ÿ eÿ�w
�

ð1ÿ �Þ3
ð�2 þ 1Þ

�
w:

ð18Þ

In the following section, we will discuss the possible

approximation of the distribution function for UðSkÞ
given Sk > 0.

3 EXPERIMENTAL ANALYSIS OF SYSTEM WITH

HOMOGENEOUS NONDEDICATION

From the result of Section 2, we know that the explicit

expression for the parallel job completion time (which is a

random variable) is difficult to obtain. To approximate the

distribution of parallel job completion time, it is important

to find the distribution of UðSkÞ given Sk > 0 for each owner

workstation. To achieve the goal of practical usefulness, we

determine the unknowns through experimentation. We

then integrate these experimentally determined results into

our analytical formulations to form a complete performance

model. Here, homogeneous nondedication implies that the

machines on the network have a uniform machine usage

pattern (the machines have the same mean and distribution

of utilization and service rate).
This section is divided into two subsections. We first

discuss the subtask finishing time for a single workstation

in Section 3.1. We focus on the pattern of distribution of the

subtask finishing time given different workstation service

patterns and different utilization rates. We then discuss the

parallel task finishing time in Section 3.2. This discussion

generally focuses on the impact of total parallel task

demand, the number of workstations, and other parameters

of the parallel task completion time. Simulation results will

also be compared with the analytical formulation derived in

Section 2.

3.1 Simulation to Determine Single Workstation
Task Completion Time Distribution

In this section, we use simulation to examine the distribu-

tion of UðSkÞ given Sk > 0 for a single workstation. We omit

subscript k whenever there is no confusion. We have

simulated a large number of examples with different

parameters and sequential task patterns on the owner
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workstation. Below, we describe our simulation procedure
and report our findings from this analysis.

Without loss of generality, we assume that the arrival
rate of the owner local job sequence is � ¼ 1. We simulate
the distribution of parallel subtask completion time for
three different system parameters

ðW; �; �Þ ¼ ðtotal demand of the parallel task;

system utilization; service coefficient of variationÞ:

The parameter set shown in Table 1 is used.
In addition, we consider five different service distribu-

tions for sequential tasks: 1) Exponential distribution,
2) Erlang distribution, 3) Gamma distribution, 4) Log-Normal
distribution, and 5) Truncated Normal distribution. Note that
the owner system variation is always 1 under the assump-
tion of M/M/1. Experiments for different parameters are
performed for each service distribution.

Prediction Simulations. One purpose of simulation is to
evaluate the mean and standard deviation of the parallel job
completion time. In order to generate meaningful simula-
tion results, we use a simulation stopping rule suggested by
Ross [15] whereby we can be ð1ÿ �Þ% certain that the
sample mean (the average of the simulated task finishing
time) will not differ from the mean of the sampling
distribution E½XI � by more than 1:96� (where � is small).
That is, we generate enough simulation runs k so that the
standard deviation of the average sampling distribution,
�=

ffiffiffi
k
p

, is less than the acceptable value �. This stopping
criterion guarantees, with 95 percent confidence, that our
estimated answer will not differ from the true value by
more than (0.05*(SAMPLE MEAN)) and (0.01*(SAMPLE
VARIANCE)). A minimal simulation sample size of k ¼ 30
is assumed so that the Sample Standard Deviation S can be
used as a good approximation of �. However, we note from
the simulation experiments that the number of simulation
runs required to achieve the desired precision ranged from
over 3,000 to 20,000.

Curve Fitting Simulations. For each set of parameters, a
series of simulation runs is conducted in order to fit a
distribution for subtask completion time and parallel task
completion time. This is essentially an exercise in curve
fitting. We use the ARENA simulation system input
processor [17] to fit the simulated task completion time to
various theoretical distributions. The input processor
attempts to fit one of 12 probability distributions to a set
of raw data using either maximum likelihood estimators or
the method of moments [6]. Information is provided
regarding the value of the squared-error as well as various
statistical tests: the chi-square test and the Kolmogorov-
Smirnov (KS) goodness-of-fit tests expressed in terms of
p-values. When generating (simulated) sample points to
construct subtask completion time distributions, we ensure
that enough observations are collected in each run so that a
reasonable distribution fit can be made. Between 5,000 and
10,000 data points were collected to fit each distribution. In
addition, the best-fit distribution is evaluated visually by
superimposing each theoretical distribution over the raw
sample distribution. Visual assessment is viewed by many
as providing the best means of evaluation.

