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PIM: Challenges and Opportunities
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DF

Memory Wall

◼ Big Data

◼ High Performance and Could Computing

◼ Intelligent Computing (AI and Deep Learning)

(Computing) Performance 

Data Access Performance

Integrated Compute-Data Performance 

(PIM)
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Why Bottleneck?  The Memory-wall Problem

◼ Processor performance 

increases rapidly

❑ Uni-processor: ~52% until 

2004

❑ Aggregate multi-core/many-

core processor performance 

even higher since 2004

◼ Memory: ~7% per year

❑ Storage: ~6% per year

◼ Processor-memory speed gap 

keeps increasing

Source: Intel

Source: OCZ

9%

Memory-bounded speedup (1990), Memory wall problem (1994)

X.-H. Sun, and L. Ni, “Another View of Parallel Speedup,” Proc. of ACM-IEEE Supercomputing'90, NY, Nov. 1990



X.-H. Sun, and L. Ni, “Scalable Problems and Memory-Bounded Speedup,” Journal of Parallel 

and Distributed Computing, Vol. 19, pp.27-37, Sept. 1993.

The Three Laws

◼ Tacit assumption of Amdahl’s law

❑ Problem size is fixed

❑ Speedup emphasizes on time reduction

◼ Gustafson’s Law, 1988

❑ Fixed-time speedup model

◼ Sun and Ni’s law, 1990

❑ Memory-bounded speedup model

𝛼 1- 𝛼
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Implication of Memory-Bounded Model

◼ W = G(M) shows the trade-off between computing & memory
❑ W, the work in floating point operation

❑ M, the memory requirement

❑ G, the data reuse rate

❑ It is application/algorithm dependent

◼ W = G(M) unifies the models

❑ G(p) = 1, Amdahl’s law 

❑ G(p) = p, Gustafson’s law 

◼ Reveal memory is the performance bottleneck

❑ In parallel processing, scalability, as well as sequential processing, 

❑ The Memory-Wall problem (1994)

X.H. Sun, and J. Gustafson, "Toward A Better Parallel Performance Metric," Parallel Computing, Vol. 17, pp.1093-

1109, Dec. 1991. 

X.-H. Sun, and D. Rover, “Scalability of Parallel Algorithm-Machine Combinations,” IEEE Trans. on Parallel and 

Distributed Systems, Vol.5, pp.599-613, June 1994.
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Memory-Wall vs Memory-Bound

◼ Memory hierarchy is introduced to solve the memory-wall problem

◼ The bound of fast memory

◼ (sequential/parallel) Performance (speed) varies with problem size

Cost variation cross layers

The Berkeley roofline Model

X.-H. Sun, and J. Zhu, “Performance Prediction: A Case Study Using a Shared-Virtual-Memory Machine,” IEEE 

Parallel & Distributed Technology, pp. 36-49, Winter 1996.

Memory bound analysis
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Why Bottleneck?  The Memory-wall Problem

◼ Processor performance 

increases rapidly

❑ Uni-processor: ~52% until 

2004

❑ Aggregate multi-core/many-

core processor performance 

even higher since 2004

◼ Memory: ~7% per year

❑ Storage: ~6% per year

◼ Processor-memory speed gap 

keeps increasing

Source: Intel

Source: OCZ

9%

Multicore technology (2004), Big Data Initiative (2012)

K. Cameron, G. Ge, X.-H. Sun, “lognP and log3P: Accurate analytical models of point-to-point communication in 

distributed systems,” in the IEEE Trans. on Computer, Vol. 6, No. 3, pp. 314-327, March 2007
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Amdahl’s Law for Multicore (Hill&Marty08)

◼ Speedup of symmetric architecture

◼ Speedup of asymmetric architecture
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Scaled Speedup under Memory-wall

◼ Assuming perfect parallel, data access time, wc , is the constraint

◼ Fixed-time speedup

◼ Memory-bounded speedup

❑ With                           memory-bounded speedup is bigger than fixed-
time speedup

❑ g(m) equals one, memory-bounded is the as fixed-size, g(m) equals m, 
then memory-bound is the same as fixed-time
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X.-H. Sun, Y. Chen. "Reevaluating Amdahl's Law in the Multicore Era," Journal of Parallel and Distributed 

Computing, Vol. 70, No. 2, pp183-188, 2010. (conf. 08)
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Memory-wall Effect

◼ Result: Multicore is scalable, but under the assumption

❑ Data access time is fixed and does not increase with the amount of 
work and the number of cores

◼ Implication: Data access is the bottleneck needs attention

L2

L1

DF

Memory Wall

◼ Conclusion

❑ The multicore result can be extended to any (computing) accelerator

❑ Data access is the performance bottleneck of

◼ Sequential processing

◼ Multicore/Accelerator

◼ Parallel processing

◼ Scalability

◼ Question

❑ How to reduce data access delay?
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Memory-wall Solution: Memory Hierarchy

