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PIM: Challenges and Opportunities

= Big Data
= High Performance and Could Computing
= Intelligent Computing (Al and Deep Learning)

(Computing) Performance
Data Access Performance

Integrated Compute-Data Performance
(PIM)
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Why Bottleneck?

= Processor performance
Increases rapidly

Source: Intel | ejserson, Charles E., et al. "There’s plenty of room

I- |~ 0 i at the Top: What will drive computer performance
- Unl processor 52 A) untll after Moore’s law?." Science 368.6495 (2020).
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Memory-bounded speedup (1990), Memory wall problem (1994) Source: 0CZ



\\ The Three Laws

= Tacitassumption of Amdahl’s law % 1%

o Problem size is fixed « Work: 1
o Speedup emphasizes on time reduction . (1-a)p

= QGustafson’s Law, 1988 L]

_ _ [e—— Work: a+(1-a)p >
o Fixed-time speedup model
Sequential Time of Solving Scaled Workload
Parallel Time of Solving Scaled Workload

=a+(1—a)p

Speedupfixed—time =

| cT (1-a)G(p)
= Sun and N1’s law, 1990 , Work: a+(L-2)G(p)
o Memory-bounded speedup model

\

Speed _ Sequential Time of Solving Scaled Workload
peetUiPmemory-bounded = “por 1ol Time o f Solving Scaled Workload

_a+(1-a)G(p)
Ca+(1-a)G)/p
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\\ Implication of Memory-Bounded Model \’// |

= W = G(M) shows the trade-off between computing & memory
W, the work in floating point operation

M, the memory requirement

G, the data reuse rate

It is application/algorithm dependent

0O 0O O O

= W = G(M) unifies the models
o G(p)=1, Amdahl’s law
o G(p) =p, Gustafson’s law

= Reveal memory is the performance bottleneck

o In parallel processing, scalability, as well as sequential processing,
o The Memory-Wall problem (1994)

X.H. Sun, and J. Gustafson, "Toward A Better Parallel Performance Metric," Parallel Computing, Vol. 17, pp.1093-
1109, Dec. 1991.
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N Memory-Wall vs Memory-Bound
= Memory hierarchy is introduced to solve the memory-wall problem

= The bound of fast memory
= (sequential/parallel) Performance (speed) varies with problem size
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N Why Bottleneck?

= Processor performance

Increases rapidly
Source: Intel | aiserson, Charles E., et al. "There’s plenty of room
Q U ni_processor: ~52% untll at the Top: What will drive computer performance

after Moore’s law?." Science 368.6495 (2020).
2004 10000000

o Aggregate multi-core/many-
core processor performance
even higher since 2004

1000000

100000

Uni-processo

1000

Performance

I I
| |
| |
| |
| |
10000 I I
|
| |
| |
| |
|

= Memory: ~7% per year

10

o Storage: ~6% per year 1

= Processor-memory speed gap
Keeps Increasing

25%/yea]|r

7%lyear
9%

Multicore technology (2004), Big Data Initiative (2012) Source: OCZ
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N Amdahl’s Law for Multicore (Hill&Marty08s)

= Speedup of symmetric architecture

1
Speedupsymmetric (T,N,T7) = 1—f T

perf (r) " perf (r)-n
= Speedup of asymmetric architecture
SpeEd'Jpasymmetric(f N, 1) = =
1-f N f
perf(r) perf(r)+n—r
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Scaled Speedup under Memory-wall

= Assuming perfect parallel, data access time, w, , Is the constraint
We n Wp _ W n WIOI
perf(r) perf(r) perf(r) m-perf(r)

=> Wp = me

= Fixed-time speedup
W, N W
perf(r) m-perf(r) MM Wo 1 ¢y m:

We 4 Wp Wc"'Wp £ Wp
perf (r) perf(r) = 74

= Memory-bounded speedup

o With g(m)=0.38m*? memory-bounded speedup is bigger than fixed-
time speedup

o g(m) equals one, memory-bounded is the as fixed-size, g(m) equals m,
then memory-bound is the same as fixed-time



