
PSA: A Performance and Space-Aware Data Layout
Scheme for Hybrid Parallel File Systems

Shuibing He, Yan Liu, Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, Illinois, USA
{she11, yliu258, sun}@iit.edu

Abstract—The underlying storage of hybrid parallel file sys-
tems (PFS) is composed of both SSD-based file servers (SServer)
and HDD-based file servers (HServer). Unlike a traditional
HServer, an SServer consistently provides improved storage
performance but lacks storage space. However, most current data
layout schemes do not consider the differences in performance
and space between heterogeneous servers, and may significantly
degrade the performance of the hybrid PFSs. In this paper, we
propose PSA, a novel data layout scheme, which maximizes the
hybrid PFSs performance by applying adaptive varied-size file
stripes. PSA dispatches data on heterogeneous file servers not
only based on storage performance but also storage space. We
have implemented PSA within OrangeFS, a popular parallel file
system in the HPC domain. Our extensive experiments using a
representative benchmark show that PSA provides superior I/O
throughput than the default and performance-aware file data
layout schemes.

Index Terms—Parallel I/O System; Parallel File system; Data
Layout; Solid State Drive

I. INTRODUCTION

Recently, many large scale applications in science and
engineering have become more and more data-intensive [1],
and I/O performance is regarded as a critical bottleneck of
high performance computing (HPC) domain. To address this
problem, parallel file systems (PFS), such as OrangeFS [2],
Lustre [3], and GPFS [4], have been proposed to achieve
high aggregate I/O throughput by leveraging the parallelism of
multiple file servers with hard disk drives (HDD). However,
fully utilizing the underlying file servers is still a challenging
task.

At the same time, flash-based solid state drives (SSD)
have been deployed in storage systems to further improve
performance [5]. SSDs have orders of magnitude higher per-
formance, lower power consumption, and a smaller thermal
footprint over traditional HDDs [6]. While being an ideal
storage media for PFSs, SSDs are not an economical option
in HPC to completely replace HDDs in a large-scale deploy-
ment. Therefore, hybrid PFSs, which consist of HDD-based
file servers (HServer) and SSD-based file servers (SServer),
provide practical solutions for data-intensive applications [7],
[8]. This type of hybrid PFS is common in large-scale I/O
systems, which are cost constrained and old hardware must
be used efficiently.

In parallel file systems, the stripe-based data layout scheme
is commonly used to distribute data among all available file
servers. This traditional scheme dispatches a large file across
multiple file servers with a fixed-size stripe in a round-robin
fashion. While this scheme results in uniform data placement
on servers, the I/O load of each server may be imbalanced
because of the non-uniform access distribution in the work-
loads [9]. In order to alleviate this issue, numerous different
strategies have been studied on data layout optimization, such
as adjusting the file stripe sizes to rearrange loads among
servers [10], [11] or optimizing the file stripe distribution
method according to the data access patterns [12]. However,
these approaches mainly focus on homogeneous PFSs with
identical HServers, and may not work well in hybrid PFSs
due to the following reasons.

First, the storage performance of each file server is not
differentiated in existing layout schemes. HServer and SServer
can have different storage performance behaviors due to their
distinct internal structure [6]. A high-speed SServer can finish
storing data in a local SSD faster than a low-speed HServer;
thus, HServer is often the straggler in the service of a large file
request in parallel environments. When directly applied to the
hybrid PFSs, existing layout schemes will result in severe load
imbalance among file servers even under uniform workloads,
which can significantly degrade the performance of the hybrid
I/O system.

Second, traditional layout schemes have an assumption that
each file server has an identical, sufficient storage space to
accommodate file data. However, most current SSDs have
relatively smaller capacities than HDDs because they’re more
expensive [13]. Existing data layout schemes focus on pro-
moting the performance balance among servers with little
attentions paid on the space balance [14]. Consequently, SSDs
may quickly run out of their limited space when more data
are dispatched on them. These one-sided designs may have
hidden flaws that may impair their potential effectiveness for
improving the overall I/O performance for prolonged time.