Simulation Results. In Fig. 1, a set of simulation

outcome examples for task (subtask) completion time of a

single workstation (in histograms) and corresponding

fitting distributions (in lines) are shown.
A summary of the simulated task completion time

results for a single workstation is given below.

. The simulation experiments indicate that Gamma,
Lognormal, or Weibull are (almost always) among
the best-fit distributions in approximating the dis-
tribution of UðSÞjS > 0. It is difficult to determine
which distribution is the best since the decision is
input parameter sensitive. Among the simulation
experiments we have performed, around 40 percent
of them show that the Gamma distribution (which
includes the exponential and Erlang) is the best fit;
roughly one-third of them show that the Lognormal
distribution is the best fit. However, this percentage
may change if we select a different set of experi-
mental parameters.

. We find that the owner workstation service distribu-
tion may affect subtask completion time distribution,
especially when the ratio of subtask time to utiliza-
tion rate is small and workstation utilization rate is
high. For example, Gamma and Weibull distribu-
tions are likely the best-fit distribution if an
exponential owner service time is assumed. On the
other hand, Lognormal may become the best-fit
distribution for Lognormal or truncated normal
service distributions. However, such a phenomenon
of service distribution sensitivity seems to weaken as
the ratio of the demand of task time over work-
station utilization rate increases. This phenomenon
can be explained if we note two facts: 1) Different
service distributions will result in different busy
cycle distributions at a workstation and 2) the
distribution of the job completion time will be
effected more significantly if only a small number
of the cycles are required.

. Statistically, we may conclude that the Gamma
distribution may be a better approximation if the
system utilization is low (5-15 percent) and the
demand of the parallel subtask is reasonably long.
The Weibull may become the best-fit distribution
when the owner workstation utilization is medium
high (20-50 percent) and the Lognormal distribution
also appears frequently in the best-fit list when the
owner workstation utilization is high (> 50 percent).
However, comparing the distribution patterns of
these three distributions, Gamma, Lognormal, or
Weibull, we find that the difference among them is
very small. Based on such a fact, we will simply use
the Gamma distribution as the approximation of
subtask completion time at each workstation in the
following analytical analysis for parallel task com-
pletion time using multiple workstations. In Fig. 1,
Gamma distribution fitting is demonstrated in all of
our simulation examples.

. Under certain circumstances, such as extremely low
workstation utilization, the (simulated) parallel
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subtask completion time may be the same as the
(simulated) demand. For instance, when there is no
parallel task preempted by local sequential jobs the
resulting distribution is hyper-exponential.

The above simulation observations are consistent with
the general result of queuing theory where the stationary
state job finishing time can be approximately Erlang
distribution, which is a special case of Gamma Distribution.

3.2 Completion Time of Parallel Task

We now examine the parallel task completion time T for the
multiple workstation case. The purpose is to discuss the
effects of different system parameters on parallel task
completion time. Using the probability expression (15) in
Section 2.2, we are able to evaluate the distribution of
parallel task completion time T analytically given that we
know the distribution function of UkðSÞjSk > 0. From the
discussions in Section 3.1, we know that Gamma can be
used to approximate the random variable UkðSÞjSk > 0. In
this section, we estimate the mean and standard deviation
of parallel task completion time by assuming UkðSÞjSk > 0
is Gamma distributed with mean and standard deviation
given by (17) and (18). Correspondingly, we use simulation
to verify the analytical results. In the simulation, we assume
that the workstations are i.i.d. M/G/1 queuing systems with
Lognormal distributed services times. Four parameters are
examined in our computations: total demand of parallel

task (W), coefficient of variation at each workstation (�), the
number of workstations (m), and workstation utilization
rate (�). In order to graphically show the results of the
parallel task completion time, two of the four parameters
are discussed in each of the following examples (figures).
The remaining parameters will be assumed to the values
shown in Table 2 if not specified.

Note that the workstation subscriptions for the para-
meters are omitted since they are the same in a homogenous
system.

3.2.1 Mean of Parallel Task Completion Time

Analytical results using (15) are demonstrated in Fig. 2,
where UkðSÞjSk > 0 is approximated by the Gamma
distribution. The vertical axis in the figures represents the
logarithm of the expected parallel task completion time
with a base of 2, that is, log2ðEðT ÞÞ.