\ N
N Memory-wall Effect v

= Result: Multicore is scalable, but under the assumption

o Data access time is fixed and does not increase with the amount of
work and the number of cores

= Implication: Data access is the bottleneck needs attention

= Conclusion

o The multicore result can be extended to any (computing) accelerator
o Data access is the performance bottleneck of

= Sequential processing

= Multicore/Accelerator
= Parallel processing
= Scalability

= Question

o How to reduce data access delay?
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Memory-wall Solution: Memory Hierarchy

L1
Inst cache

Data Locality/Concurrency
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\\Advanced Solution: Deep Hierarchy & Concurrengl//

Assumptions
Iti-
> Memory Multi _:E:I]u tI:Sue/pU\Out-of-Order Execution
Hierarch . uiti-threading Speculative Execution
; y Multi-Core Processor Runahead Execution
Local Ity Registers

» Concurrence: Multi-Level Cache / L1Cache  \ Pipelined Cache
Data access Multi-Banked Cache/ Non-Blocking Cache
L2 Cache Data Prefetching
pattern / L3 Cache \ Write Buffer
o Data stream Multi-Channel Pipeline .
Multi-Rank Main Memory (DRAM) N?:)n-I?IctmrI](.mg
. refetching
Multi-Bank Persistent Memory (NVRAM) Write Buffer

Parallel File/ Flash-Based SSD \

Systems
HDD
/ Archival Storage (Tapes, ...) \

Deep Memory-Storage Hierarchy with Concurrence




= GPU, DSP, Al Chip

o GPU is a chip tailored to graphics
processing, DSP is for signal
processing, and Al chip is designed
to do Al tasks

= Limited solution

o Assume data are on the chip

= Limited application
o Computation Accelerator

o Please recall our memory-bound
results for multicore




N New Solution: PIM chip

= PIM

o Processing in memory (also called processor
in memory) is the integration of a processor
with RAM on a single chip.

o NDP (Near-memory Data Processing)
o ISP (In-Storage Processing)

= Computer power is weak
o A full kitchen needs a refrigerator

= Limited application
o Data movement reducer
o A helper/mitigator




\\ BaSIC Idea: Separate CPU & MemﬁryUndervon Neumann ’//

Memory Stall Time (MST)

CPU.time = IC X (CPlgge + Memory stall time ) X Cycle.time

= Let reducing MST be the final goal of memory systems
o Reduce data access delay
o Separate the concern of memory systems

= The measurement of memory system performance

o AMAT (Average Memory Access Time)
AMAT = Hit time + MR X AMP

o C-AMAT (Concurrent-AMAT)
o APC (Access Per memory active Cycle) = 1/C-AMAT

D. Wani & X.-H. Sun‘ "APC: A Novel Memori Metric and Measurement Methodoloii for Modern Memori



N .
N Reduce Memory Stall Time

The Traditional AMAT model
CPU.time = IC X (CPl,ye + frnem X AMAT) X Cycle.time

Memory stall time

The New C-AMAT model

CPU.time=ICx(CPI +f

exe mem

XC—AMATX(1-overlapRatio ., ))xCycle.time

Memory stall time

= Reducing MST becomes reducing C-AMAT



N
Reduce C-AMAT

N
A

= C-AMAT Is Recursive AMAT = HitCycle; + MR; X AMP,

Where AMP, = (HitCycle, + MR, X AMP,)

Where 0
C-AMAT, = C—l + MR, x &, x C-AMAT,

H,

H, _PMR,_pAMR Gy,
C = AMAT, = ==+ MRy X iz X C — AMAT; % ="MR. " AMP, G,
2 1

= His hittime

= MR is the miss ratio

= C, is the hit concurrency

» K is the overlapping ratio (pure miss cycles over miss cycles)
= A pure miss cycle is a miss cycle with no hit