In order to address these problems, we propose PSA, a per-
formance and space-aware data layout scheme which carefully
arranges data layout to improve the hybrid PFS performance.
Unlike traditional schemes, PSA distributes file data on differ-
ent types of servers using adaptive stripe sizes. Additionally,
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Fig. 1. Traditional data layout scheme with fixed-size stripe on file servers

PSA dispatches large file stripes on HServers than SServers,
so that more file requests are allowed to be served by hybrid
servers (comprised of HServers and SServers) rather than only
HServers within a given SSD capacity. Since the hybrid servers
are likely to provide better I/O performance than HServers,
PSA leads to improvement in the overall performance of
all file requests. The proposed data layout scheme creates
a better balance between storage performance and space of
heterogeneous file servers, and can be extended to systems
with various categories of file servers, system configuration,
and I/O patterns.

Specifically, we make the following contributions.

• We extend an analytical model to evaluate the I/O com-
pletion time of each request on file servers with HServers
and SServers and file servers with only HServers.

• We propose a performance and space-aware algorithm
based on the model to determine the appropriate file stripe
sizes for HServer and SServers in hybrid PFSs.

• We implement the prototype of the PSA scheme under
OrangeFS, and have conducted extensive tests to verify
the benefits of the PSA scheme. Experiment results illus-
trate that PSA can significantly improve I/O performance.

The rest of this paper is organized as follows. Background
and motivation are presented in Section II. The design and
implementation of PSA is described in section III. Section IV
presents the performance evaluation. Section V discusses the
related work, and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Fixed-size Striping Data Layout

In order to keep pace with the processing capabilities in
HPC clusters, PFSs such as OrangeFS [2] and Lustre [3] are
designed to improve the performance of I/O subsystems. Files
in PFSs are often organized in fixed-sized stripes, and they
are dispatched onto the underlying servers in a round-robin
fashion. Figure 1 illustrates the idea of the traditional data
layout in PFSs. By providing even data placement in file
servers and good I/O performance in many situations, this
layout scheme is widely used in many PFSs. For example,
in OrangeFS it is the default layout method, which is named
“simple striping”.
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Fig. 2. Using fixed-size file stripe, SServer finishes the sub-requests faster
than HServer, leading to a load imbalance.

B. Motivation Example

While traditional data layout strategies are suitable for
homogeneous PFSs, they may significantly degrade the overall
I/O performance of hybrid PFSs.

Figure 1 demonstrates a representative example of the fixed-
size file striping data layout and a typical file access pattern in
current HPC systems. For simplicity, we assume to have three
processes (P0-2), six file requests (R0-5), and each process has
two requests. We also assume that there are two HServers and
one SServer. To be specific, we assume each request size is
three times the file stripe size, so that all servers can contribute
to the overall I/O performance.

By the default fixed-size layout method, each request is
divided into three sub-requests. For example, R0 is served
by sub-request #0-2 and R1 by sub-request #3-5, as shown in
Figure 1. While each sub-request has the same size, their I/O
completion time is significantly different due to the existing
performance disparity in HServers and SServers. For example,
I/O time of sub-request #2 is smaller than that of sub-request
#0, as shown in Figure 2. Because I/O completion time of a
request is determined by the slowest sub-request, each request
time equals that of the sub-request’s time on HServer. As
we can see, due to the existing file striping assignment, each
SServer continues to stay idle in the service of file requests,
which results in severe I/O performance degradation.

There exists a possible solution to overcome this problem
by taking the file server performance into consideration when
deciding the stripe size of each file server [14]. As illustrated
in Figure 3, by assigning SServer with a larger stripe than
HServers, all servers can finish their sub-requests simultane-
ously and the load imbalance is alleviated. However, some
SSDs often have relatively smaller space than HDDs. The one-
sided design will make SSDs quickly run out of their limited
space; thus all the remaining requests are only served by the
low-speed HServers, which can provide relatively low I/O
performance. To show the difference, we classify all requests
in the hybrid PFS as hybrid requests and pure requests. Hybrid
requests are served by both HServers and SServers, and pure
requests are served only by the slow HServers. Generally,
hybrid requests can lead to better I/O performance than pure
requests as they are involved in more hardware resources.
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Fig. 3. Performance-aware data layout scheme. High-speed HServers are
assigned with larger stripes, so that all servers finish their sub-requests almost
simultaneously. However, SServers run out their limited space quickly and the
remaining requests will be served only by HServers .

Therefore, if we can increase the ratio of hybrid requests over
all file requests through optimized data layouts, the overall file
system performance can be largely improved.

III. DESIGN AND IMPLEMENTATION

In this section, we first introduce the basic idea of our
proposed data layout scheme. Then we describe the cost model
and algorithm used to determine the optimal stripe size for
each server. Finally, we present the implementation of PSA.