Effect of service station variation. Fig. 2a, Fig. 2b, and
Fig. 2c provide the mean of parallel task completion time for
different coefficient of variations of service time, different
workstation utilization rates, and other parameters. The
coefficient of variations of service distribution seems to
have very little effect on parallel task completion time T
when the workstation service rate is uniformly low. There-
fore, the service station coefficient of variation can be
ignored when the workstation utilization is low. This
conclusion is consistent with the conclusion drawn from
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the research by Kleinrock and Korfhage [9] where Brownian

motion is used to approximate the parallel task completion

time. However, when the owner workstation utilization is

high, Fig. 2a indicates that the CV will have an effect on

completion time that should not be ignored.
Effect of Total Demand of Parallel Task: For the given

system parameters, we can expect that the parallel task

completion time will increase when the total demand of the

parallel task increases. The relationship between comple-

tion time and total demand of parallel task can be seen in

Fig. 2b, Fig. 2d, and Fig. 2f. Our computational analysis

clearly indicates that the relation between the expected

parallel task completion time T and the total demand of the

parallel task (though it seems concave down slightly) can be

virtually approximated by a linear function, regardless of

system utilization and service distribution. Following this

conclusion, given the same environment, we can easily

estimate the parallel task completion time as long as we

know the total demand of the parallel task. This will help us

to make certain decisions such as whether more work-

stations are necessary to expedite the task completion time

or whether migration to another workstation with lower

utilization is desirable. This result is also consistent with the

findings by Kleinrock and Korfhage’s results [9].
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Fig. 2. Expected parallel task completion time. (a) m = 8, W = 64. (b) m = 8, � ¼ 0:2. (c) W = 64, � ¼ 0:2. (d) m = 8, � ¼ 4. (e) W = 64, � ¼ 4. (f) � ¼ 4,

� ¼ 0:2.

TABLE 2
Parameters



Effect of the Number of Workstations: The pattern of
completion time for a different number of workstations is
given in Fig. 2c, Fig. 2e, and Fig. 2f. We can see marginal
parallel completion time reduction as the number of
workstations increases. Such a phenomenon clearly indi-
cates the importance of choosing the proper number of
workstations. In fact, our computational experiment shows
that the use of an excessive number of workstations may
even contribute negatively to parallel task completion time.
This performance decrease is not a direct result of Amdahl’s
law [1], [16], that is, it is not caused by insufficient
parallelisms. It is caused by the growing variation in the
combination of subtask completion times resulting from
increasing the number of workstations. More specifically,
the positive contribution of each additional workstation
may reduce as the number of workstations increases,
whereas each additional machine may add negative
influence on the parallel task completion time due to
additional variation to the system. Task ratio, the ratio of
the size of a parallel subtask and the mean and variance of
the local sequential job service rate, is an important factor in
determining the parallel subtask finish time [11].

Effect of Workstation Utilization: Fig. 2a, Fig. 2d, and
Fig. 2e illustrate the relationship between the parallel task
completion time and workstation utilization. We observe a
near linear relationship between log2 (parallel completion
time) and workstation utilization when the utilization is
relatively low, less than 0.3 in our examples. In other words,
a simple exponential (with base 2) function can be used to
approximate the relationship between the parallel task
completion time and the workstation utilization rate.

However, it is important to point out that the relation-
ship between workstation utilization and parallel comple-
tion time becomes fuzzy when the workstation utilization
increases beyond some high level. Our simulation results
indicate that the parallel completion time will become less
predictable when the workstation utilization rate is high
(> 60 percent). Process migration migrates parallel process
(subtask) from highly utilized machines to lowly utilized
machines. The relation given here confirms that process
migration is essential for nondedicated network computing
to provide expected high performance.

In order to verify the results from our analytical model,
simulations are performed for the examples discussed. Fig. 3
demonstrates the relative errors of the simulated and
predicted parallel task completion time. The vertical axis
in the figures represents the relative error simulation-analytical

simulation

ÿ �
.