Reg 

File

L1

Data cache

L1

Inst cache

L2 

Cache 

Main 

Memory  

DISK
SRAM DRAM

Data Locality/Concurrency
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Advanced Solution: Deep Hierarchy & Concurrency

Deep Memory-Storage Hierarchy with Concurrence

Xian-He Sun and Dawei Wang, "Concurrent Average Memory Access Time," in IEEE Computers, vol.47, no.5, 

pp.74-80, May 2014.                                         ©copy right 2020 Xian-He Sun

Assumptions

➢ Memory 

Hierarchy: 

Locality

➢ Concurrence:

Data access 

pattern

o Data stream

Multi-Issue

Multi-Threading

Multi-Core

Speculative Execution

Runahead Execution

Pipelined Cache

Non-Blocking Cache

Data Prefetching

Write Buffer

Pipeline

Non-Blocking

Prefetching

Write Buffer

Parallel File

Systems

Out-of-Order Execution

Multi-Level Cache

Multi-Banked Cache

Multi-Channel

Multi-Rank

Multi-Bank

CPU

Processor

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory (DRAM)

Persistent Memory (NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes, …)

12
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Advanced Solution: ASIC from CPU side

◼ GPU, DSP, AI Chip

❑ GPU is a chip tailored to graphics 

processing, DSP is for signal 

processing, and AI chip is designed 

to do AI tasks

◼ Limited solution

❑ Assume data are on the chip

◼ Limited application

❑ Computation Accelerator

❑ Please recall our memory-bound 

results for multicore

1/10/2021
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New Solution: PIM chip

◼ PIM
❑ Processing in memory (also called processor 

in memory) is the integration of a processor 

with RAM on a single chip.

❑ NDP (Near-memory Data Processing)

❑ ISP (In-Storage Processing)

◼ Computer power is weak
❑ A full kitchen needs a refrigerator

◼ Limited application
❑ Data movement reducer

❑ A helper/mitigator

1/10/2021

How to use it?



Basic Idea: Separate CPU & Memory

Memory Stall Time (MST)

D. Wang & X.-H. Sun, "APC: A Novel Memory Metric and Measurement Methodology for Modern Memory 

System," in IEEE Transactions on Computers, vol. 63, no. 7, pp. 1626-1639, July 2014

©copy right 2020 Xian-He Sun

CPU.time = IC × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time

◼ Let reducing MST be the final goal of memory systems

❑ Reduce data access delay

❑ Separate the concern of memory systems 

◼ The measurement of memory system performance

❑ AMAT (Average Memory Access Time)

AMAT = Hit time + MR×AMP

❑ C-AMAT (Concurrent-AMAT)

❑ APC (Access Per memory active Cycle) = 1/C-AMAT

Under von Neumann

15



Reduce Memory Stall Time

Memory stall time

The Traditional AMAT model

Memory stall time

Y. Liu and X.-H. Sun, "Reevaluating Data Stall Time with the Consideration of Data Access Concurrency," 

Journal of Computer Science and Technology (JCST), March 2015

𝐶𝑃𝑈.𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 × 𝐴𝑀𝐴𝑇 × 𝐶𝑦𝑐𝑙𝑒.𝑡𝑖𝑚𝑒

The New C-AMAT model

CPU.time=IC×(CPIexe+ fmem×C−AMAT×(1–overlapRatioc-m))×Cycle.time

◼ Reducing MST becomes reducing C-AMAT

16



Reduce C-AMAT

◼ C-AMAT is Recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT MR C AMAT

C
= +  

1

1

 1 1
1

1 1  

m

M

CpMR pAMP

MR AMP C
 =  

X.-H. Sun, “Concurrent-AMAT: a mathematical model for Big Data access,” HPC-Magazine, May 12, 2014

With Clear Physical Meaning

◼ H is hit time

◼ MR is the miss ratio

◼ CH is the hit concurrency

◼ κ is the overlapping ratio (pure miss cycles over miss cycles)

◼ A pure miss cycle is a miss cycle with no hit

𝐶 − 𝐴𝑀𝐴𝑇2 =
𝐻2
𝐶𝐻2

+𝑀𝑅2 × 𝜅2 × 𝐶 − 𝐴𝑀𝐴𝑇3

17

AMAT = HitCycle1 + MR1×AMP1
Where AMP1 = (HitCycle2 + MR2×AMP2)



C-AMAT : Four Types Cycle Analysis

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” JCST, vol. 35, no. 1, 

January 2021 ©copy right 2020 Xian-He Sun

◼ Data (memory) centric analysis: memory cycles

◼ Memory cycles can see the overlapping

18



C-AMAT is Recursive: Data Access Time

L1

Cache L2
Cache

L3

Cache
Main 

Memory

(DRAM)