A. The Basic Idea of PSA

Our proposed data layout scheme (PSA) aims to improve
hybrid PFSs with performance and space-aware adaptive file
stripes. Instead of assigning SServers with larger file stripes as
performance-aware strategy, the basic idea of PSA is to assign
HServer with larger file stripes and SServers with smaller
stripes. Since the space of SServer is consumed more gradu-
ally, numerous hybrid requests are involved in the clients data
accesses. As a result, we can get global optimal performance
for all file requests rather than the local optimization for certain
requests.

As explained previously, we assume that HServer has
enough space to accommodate data and SServer only has
limited space for file requests. Figure 4 illustrates the file
data distribution on the underlying servers after we assign
the stripe sizes for HServers and SServers using our strategy.
To show the performance comparison, we assume that there
are 20 file requests from clients. For performance-aware data
layout scheme (PA), we assume each SServer has space for 6
sub-requests, as shown in Figure 3. Thus, there are 6 hybrid
requests and 14 pure requests among all requests. For the
proposed performance and space-aware scheme (PSA), we
assume each SServer can absorb 20 sub-requests as each
SServer is allocated with smaller stripe size. In this case, all
file requests belong to hybrid requests. While the performance
of hybrid file requests in PSA layout cannot be better than that
of PA, PSA leads a large number of hybrid file requests. We
assume the I/O time for hybrid requests under PA and PSA
strategy is 2T and 4T respectively, and the I/O time for pure
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Fig. 4. Performance and space-aware data layout scheme. SServers are
assigned with smaller stripes, so that there are more requests served by hybrid
file servers. With a given SSD capacity, the overall I/O performance of file
requests can be improved.

TABLE I
PARAMETERS IN COST ANALYSIS MODEL

Symbol Meaning

p Number of client processes

c Number of processes on one I/O client node

m Number of HServers

n Number of SSServers

h Stripe size on HServer

s Stripe size on SServer

S Data size of one request

e Cost of single network connection establishing

t Network transmission cost of one unit of data

αh Startup time of one I/O operation on HServer

βh HDD transfer time per unit data

αs Startup time of one I/O operation on HServer

βs SSD transfer time per unit data

requests in PA is 8T , then the overall I/O time for all requests
under PA and PSA strategy is 2T × 6 + 8T × 14 = 124T
and 4T ×20 = 80T , respectively. This validates that PSA can
improve the overall file system performance.

Notice that in our strategy, it is not necessary to require
all file requests to be served by hybrid file servers. We only
attempt to increase the number of hybrid requests, when
there is a possibility of performance optimization. In practice,
determining appropriate file stripe sizes based on storage
performance and space is not easy for many reasons. First, the
performance of each file server can be impacted significantly
by both I/O patterns and storage media. Even under the same
I/O patterns, HServer and SServer have different performance
behaviors. Second, for given file requests and SSD space,
different stripe sizes lead to various proportion of hybrid
requests to pure requests, which can largely impact the overall
parallel file system performance.
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Fig. 5. Cost formulas for requests on all Hservers and SServers

B. An Analytic Data Access Cost Model

To identify the optimal data layout with appropriate pair
of stripe sizes for each HServer and SServer, we built an
analytical cost model to evaluate the data access time in a
parallel computing environment. The critical parameters are
in Table I. Since SServers and HServers have distinct storage
media, they have different storage characteristics. First, Ts
for SServer is much smaller than HServer’s. Second, βs is
several times smaller than βh, which means SServers have a
performance advantage over HServers for large requests, but
not as significant for small requests. Finally, write performance
of SServer is lower than read performance because write
operations on SSDs lead to numerous background activities,
including garbage collection and wear leveling. Due to these
device-aware critical parameters, the cost model can effec-
tively reflect the performance of various type of requests on
heterogeneous file servers.

The cost is defined as the I/O completion time of each data
access in hybrid PFSs, which mainly includes two parts: the
network transmission time, TNET , and the storage access time,
TSTOR. Generally, TNET consists of TE , which is the network
connection for data transmission, and TX , which is the data
transferring time on network. TSTOR consists of TS and TT ,
the former is the startup time, and the latter is the actual data
read/write time on storage media.