With Clear Physical Meaning



C-AMAT : Four Types Cycle Analysis

= Data (memory) centric analysis: memory cycles
= Memory cycles can see the overlapping
Memory Cycles
1 2 3 4 5 6 7 8 9 10 11 12 13
31_
| az_ 1 |
o, I
§ 34— . -
o
. a; I
37_:_ l]
i ag— |
- hit-a.ccesscycle of a hit memory access | BT _
[ nit-access cycle of a miss memory access 310—
- | ] non-pure miss-access cycle of a miss memory access § i 3
- pure miss-access cycle of a miss memory access
| hit | hit | hit ‘mixed‘mixed‘ mixed'mixed'mixed' mixed miss' miss ‘mixed‘mixed‘ :
C 1 3 3 4 5 4 3 3 2 2 3
ch |1 2 2 2 2 2 1 0 0 1 2
clm) 1 1 2 3 2 2 3 2 1 1
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C-AMAT Is Recursive: Data Access Time

Hit Time
1 clk

300 clks

Main
Memory
(DRAM)

Hit Concurrency

= Concurrent Average Memory Access Time (C-AMAT)

H H H H
=—1+MR1><K1><<C—2+MR2XK2X<C—3+MR3XK3XCMem)>

CH, H, Hs Humem
= Example
o Miss Rate: L1=10%, L2=5%, L3=1% pMR pAMP. AMP. C,, C,: L1=7%, 10, 10, 5, 4
0 Kk L1=056 12=0.6 1L3=0.8 L2=3%, 60, 40, 9, 6
0 C-AMAT=~0.696 L3=0.8%, 400, 300, 16, 12
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\)ptimization: Layered Performance Matching

LPM with C-AMAT
T Iy 7

Request rates
of computing
components

Supply rates

of Ly cache APC1

L1 cache

Request rates
of L1 cache

IPC__xf
Supply rates of LF)I\/“:\)1 = e e
Last level cache APC2 T T T APC
Last level cache :
Request rates of 1 1
Last level cache LPMR. — IPCexe X fmem X MRl
, =
Supply rates of .
main memory APC3 _L Main memory APC,
IPC._xf xMR xMR
LPMR3 — exe mem Ri 2
APC,

= Match the data request and supply at each layer
= C-AMAT can increase supply with effective concurrency and locality

= Transfer a complex global problem into simpler local match problems
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Layered Performance Matching (LPM)

= The Matching ratio values of request and supply at each layer are
given and the matching process is well designed & analyzed

e
v vy v v Yy v v
a(1) =I1Cf,em

«  w(1)=ICF,, C-AMAT(1)
IL1 C?Che B B B |

v v LA/ v v
— a(2) = a(1) py(1) A2) =r)l(1) Prml1)

— w(2)=pu(1) w(1) v(2) = APC(2)

] . L2 Cache ]

v v v v \d
a3 = al2) pyl2) : >JM3, _\(2) pu2)
«— w(3) = u(2) w(2) v(3) = APC(3)

. L3 Cache . |
\ \
L ()= al3) pl3) A) = A3) pu(3)

< w(4) = u(1) w(3) via) = APC(4)

|  MainMemory |

Simulatable ==) Measurable m==) Controllable == Optimizable
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\\ Deep Memory-Storage Hierarchy: a general match \I//

= Do we need to use all layers every
time? \
NO
= Flexible tier selection with no v
; ; L2 Cache
inclusive
= Concurrent accesses Now can ¥ |L3 cache \
concurrently access on different tiers |
= Tier: memory device with different B \
performance M Persistent Memory \L
= Layer: memory hierarchy with data (NVRAM)
inclusiveness " |Fiash-Based ssp \
= A general match in Deep Memory- v
Storage Hierarchy (DMSH) HDD \
Y Archival Storage (Tapes,...) \

Persistent memory blurs memory & storage ~ DMSH with Concurrence

Y. Liu and X.-H. Sun‘ “Cal: Extendini Data Localiti to Consider Concurrenci for Performance Oitimization"’



\ Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an
application’s data access requirement for any matching
parameter T, > 0, then this memory system has removed the
memory wall effect for this application.