1 clk
Hit Time

2

Hit Concurrency

10 clks 20 clks 300 clks

3 4 6

◼ Concurrent Average Memory Access Time (C-AMAT)

=
H1
CH1

+MR1 × κ1 ×
H2

CH2

+MR2 × κ2 ×
H3

CH3

+MR3 × κ3 ×
HMem

CHMem

◼ Example

❑ Miss Rate: L1=10%, L2=5%, L3=1%       pMR, pAMP, AMP, CM, Cm:   L1=7%, 10, 10, 5, 4

❑ 𝜅: 𝐿1=0.56, L2=0.6, L3=0.8                                                                              L2=3%, 60, 40, 9, 6

❑ C-AMAT≈0.696                                                                                                     L3=0.8%, 400, 300, 16, 12

19
©copy right 2020 Xian-He Sun

X. Lu, R. Wang, X.-H. Sun, “APAC: An Accurate and Adaptive Prefetch Framework with Concurrent Memory Access 

Analysis,” in the 38th IEEE Int’l Conf. on Computer Design (ICCD), Oct. 2020 



Optimization: Layered Performance Matching

1

1
exe memIPC f
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APC
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▪ Match the data request and supply at each layer

▪ C-AMAT can increase supply with effective concurrency and locality

▪ Transfer a complex global problem into simpler local match problems

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates 

of computing 

components

Supply rates 

of L1 cache

Request rates 

of L1 cache

Request rates of 

Last level cache

Supply rates of 

Last level cache

Supply rates of 

main memory

APC1

APC2

APC3

Y. Liu, X.-H. Sun. “LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching 

Perspective,” IEEE TPDS, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019

LPM with C-AMAT



Layered Performance Matching (LPM)

◼ The Matching ratio values of request and supply at each layer are 

given and the matching process is well designed & analyzed  

J. Liu, P. Espina, & X.-H. Sun, “A Study on Modeling and Optimization of Memory Systems,” JCST, vol. 35, no. 1, 

January 2021 

Simulatable Measurable  Controllable  Optimizable



Deep Memory-Storage Hierarchy: a general match

DMSH with Concurrence

Y. Liu and X.-H. Sun, “CaL: Extending Data Locality to Consider Concurrency for Performance Optimization,” 

IEEE Transactions on Big Data, vol. 5, no. 2, pp. 273-288, June 2018

©copy right 2020 Xian-He Sun

◼ Do we need to use all layers every 

time?

NO

◼ Flexible tier selection with no 

inclusive

◼ Concurrent accesses now can 

concurrently access on different tiers

◼ Tier: memory device with different 

performance 

◼ Layer: memory hierarchy with data 

inclusiveness

◼ A general match in Deep Memory-

Storage Hierarchy (DMSH)

L1

Cache

L2 Cache

L3 Cache

Main Memory

(DRAM)

Persistent Memory

(NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes,…)

Persistent memory blurs memory & storage

22
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Memory Sluice Gate Theory

Sluice Gate Theorem: If a memory system can match an

application’s data access requirement for any matching

parameter T1 > 0, then this memory system has removed the

memory wall effect for this application.

X.-H. Sun and Y.-H. Liu, "Utilizing Concurrency Data Access: A New Theory," in Proc. of LCPC2016, Sept. 

2016, New York, USA

Data access

flow model

Processor

side

Water flow

model

Upstream

side

Off-chip

side

Downstream

side

Layer 1 Layer 2 Layer 4Layer 3

©copy right 2020 Xian-He Sun



Next Step: Include PIM into the Picture

Memory Stall Time (MST)

CPU.time = ICexe × CPIexe +𝑀𝑒𝑚𝑜𝑟𝑦 𝑠𝑡𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 × Cycle.time
+ ICpim × CPIpim × Cycle.timepim

◼ Add PIM into the performance formulation

◼ PIM is a way to reduce request and is a trade-off of 

computing and MST

◼ Result: data movement cost decides where to do the 

computing

1/10/2021 24©copy right 2020 Xian-He Sun



Data Flow Sluice Gate Control 

◼ Two classes of computing devises, powerful CPU (multicore, GPU, 

XPU. Etc.) and less powerful PIM (NDP, ISP，etc.)