We observe that our analytical approximation and simula-
tion results are reasonably close, especially when the
workstation utilization is low and the number of work-
stations is not very large. Under the circumstances, the
predicted parallel completion time tends to be a little higher
than that from simulation. However, the result may be
reversed as the workstation utilization and the number of
workstations increases (see Fig. 3e). It is also interesting to
observe that the difference between the simulation and
analytical results is not sensitive to total workload (W)
when workstation utilization rate is low (� � 0:30) or when
service variation is low (� � 2:0). See, for instance, Fig. 3d
and Fig. 3b, respectively.

Our simulation results confirm that, with the Gamma

distribution as the subtask completion time at each work-

station, (16) provides an adequate performance prediction

for nondedicated homogeneous computing, when the

machine utilization is reasonable (< 60 percent).

3.2.2 STD of Parallel Task Completion Time

Fig. 4 demonstrates the relationship between the standard

deviation and system parameters. The vertical axis repre-

sents the logarithm of the standard deviation of the parallel

task completion time with a base of 2, that is log2ðSTDðT ÞÞ.
Effect of variation of workstation utilization. Combin-

ing Fig. 4a, Fig. 4b, and Fig. 4c, we find that, although the

variation of service rate has only a minor effect on the

variation of parallel task completion time when the system

utilization is low, a very significant effect may result when

the workstation utilization rate increases (see Fig. 4a). This

again confirms the importance of process migration in

nondedicated computing.
Effect of demand of parallel task time. From Fig. 4b,

Fig. 4d, and Fig. 4f, we find that the standard deviation of

the parallel completion time seems to have a very similar

pattern as that of mean parallel completion time. It is close

to a linear function of total demand of the parallel task

(refer also to Fig. 3b, Fig. 3d, and Fig. 3f). Note that the

vertical axis is the logarithm of the standard deviation of the

parallel task completion time. This result indicates that the

standard deviation of parallel task completion time seems

more volatile than the result from Kleinrock and Korfhage

[9], where they derived a formula showing that standard

deviation of parallel task completion time is proportional to

the squared root of the subtask finish time.
Effect of Workstation Utilization. Similar to the mean of

parallel task completion time, the workstation utilization

has quite a significant influence on the standard deviation

of task completion time. Therefore, it is important to make a

proper task allocation and migration if workstations have

high utilization, especially when we have nonuniform

workstation utilization.
Effect of the Number of Workstations. As the number of

workstations increases, from Fig. 4b, Fig. 4d, and Fig. 4f, we

observe that the standard deviation of the parallel task

completion time decreases, although such an influence

seems insignificant.
The analytical results for the standard deviation of

parallel task completion time are also compared with the

simulation results. When we use the same relative error

measurement simulation-analytical
simulation

ÿ �
as with the mean parallel

task completion time, we find that the errors are, in

general, less than 20 percent. Our simulation results

indicate that our analytical results slightly underestimate

the standard deviation of parallel completion time,

particularly when the workstation utilization rate and

the coefficient of variation are high. This diversion does

not influence the applicability of the newly proposed

model since parallel processes would be migrated from

highly utilized machines to underloaded machines in

practical engineering environments.
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4 HETEROGENEOUS NONDEDICATION SYSTEM

Optimal parallel task partitioning for homogeneous com-

puting seems straightforward, equal-load partitioning. This

will not be true for heterogeneous systems. In fact, a

primary concern in a heterogeneous environment is how to

partition the parallel tasks and allocate the subtasks to

workstations to achieve maximum performance. In this

section, we study distributed systems with heterogeneous

utilization, service rates, and distribution patterns across

different workstations.

For a given parallel subtask with demand wk, from

Section 2, we have the expression of mean and standard

deviation EðTkÞ;VðTkÞ of the subtask completion time at

each workstation k. From our discussion of homogenous

systems, we know that the mean subtask completion time

and workstation utilization have a greater influence on the

final parallel completion time than on the variation of

service distribution. Hence, it is natural to partition the

parallel task W into subtasks with workload wk for

workstation k such that the same mean subtask completion

time can be reached at different workstations. Let a be the

value of such a mean of the subtask completion time. We

call such a partition approach mean time balancing

partition. Note that, from (7), the expected subtask comple-

tion time is wk
1ÿ�k . The subtask workload wk for the kth

workstation is determined by equation

wk
1ÿ �k

¼ a or wk ¼ að1ÿ �kÞ: ð19Þ

Note that the total demand of the parallel task is W

which yields a ¼W=ðmÿ
Pm

k¼1 �kÞ. Hence,
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Fig. 3. Relative error of E(T) between analytical and simulation result. (a) m = 8, W = 64. (b) m = 8, � ¼ 0:2. (c) W = 64, � ¼ 0:2. (d) m = 8, � ¼ 4. (e) W =