- N -
Data access
flow model > Off-chip
side
Processor < >
side
-
Water flow -
model "
Upstream < "l Downstream
side > side
L |
Layer 1 Layer 2 Layer 3 Layer 4

X.-H. Sun and Y.-H. Liu‘ "Utilizini Concurrenci Data Access: A New Theori" in Proc. of LCPC2016‘ Seit.
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N Next Step: Include PIM into the Picture A

Memory Stall Time (MST)

CPU.time = ICqye X (CPloye + Memory stall time ) X Cycle.time
+ [Cpim X CPlyiy X Cycle.timep;y,

= Add PIM into the performance formulation

= PIM is a way to reduce request and is a trade-off of
computing and MST

= Result: data movement cost decides where to do the
computing
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Data Flow Sluice Gate Control

= Two classes of computing devises, powerful CPU (multicore, GPU,
XPU. Etc.) and less powerful PIM (NDP, ISP, etc.)

= Sluice gates decide which data are processed on PIM

= (rest) Data flows from memory in a rhythmic, concurrent matching
fashion, passing through sluice gates (layers) before reach a CPU,
then return to memory

= A general structure:
 Fin-in, fin-out, branch,
] More than one PIM/NDP/ISP and more than one CPU/GPU/XPU
] Staged execution
[IStorage is the last layer of the data movement hierarchy
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Data Flow/move under von Neumann

= Memory hierarchy with PIM (von Neumann)

= Optimize [fcompute + data accessJ via Sluice
Gate theory

= Data flow from memory to CPU with minimum
MST and conduct processing in memory when
necessary

m Dataflow,

I:I\w r/  I—
Parallel or Distributed File
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Dataflow,, : workload Offloading in PIM

O CoPIM: a Concurrency-aware PIM workload offloading architecture

O PEI: alocality aware (LLC miss) offloading approach to decide where the
PIM operations should be executed

O GraphPIM : utilizing the fact that atomic functionalities cause inefficient
memory system, but are suitable for PIM

Most of these partitioning strategies aim to move highly 'data-intensive'
portions of the application to PIM logic units
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A New Metric considering Concurrency

O Concurrent-AMAT (C-AMAT) is the metric used in LPM

O Based on C-AMAT, memory stall is due to pure miss, where pure miss is miss
which contains at least one pure miss cycle and pure miss cycle is a miss cycle
which does not overlap with any hit access

O Pure miss cycle provide a better way than miss to determine offloading

0 # of LLC Pure Miss Cycles
~ # of Total CPU Cycles
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A New Metric considering Concurrency

O An example

Bellman-Ford Shortest Path(G, w, v)

| fori=1to |G.V]-1 do:
if v is source then v.d = 0 s
else v.d = infinity
v' = null

: fori=1to|G.

LA ELD —

10: for each edge(u,v) with weight w in edges:
L ifvd > ud+ wiu,y) L e s
12: return FALSE Cycle

13: return TRUE W hit s hit/miss mmpure miss

(@) (b)

PIMSim, an open-source PIM simulator based on Gem5
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Performance Comparison

OPEI M GraphPIM W CoPIM

0% Speedup by
. 19.5% than PEI
’ with 51.1% fewer
T T % e % L offloaded

- =23
8 8
2 2

N
=}
=

% Offloaded PIM Instruction
- w
Q (=]
2 2

" BFS PR SP BFS PRSP BFS PRSP BFS PR SP BFS PRSP inStructionS
p2p Gnutella30 com-DBLP com-Youtube wiki-Talk soc -LiveJournall
Percentage of offloaded instructions into memory
. ) - OCPU-only ‘QPElL _ @GraphPIM  ECoPIM ) )
£
08
speedup by g
11.4% than g
; o 0.4
GraphPIM with £
T 0.2
33.0% fewer : 1
offloaded ’ BFS PR SP |BFS PR SP |[BFS PR SP |BFS PR SP |BFS PR SP |Gm
. . p2p-Gnutella30 com-DBLP com-Youtube wiki-Talk soc-Livelournall
Instructions

Normalized performance evaluation using graphs of
different sizes, GM: geometric mean.