◼ Sluice gates decide which data are processed on PIM

◼ (rest) Data flows from memory in a rhythmic, concurrent matching 

fashion, passing through sluice gates (layers) before reach a CPU, 

then return to memory

◼ A general structure:

Fin-in, fin-out, branch,

More than one PIM/NDP/ISP and more than one CPU/GPU/XPU

Staged execution

Storage is the last layer of the data movement hierarchy

1/10/2021 ©copy right 2020 Xian-He Sun 25
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Data Flow/move under von Neumann

◼ Memory hierarchy with PIM (von Neumann)

◼ Optimize 【compute + data access】 via Sluice 

Gate theory

◼ Data flow from memory to CPU with minimum 

MST and conduct processing in memory when 

necessary

◼ 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗

Parallel or Distributed File



𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗 : Workload Offloading in PIM

 CoPIM: a Concurrency-aware PIM workload offloading architecture

 PEI: a locality aware (LLC miss) offloading approach to decide where the 

PIM operations should be executed

 GraphPIM : utilizing the fact that atomic functionalities cause inefficient 

memory system, but are suitable for PIM

Most of these partitioning strategies aim to move highly 'data-intensive'

portions of the application to PIM logic units

CPU + PIM core

performance 

differences

Offloading too 

much or too little 

will hurt the 

overall 

performance

a New metric:

to define the code 

indeed induce 

memory stall

A. Baoroumnd et al., “CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators,” in ISCA, 2019, 

pp. 629–642



A New Metric considering Concurrency 

 Concurrent-AMAT (C-AMAT) is the metric used in LPM

 Based on C-AMAT, memory stall is due to pure miss, where pure miss is miss 

which contains at least one pure miss cycle and pure miss cycle is a miss cycle 

which does not overlap with any hit access

 Pure miss cycle provide a better way than miss to determine offloading

Based on the insights from the C-AMAT model, we use the pure miss 

cycle rate of LLC(θ) to describe the cache efficiency of a loop code block

L. Yan, et al., “CoPIM: A Currency-Aware PIM Workload Offloading Architecture,” submitted for publication



A New Metric considering Concurrency 

 An example

PIMSim, an open-source PIM simulator based on Gem5



Performance Comparison

Percentage of offloaded instructions into memory

Normalized performance evaluation using graphs of 

different sizes,         GM: geometric mean.

Speedup by 

19.5% than PEI

with 51.1% fewer 

offloaded 

instructions

speedup by 

11.4% than 

GraphPIM with 

33.0% fewer 

offloaded 

instructions



 LPMR(l) is the matching ratio at cache level l. Let λ(l) be the 

request rate at cache level l, and let ν(l) be the supply rate at cache 

level l. 

Direct LPM Matching

 understanding of Layered Performance Matching: the use of LPMR(i)

target of PIM 

architecture

LPMR(3) > T，则访存特性差

∆ is the key identification of PIM offloading



Experimental  Results

 Execution time: 

datasets: p2p-Gnutella30.....soc-LiveJournal1

application: BFS（Breadth-First search）
∆：60%

Note: LPM shows better offloading efficiency than other offloading strategies 

under the BFS application.
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LPM Matching:  I/O-level implementation

◼ PIM assumes data is already in memory

◼ Storage is the last level of the memory hierarchy (DMSH)√

◼ Start at where the data is

◼ Advantage

o Can be implemented and verified  

◼ Challenges

◼ Data management √  

◼ Network impact √

◼ Passing operation demands with data request √ 

Let us do it (on going CSSI framework)

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. "Hermes: a heterogeneous-aware multi-tiered 

distributed I/O buffering system," ACM, HPDC18, Tempe, Arizona, USA, June 2018

©copy right 2020 Xian-He Sun



Hermes: A Multi-tiered I/O Buffering System

A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O Acceleration via Multi-Tiered Data Buffering and Prefetching,” Journal of Computer 

Science and Technology, vol. 35, no. 1, pp. 92-120, Jan. 2020 34

◼ Application-aware multi-tier matching

◼ Start at the log file

◼ An example of memory/storage integration

◼ An implementation of the 

𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣 concept
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Take Home Messages

▪What are the challenges of PIM (from performance)?
o PIM is data movement reducer for the memory-wall problem

o It is inherently tight to the complex memory system performance, 
including storage

▪What are the opportunities (from performance)? 
oMany new applications are data intensive and data driven

o An integrated model, 𝑫𝒂𝒕𝒂𝒇𝒍𝒐𝒘𝒗, is developed where PIM is a 

pivoting factor (an I/O implementation)

▪ How to do it? 
o Theoretical methodology and practical experience

o There is a merging of memory and storage, memory and processor

▪Many things remain open

o From language to system to …

A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh and X.-H. Sun, “ChronoLog: A Distributed Shared Tiered Log Store with 

Time-based Data Ordering,” Proceedings of MSST 2020, Oct. 2020,
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Conclusion

◼ PIM should be utilized with the consideration of memory 

system and multicore/CPU

◼ Opportunity is plenty, as well as challenges

o 𝐷𝑎𝑡𝑎𝑓𝑙𝑜𝑤𝑣

◼ The potential is high

1/10/2021



Thank you
Any questions?
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