Since hybrid requests and pure requests exist in hybrid PFSs
due to the limited space of SServers, we calculate their I/O
costs respectively. For hybrid file requests, we use previous
cost model [14] to evaluate the data access cost. We assume
the requests are fully distributed on all HServers and Servers
as Figure 4, namely m×h+n×s = S, then the cost model can
be calculated as in Figure 5. More details about constructing
the data access cost can be found in our previous research [14].

Previous model [14] does not work for pure requests. For
these requests, we assume they are distributed only on all
HServers with stripe size of S/m, which leads to optimal I/O
performance. The cost is defined as the formulas in Figure 6.
Our model considers the space limitation of SServer and is an
extension of previous model [14].

C. Optimal Stripe Size for File Servers

Based on the cost model, we devise a heuristic iterative al-
gorithm to determine the appropriate stripe sizes for HServers
and SServers, as displayed in Algorithm 1. Starting from sh
equaling S/(M+N), the loop iterates sh in ‘step’ increments
while sh is less than S/M . Different from previous work [14]
where SServer serves larger sub-requests, this configuration
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1-DV mh +  ns =  (m + n)r 
2-D mh +  ns =  gr 

 

Condition 
Network cost TNET Storage cost TSTOR 

Establish TE Transfer TX Startup TS + R/W TT 

𝑝𝑝 ≤ 𝑐𝑐(𝑚𝑚 + 𝑛𝑛) 𝑐𝑐(𝑚𝑚 + 𝑛𝑛)𝑒𝑒 max {𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝ℎ𝑐𝑐, 𝑝𝑝𝑝𝑝𝑐𝑐} p ∗ max {𝛼𝛼ℎ + ℎ𝛽𝛽ℎ ,𝛼𝛼𝑠𝑠 + 𝑝𝑝𝛽𝛽𝑠𝑠} 

𝑝𝑝 > 𝑐𝑐(𝑚𝑚 + 𝑛𝑛) 𝑝𝑝𝑒𝑒 max {𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝ℎ𝑐𝑐, 𝑝𝑝𝑝𝑝𝑐𝑐} p ∗ max {𝛼𝛼ℎ + ℎ𝛽𝛽ℎ ,𝛼𝛼𝑠𝑠 + 𝑝𝑝𝛽𝛽𝑠𝑠}  

 

Condition 
Network cost TNET Storage cost TSTOR 

Establish TE Transfer TX Startup TS + R/W TT 
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Fig. 6. Cost formulas for requests on all HServers

intends to make SServer serves smaller sub-requests so that
SServer can contribute more file requests to improve the over-
all I/O performance. The extreme configuration we do consider
is where h is S/M , which means dispatching file request
data only on HServers may obtain better I/O performance.
For each pair of stripe sizes configuration, the loop iterates to
calculate the total access cost of all file I/O requests, either
with formulas in Figure 5 if the request is distributed on the
hybrid file servers or formulas in Figure 6 if they are only on
HServers. Finally, the pair of stripe sizes that leads to minimal
total data access cost is chosen. The ‘step’ value, as shown in
line 3 of Algorithm 1, is 4KB. The user can choose finer ‘step’
values resulting in more precise Sh and Ss values, but with
increased cost calculation overhead. However, computational
overhead for executing this algorithm is acceptable because the
calculations are simply arithmetic operations and run off-line.

Algorithm 1: Stripe Size Determination Algorithm
Input : File requests: R0, R1, ..., Rk−1, SServer Capacity: Cs,
Output: optimal stripe sizes: SH for HServer, SS for SServer

1 l← S
m+n

;
2 h← S

m
;

3 step← 4KB;
4 for sh ← l; sh ≤ h; sh ← sh + step do
5 ss ← (S −m ∗ sh)/n;
6 j ← Cs

Ss
/*j is the number of hybrid requests*/;

7 for i← 0; i < k; i← i+ 1 do
8 Determine request type of Ri based on its offset,

length, and j;
9 if Ri is a hybrid request then

10 /* Ri is distributed on m+ n servers */;
11 Ti ← Calculate access cost of Ri according to the

formulas in Figure 5 ;
12 else
13 /* Ri is distributed only on m HServers*/;
14 Ti ← Calculate access cost of Ri according to the

formulas in Figure 6 ;
15 end
16 Total cost← Total cost+ Ti;
17 end
18 if Total cost < Opt cost then
19 Opt cost← Total cost;
20 SH ← sh;
21 SS ← ss;
22 end
23 end

Once the optimal stripe sizes for HServers and SServers are
determined, PFSs can distribute file data with the optimal data
layout to improve the hybrid PFSs performance.



