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ABSTRACT

Communication in parallel applications is a combination of data transfers internally
at a source or destination and across the network. Previous research focused on quantify-
ing network transfer costs has indirectly resulted in reduced overall communication cost.
Optimized data transfer from source memory to the network interface has received less
attention. In shared memory systems, such memory-to-memory transfers dominate com-
munication cost. In distributed memory systems, memory-to-network interface transfers
grow in significance as processor and network speeds increase at faster rates than mem-
ory latency speeds. Our objective is to minimize the cost of internal data transfers. The
following examples illustrating the impact of memory transfers on communication, we
present a methodology for classifying the effects of data size and data distribution on
hardware, middleware, and application software performance. This cost is quantified
using hardware counter event measurements on the SGI Origin 2000. For the SGI O2K,
we empirically identify the cost caused by just copying data from one buffer to another
and the middleware overhead. We use MPICH in our experiments, but our techniques
are generally applicable to any communication implementation.

1. Introduction

Computers continue to increase in complexity. Hierarchical memories, superscalar
pipelining, and out-of-order execution have improved system performance at the
expense of simplicity. Redesigned compilers allow applications to take advantage of
new architectures and execute more efficiently.

Unfortunately, compilers are limited in their ability to increase performance.
For instance, the compiler is often unaware of subtle characteristics of cache hi-
erarchies. Optimal performance is typically achieved through a combination of
optimized compilation and algorithm redesign through system dependent analysis.
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Communication in parallel systems increases complexity tremendously. As a
result, parallel compilation is even less fruitful than its sequential ancestor. Opti-
mizing performance in such environments relies more heavily on the use of tools to
provide performance data for analysis.

Distributed systems rely on middleware to address the interoperability of het-
erogeneous software and hardware implying additional complexity. The interaction
between hardware, software and middleware is not well understood. Thus, the op-
timizing abilities of distributed compilers are very limited. Optimizing performance
in such environments will greatly rely on tools for system dependent analysis.

Communication costs in such environments are a function of the critical data
path (see Fig. 1). A communicated message must be moved from the source’s local
memory to the target’s local memory. Memory communication is the transmission
of data to/from user space from/to the local network buffer (or shared memory
buffer). Network communication is data movement between source and target net-
work buffers. Communication cost consists of the sum of memory and network
communication times.
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Fig. 1. Memory communications within shared memory (la-b) and to/from the network buffer
in distributed communication (2a-b/3a-b) follow critical paths dependent upon data size, data
distribution, and system implementation.

Unfortunately, the same layers of middleware that enable distributed processing
(e.g. MPI, PVM) convolute the critical data path. Fig. 1 illustrates the possible
critical paths of data for communication in a simple distributed shared memory
machine or cluster. The chosen path (and cost of the communication) depends on
the destination, the data size and distribution, and the system implementation of
the middleware.

Consider communication in a cluster of shared memory computers. Depending
on the underlying communication scheme (e.g. MPI, PVM), the chosen implementa-
tion (e.g. MPICH [1]), and the system architecture design, different communication
buffers will be used along the critical data path. For small data sizes, communication
proceeds without application-level buffering. For large data sizes, data buffering at
the application level will occur. Buffering will also occur at the network level.

The relative cost of memory communication is increasing. Processor speeds
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continue to outpace memory latency improvements. As the gap widens, memory
performance becomes an even larger portion of overall execution time. It is very
important to limit the cost of memory accesses. As mentioned, compilers can help,
but given the complexity of present and future distributed systems the first step
toward this solution is to identify the critical path of memory communication in a
real system and quantify the cost.

Due to the increasing importance of memory, in this paper we seek to describe
a scientific approach to empirically determine the critical path of memory com-
munication. Our approach follows traditional methods of characterizing memory
hierarchies applied to memory communication. We additionally apply a model of
memory communication cost to characterize the effects of locality on observed buffer
transmission. Our goal is to identify and quantify the costs of memory communi-
cation automatically. We test our methodology on a cluster of SMPs to show its
usefulness and verify correctness.

2. Related Work

Gropp and Lusk [1] provide the mpptest tool for measuring MPI message per-
formance accurately. The mpptest tool can be used for limited buffer identification.
Our work couples this basic approach with traditional methods of cache hierarchy
evaluation to automate buffering cost identification.

Limited work has targeted the memory communication cost of non-contiguous
data. Ashworth [3] provides an application specific benchmark for non-contiguous
communication in regular-partitioned, grid-based, distributed finite difference mod-
els. This work is solely empirical and contextually specific, drawing no general con-
clusions regarding non-contiguous communication performance for message passing
applications.

Much research has focused on the network communication cost of message pass-
ing for contiguous data. Dongarra et. al. [4] provides a good overview of message
passing performance issues and measurements. Existing parallel communication
models like LogP [5] focus on network communication delay with limited consid-
eration of memory communication. Later derivates maintain this focus, extending
LogP to long messages [6] and active messages [7].