64, � ¼ 4. (f) � ¼ 4, � ¼ 0:4.



wk ¼
Wð1ÿ �kÞ
mÿ

Pm
k¼1 �k

¼W
m

1ÿ �k
1ÿ ���

; ð20Þ

where ��� ¼ 1
m

Pm
k¼1 �k, is the average system utilization. The

corresponding mean and variance of subtask completion

time at workstation k, from (8), is

EðTkÞ ¼
wk

1ÿ �k
¼ W

mð1ÿ ���Þ ð21Þ

and

VðTkÞ ¼
�k

ð1ÿ �kÞ3
ð�2
k þ 1Þ
�k

wk ¼
�k

ð1ÿ �kÞ2
ð�2
k þ 1Þ
�k

W

mð1ÿ ���Þ :

ð22Þ

The parallel task partition rule (20) is focused on

balancing the mean subtask completion time at work-

stations (referred to by the authors as the mean time balance

partition). Identical average subtask completion time parti-

tion seems to be the best partition for dedicated hetero-

geneous systems. Unfortunately, this partition may not

guarantee optimality in nondedicated heterogeneous sys-

tems since, from (22), the variation of the subtask complete

time may be different at different workstations. However, it

is encouraging to see from (22) that the above partition

approach not only balances the mean subtask completion

time at each workstation but also results in a smaller

variation of the subtask completion time than that of the

equal-load partition. That is, this partition approach results

in a higher variance for workstations with lower than the
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Fig. 4. STD of parallel task completion time. (a) m = 8, W = 64. (b) m = 8, Rho = 0.2. (c) W = 64, � ¼ 0:2. (d) m = 8, � ¼ 4. (e) W = 64, � ¼ 4. (f) � ¼ 4,

� ¼ 0:2.



average utilization rate ��� and lower variances for work-

stations with higher utilization rate than ���.
For the mean-time partition approach described above,

we simulated the system for the two-workstation case. In

the following discussion, we use default values �i ¼ 0:2,

�i ¼ 4, i ¼ 1; 2, and W ¼ 64. Fig. 5 shows the predicted

performance under the mean-time partition. We compare

the performance of mean time balance partition with the

equal-load partition illustrated in Fig. 6. In the equal-load

partition approach, we divide the total demand of the

parallel task into m equal subtasks for each workstation.

The vertical axis of Fig. 6 is the relative ratio of the parallel

task completion time between the two different partitions

EðT jequal partitionÞ ÿ EðT jmean balance partitionÞ
EðT jequal partitionÞ :
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Fig. 5. E(T) of a two-workstation system with the mean-time balance partition. (a) W = 64, �i ¼ 2. (b) �2 ¼ 0:2, �i ¼ 2. (c) �2 ¼ 0:2, �2 ¼ 2, W = 64.



From Fig. 5a, we find that the difference in workstation

utilization does not have a significant influence on the

parallel task completion time when the mean time balance

partition is used. However, as indicated by Fig. 6a, with the

equal-load partition, significantly more time is required to

complete the parallel task when the difference of the

utilization rate between the workstations increases. It is

not difficult to predict that the performance difference

between these two partition strategies will continue to

increase as the number of workstation increases. As shown

in Fig. 5b and Fig. 5c, with mean time balance partition, the

rate of change of the mean parallel completion time

becomes quite moderate as the one of the workstation

utilization increases. This is because the increase in the

utilization rate of one workstation is actually shared by both

workstations. However, from Fig. 6b and Fig. 6c, we

observe that such a sharing effect would not exist for the

equal-load partition approaches.

Fig. 7 demonstrates the standard deviation of the parallel

task completion time when the mean balance partition is

used. It seems that the relationship between the base 2

logarithm of standard deviation of the parallel task

completion time and the system parameters may be

approximated by a linear relationship.

5 MAIN RESULTS

Based on the analytical and experimental results given in

the last three sections, we propose the following procedure

to serve as a guideline in choosing the best number of

workstations for parallel processing in a heterogeneous

environment. Since a homogeneous system is a special case

of a heterogeneous system, it can apply to homogeneous

systems as well:
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Fig. 6. Relative error of E(T) between mean time balance and equal load partition. (a) W = 64, �i ¼ 2. (b) �2 ¼ 0:2, �i ¼ 2. (c) �2 ¼ 0:2, �2 ¼ 2, W = 64.