N\ Direct LPM Matching \ 4

O LPMR(]) is the matching ratio at cache level |. Let A(l) be the
request rate at cache level |. and let v(]) be the supply rate at cache
level I. LPMR() = %

O understanding of Layered Performance Matching: the use of LPMR(i)

AN \ ) S X NNCREINN \ \ \ \ N
l v v v v v v v v v \ Yy v
(1) = ICf e A1) = IPCoe e
(1) =ICf,,, C-AMAT(1) v(1).= APC(1)
L, . L1Cache i |
v v vy v v v
e a@ = a() p,1) N = AL onll)
— w(2)=p(1) w(1) v(2) = APC(2)
L2 Cache -

Y \é

«— w(3) = u(2) w(2) v(3) = APC(3)

. L3cache . | —
\ \J

- a(4) = a(3) pm(3) A(4) = A(3) py(3)

<« w(4) = u(1) w(3) v(4) = APC(4)

| Main Memory | LPMR(3) >|T W5 e 1 22

A is the key identification of PIM offloading ZORION




\' Experimental Results

O Execution time:

datasets: p2p-Gnutella30.....soc-LiveJournall
application: BFS (Breadth-First search)
A: 60%

O CPU-only O PEI B GraphPIM B CoPIM = LPM

Normalized Execution Time

p2p-Gnutella30 com-DBLP com-Youtube wiki-Talk soc-LivedJournal1

Note: LPM shows better offloading efficiency than other offloading strategies
under the BFS application.
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N LPM Matching: 1/0-level implementation

= PIM assumes data is already in memory
= Storage is the last level of the memory hierarchy (DMSH)V
= Start at where the data is
= Advantage
- Can be implemented and verified

= Challenges
= Data management v/

= Network impact V
= Passing operation demands with data request +/

Let us do it (on going CSSI framework)

Anthoni Kouikas‘ Hariharan Devara"an‘ and Xian-He Sun. "Hermes: a heteroieneous-aware multi-tiered




\ Hermes: A Multi-tiered 1/0 Buffering System"/) |

Application-aware multi-tier matching
Start at the log file

An example of memory/storage integration
An implementation of the

Dataflow, concept

1/0 buffering requests
VAN

ared Burst Buffers
l(e.g., SATA SSD)

Capacity

AV

Parallel or Distributed File System
(e.g., arrays of HDD)

Lack of existing

Lack of software for
intelligent managing tiers
data ; of
placement in heterogeneous
DMSH buffers.
Lack of .
automated Lack of native L?:cl,(n? iﬁ: F:li?rse
data retrieval buffering '
and _ supportin

Complex data placement
among the tiers of a deep
memory and storage
hierarchy

movement
between tiers

\ HDF5.

Independent
management of each tier
of the DMSH



\\Take Home Messages

® What are the challenges of PIM (from performance)?
O PIM is data movement reducer for the memory-wall problem

O Itis inherently tight to the complex memory system performance,
including storage

® What are the opportunities (from performance)?
O Many new applications are data intensive and data driven
O An integrated model, Dataflow,,, is developed where PIM is a
pivoting factor (an 1/0O implementation)

" How to do it?

O Theoretical methodology and practical experience
O There is a merging of memory and storage, memory and processor

® Many things remain open

O From language to system to ...



N Conclusion v

= PIM should be utilized with the consideration of memory
system and multicore/CPU

= Opportunity is plenty, as well as challenges
- Dataflow,

= The potential is high

O MANY THINGS NEED TO

\ HARDWARE TO SOFTWA%%

10
FRO
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Thank you
Any questions?

The Challenges and Opportunities of Processing-in-Memory:
A performance point of view

sun@iit.edu
WWW.CS.11t.edu/~scs

The SCS laboratory at ihellllinois Institute of Technology &

Collaborators
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