More recently, LogP was extended to incorporate advanced memory commu-
nication cost. Similar to the aforementioned extensions, memory logP [8] trades
increased model complexity for improved model coverage of communication cost
on evolving architectures. Since this research focuses on enabling automated buffer
identification, the additional model complexity is acceptable and necessary to quan-
tify the individual contributions of contiguous and non-contiguous data.

Memory logP formally characterizes memory communication cost under four
parameters: 1: the effective latency, defined as the length of time the processor is
engaged in the transmission or reception of a message due to the influence of data
size (s) and distribution (d) for a given implementation of data transfer on a given
system, 1=f{(s,d). o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of an ideally distributed message for a given
implementation of data transfer on a given system. During this time the processor
cannot, perform other operations. g: the gap, defined as the minimum time interval
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between consecutive message receptions at a processor. The reciprocal of g corre-
sponds to the available per-processor bandwidth for a given implementation of data
transfer on a given system. P: the number of processor/memory modules. Point-
to-point communication in the memory hierarchy implies P=1. More information
about memory logP model can be found in [8]. Locality-conscious programming
using cache blocking and array padding provide 118% speedup on average for this
matrix transpose algorithm verse the MPICH derived data type version [17]. This
shows a broad scope for improving the performance of middleware.

All the experiments are performed on SGI Origin 2000 at NCSA, which uses a cc-
NUMA architecture running the IRIX version 6.5.14 operating system. Each node
contains two MIPS R10000 processors [10]; each running at 195MHz, and 32kB two-
way set associative, two-way interleaved primary (L1) cache and off-chip secondary
cache of 4MB. The MIPS R10000 processor has two on-chip 32-bit registers to
count 30 distinct hardware events. In our experiments we have measured the events
related to total cycles (event 0), graduated instructions (event 17), memory data
loads graduated (event 18), memory data stores graduated (event 19), L1 cache
misses (event 25), L2 cache misses (event 26).

3. Quantifying Communication Cost

Communication cost for sending a data segment depends on architectural pa-
rameters (e.g. cache capacity) and code characteristics (e.g. data distribution) as
explained in the memory-logP model. Typically a message transmission involves
data collection, data copying to the network buffer and data forwarding to the re-
ceiver. When a data distribution is not contiguous, typically it is collected into a
contiguous buffer before copying to the network buffer (see Fig. 1). This inter-
mediate copying is costly as data sizes and strides increase resulting in additional
capacity and conflict misses to the cache [12]. This can be done without extra buffer
copying by directly copying to the network buffer. However the performance de-
grades further due to poor utilization of network buffer. Strided accesses decrease
the efficiency of cache hierarchies designed to exploit locality (capacity misses).
Caches with less than full associativity, often a small power of 2, suffer from map-
ping collisions under certain access patterns (conflict misses).

The parameters of the memory logP model capture architecture and code char-
acteristics. Memory cost of transferring data of a specific size is a combination of
unavoidable overhead (o), and effective latency (1) - a function of data size and
distribution. Additional network latency after removing overlap exists in passing a
message between two processors. Total communication time increases with mem-
ory latency (1). In our micro benchmark experiments, memory performance worsens
with an increase in stride. We use the memory-logP model to enumerate the mem-
ory hierarchy performance so that a developer can improve the performance of those
parts of code with locality-conscious optimizations. Quantifying the memory com-
munication costs is the first step in bottleneck identification. Succeeding analysis
can identify system buffer-related parameters.

Fig. 3 and Fig. 4 illustrate the communication cost and cause of 16-dword
(16 x 8 bytes), strided data transfers using MPI Blocking Sends. The contribution
of memory communication to total communication is obvious. As message sizes
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increase for fixed strides, data transfer time increases (Fig. 3) from additional
conflict and capacity misses (Fig. 4) in the memory communication. The rate of
cost increase is dependent upon the data distribution and the memory hierarchy
characteristics.

Estimation of the o parameter of the memory logP model requires measurement
of contiguous data transmission, a relatively simple task using micro-benchmarking
techniques. We expect the o parameter increases proportionately as problem size
and strides increase; that a scalable transmission method is chosen. Recent work [13]
indicates that the overheads for packing and unpacking of MPI derived data types
in implementations such as MPICH do not scale well. Measuring the 1 parameter
directly requires running experiments varying message size and contiguity. After
subtracting the ideal overhead, the | function remains.

Memory communication cost as message sizes increase
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Fig. 2. Total cost for sending contiguous (stride 1) and non-contiguous (stride 16) messages. The
costs are similar at low data sizes and it increases a lot once the data does not fit into the cache
or when TLB thrashing occurs.

4. Identifying Memory Communication Buffers

Memory hierarchies are complex. System middleware (e.g. MPICH) provides
abstractions (e.g. derived data types) to simplify distributed programming hid-
ing the details of data transfer from the user. Determining the particular costs of
memory communication is non-trivial due to the complex interaction between appli-
cation, middleware, and hardware. However, to optimize performance, application
developers must understand the full cost of communication. Using the quantifi-
able parameters of the memory logP model and micro-benchmark experiments, it
is possible to identify buffer copies in shared memory architectures.