Procedure (Degree of Parallelism):

1. Start from a list of idle machines that are lightly loaded

over an observed time period.

2. For the given number of workstations to be used, use the

partition strategy equation (20) to partition and allocate

subtasks to each workstation.

3. Predict the mean and STD of parallel task completion
time via (14), where Gamma function can be used to
approximate the random variable UkðSÞjSk > 0.

4. Repeat Steps 2 and 3 with different numbers of work-
stations to identify the best number of workstations that
should be used under the distributed environment.

This procedure consists of two parts: workload distribu-

tion based on (20) and performance prediction using (14).
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Fig. 7. STD of a two workstation system with the mean-time balance partition. (a) W = 64, �i ¼ 2. (b) �2 ¼ 0:2, �i ¼ 2. (c) �2 ¼ 0:2, �2 ¼ 2, W = 64.



Equations (20) and (14) are the two main results of this
study. They can be used together to form the above
automatic partition procedure. They also can be used
separately for load partition and performance prediction,
respectively.

It is important to notice that we assume the parallel
applications belong to the class of programs that can run
efficiently in a dedicated parallel-computing environment.
We have not considered the effects of synchronization,
communication, process migration, or granularity of paral-
lelism. While, in a heterogeneous environment, some of
these overheads can be implicitly included in the service
time of the workstations, this study, however, does not
intend to provide an accurate performance prediction for a
given application. Given that the program executes effi-
ciently in a dedicated system, we wish to provide a
guideline for the feasibility and limitation of parallel
processing in a nondedicated distributed environment. By
considering parallel applications with no parallel overhead,
we provide an upper bound on the expected execution time
for a given workload. This upper bound is general. It is the
upper bound of the distributed system and applicable to
any parallel applications. On the other hand, it only serves
as an upper bound. The actual performance of a nonperfect
parallel application could be far below the upper bound.

The machine utilization and sequential job service rate
may vary over time in a nondedicated environment. Some
distributed monitor tools may be needed to use (14) and
(20) appropriately. Be prepared to migrate parallel pro-
cesses from highly used machines to lightly loaded
machines during runtime when it is necessary.

A tacit assumption of the above procedure is that the
parallel task can be partitioned freely into small pieces. If
the parallel task has limited parallelism and has inherited
function/data dependence, then the load partition will be
more involved, which is beyond the scope of this study.

6 CONCLUSION

In this paper, we present a performance model to study the
feasibility and limitation of parallel processing in a
nondedicated distributed environment, where parallel task
has a lower priority than local sequential jobs. We assume
that the parallel application can achieve the perfect speedup
in a dedicated environment and assume sufficient idle
machines are available in the distributed environment at
any given time. Based on this model, we derive a
performance prediction formula which provides the per-
formance upper bound and a measure of feasibility of
parallel processing of a nondedicated distributed environ-
ment. Several interesting findings have been observed. For
instance, we find that the variations of sequential job service
rate seem to have very little effect on parallel task
completion time when the service rate is uniformly low.
There is a near linear relation between log2 (parallel
completion time) and workstation utilization when the
utilization is relatively low. A procedure is also proposed to
identify the number of workstations that should be used for
a given parallel workload.

The primary technique used in the model development
is a combination of queuing theory and simulation

experiments. Stochastic analysis provides a queuing model,
whereas the parameters are determined through simulation
experiments. Through this combined approach, we attempt
to present a simple and effective model.

The analytical approximation for parallel task comple-
tion time given in this paper is fairly close to the simulation
result from our experiments. While we conclude that
machine utilization rates of workstations have a dominant
affect on the parallel job completion time, we also find that
the variation of machine utilization has a very significant
effect on distributed parallel processing. When the variation
of machine utilization is very high, the performance of
nondedicated systems becomes unpredictable.

Process migration is identified as an essential mechanism
for nondedicated systems. Given that process migration is
necessary and feasible (and considering the migration cost,
live variable analysis, and the variation of machine
utilization) determining when and where to migrate is still
an unsolved issue. This, we believe, is a topic worthy of
further investigation.
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