Specifically, we test various data sizes and strides iteratively and observe the
largest gap among the successive hardware counter values after consideration of
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L2 Cache misses as message sizes increase
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Fig. 3. L2 cache misses for sending contiguous (stride 1) and non-contiguous (stride 16) messages.
Each L2 cache miss costs between 60 to 200 cycles.

experimental variation. These gaps or significant changes pinpoint policy decisions
in the case of MPI codes (application buffers) and memory hierarchy characteristics
(implicit buffering). At the memory hierarchy level, our approach is similar to
that of traditional micro-benchmarking techniques [14, 15] used to identify general
cache characteristics. We additionally verify our analyses with hardware counter
data; this is particularly important for identifying application-level buffers.

Inefficient memory communication is not limited to exploitation of the memory
hierarchy. Fig. 5 shows the increases in the latency parameter (1) with additional
layers of overhead caused by middleware such as MPICH implementation is mea-
sured. It has been our experience that code developers targeting performance gen-
erally avoid certain abstractions such as derived data types since they understand
the overhead resulting from such abstraction negatively and significantly impacts
performance. Fig. 5 affirms this intuition. Fig. 6 shows the classification of various
costs including (1) , (o) and other latency. Collective costs of middleware are very
high with the increase of message size. This depicts that the magnitude of the
cost differential is truly system and application dependent. Hence, a more scientific
approach to determine when to use abstractions such as derived data types would
involve determining the exact cost for a specific application-architecture combina-
tion. This is the purpose of our techniques and the original motivation behind this
work.

Comparing the performance of communication for contiguous and strided mes-
sages can isolate the overhead caused by additional buffering. The cost of sending a
contiguous message between two processors is a combination of data transfer over-
head (o) and network latency. Sending a strided message has extra overhead due to
poor exploitation of memory hierarchy and additional buffer copying. Optimally,
the cost of copying strided data into a contiguous buffer is the same as the cost
of packing it using MPI implementation. Additional middleware induced overhead
is separated by subtracting the costs of sending contiguous message and that of
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Comparision of various overheads
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Fig. 4. Comparison of cost for various implementations of transpose algorithm. Contig.memcpy ()
: Copying data from one buffer to another using memcpy (). This is the basic overhead (o) to copy
contiguous data. Non-contig. MPI_Pack () : This packs columns of matrix using MPI_Type_vector
(). This cost is a combination of (o) and (I). Contig.MPI_Send () sends a contiguous message over
network to another processor. This includes the cost of small contiguous copying overhead (o)
and the cost for network transfer and software overhead of MPI_Send. Non-contig. MPI_Send ()
packs a non-contiguous data to transpose and sends to the receiver. This cost includes the packing
overhead, copying data from memory to the network buffer and the network cost.
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packing from the total cost of sending strided message. Fig. 6 depicts the partition
of these costs. This is an empirical method of separating all the costs in memory
communication. Presentation of these costs provides a developer with an insight
into exploiting the advanced memory hierarchies, and to decide which critical data
path is optimal to use.

5. Conclusions and Future Work

It was believed that data allocation is not a noticeable factor of communica-
tion in a parallel computing environment. All the existing parallel programming
models consider cost of memory access either constant or negligible. Through our
experimental testing, and case studies, in this research we have shown that mem-
ory communication is a function of data size and distribution. The performance
degrades by a factor 10 times even with a small stride of 16. Communication per-
formance can be improved more than 115% by using memory friendly optimizations
external to compilers. This portrays a large scope for improvement of communica-
tion dominant applications and compilers.

Memory communication can be caused by many factors, under utilization fast
CPUs with multiple levels of memory hierarchy, data distribution and various copy-
ing overheads between buffers. Application developers need to be aware of underly-
ing architectures to develop high performance programs. But lack of documentation
regarding the memory hierarchy and buffering schemes for various architectures is a
source of difficulty in optimizing applications. Identification of these implementation
based communication overheads is a part of enumerating the memory communica-
tion costs. In this paper we have presented an approach to determine the critical
data path scientifically along with the memory access overhead as described earlier.

Towards modeling this memory communication, we have developed memory
logP model [8]. We used the model to characterize, bound, and predict memory
performance. The result of these techniques is a more accurate estimate of overall
communication performance. We practically applied our techniques to two archi-
tecturally distinct systems, an IA32 Beowulf and the MIPS-based SGI Origin 2000.
The resulting measurements for the o parameter quantified the scalability of the
copying algorithm. Additionally, simple stack distance curve prediction was shown
to be practically accurate (within +80% and -60%).

After recognizing the points of performance degradation, the next step is to
optimize the performance. A program developer who is aware of all these details
can be able to produce better solutions. But to achieve uniform and optimized
performance there should be libraries and automatic development of these solu-
tions to ease the burden on the programmer. Our future work is moving towards
achieving these goals. One of our objectives is to improve the performance of MPI
derived datatypes implementation, by observing memory operations. This work is
progressing in collaboration with Argonne National Laboratory.
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