D. Implementation

Many HPC applications access their files with predictable
access patterns and they often run multiple times [15]–[17].
This provides an opportunity to achieve the performance and
space-aware data layout based on I/O trace analysis. We
implemented the performance and space-aware data layout
scheme in OrangeFS [2], which is a popular parallel file
system in the HPC domain. The procedure of the PSA scheme
includes the following three phases.

In the estimation phase, we obtain the related parameters in
the cost model. For a given system, the network parameters,
such as e and t, the storage parameters, such as αh,βh,αs,βs,
and the system parameters, such as m and n can be regarded
as constants. We use one file server in the parallel file system
to test the storage parameters for HServers and SServers with
sequential/random and read/write patterns. We use a pair of
one client node and one file server to estimate the network
parameters. All these tests are repeated thousands of times,
and we use the average values in the cost model.

In the layout determination phase, we use a trace collector
to obtain the run-time statistics of data accesses during the
application’s first execution. Based on the I/O trace, we obtain
the application’s I/O pattern related parameters, such as c,
p, and S. Combined with the parameters obtained in the
estimation phase, we use the cost model and Algorithm 1
to determine the optimal file stripe sizes for HServers and
SServers.

In the data placement phase, we distribute the file data
with the optimal data layout for later runs of the applications.
The OrangeFS file system supports an API for implementing
specific variable stripe distribution. The variable stripe distri-
bution is similar to simple stripe, except the stripe size can be
configured differently on various file servers. In OrangeFS,
parallel files can either be accessed by the PVFS2 or the
POSIX interface. For PVFS2 interface, we utilize the “pvfs2-
xattr” command to set the data distribution of directories where
the application files are located. When a new file is created,
we use the “pvfs2-touch” command with the “-l” option to
specify the order of the file servers, so that the proper file
stripe size can be applied to the corresponding file servers.
For POSIX interface, we use the “setfattr” command to reach
the similar data layout optimization goal.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
data layout scheme with benchmark-driven experiments.

A. Experimental Setup

We conducted the experiments on a 65-node SUN Fire
Linux cluster, where each node has two AMD Opteron(tm)
processors, 8GB memory and a 250GB HDD. 16 nodes are
equipped with additional OCZ-REVODRIVE 100GB SSD. All
nodes are equipped with Gigabit Ethernet interconnection. The
operating system is Ubuntu 9.04, and the parallel file system
is OrangeFS 2.8.6.

Among the available nodes, we select eight as client com-
puting nodes, eight as HServers, and eight as SServers. By
default, the hybrid OrangeFS file system is built on four
HServers and four SServers. As discussed, a parallel file will
be divided into two parts if SServers run out of space. The
first part is distributed on all file servers, and the other part
is placed only on HServers. We compare PSA with other
two data layout schemes: the default scheme (DEF) and the
performance-aware scheme (PA). In DEF, the first part of the
file is placed across all servers with a fixed-size stripe of
64KB; in PA, the stripe sizes for HServers and SServers in the
first part of the file are determined by storage performance as
discussed in [14]. For the second part of the file, all schemes
distribute the file on HServers with a stripe size of S/m, where
S is the request size and m denotes the number of HServers.

We use the popular benchmark IOR [18] to test the perfor-
mance of the parallel file system. IOR is a parallel file system
benchmark providing three APIs, MPI-IO, POSIX, and HDF5.
We only use MPI-IO interface in the experiments. Unless
otherwise specified, IOR runs with 16 processes, each of which
performs I/O operations on a 16GB shared file with request
size of 512KB. To simulate the situation that SServers have
relatively smaller space than HServers, we limit the storage
space of each SServer to 1GB. For simplicity, we will use
stripe size pair <h, s> to denote that the stripe sizes on
HServers and SServers are h and s respectively.

B. Experiment Results

1) Different Type of I/O Operations: First we test IOR with
sequential and random read and write I/O operations. From
Figure 7, we observe that PSA has optimal I/O performance
compared to the other data layout schemes. By using the
optimal stripe sizes for HServers and SServers, PSA improves
read performance up to 66.9% over DEF with all I/O access
patterns, and write performance up to 77.1%. Compared with
PA, PSA improves the performance up to 39.8% for reads
and 29.7% for writes. For PA, the optimal stripe sizes for
sequential and random read and write, are <28KB, 100KB>,
<20KB, 108KB>, <24KB, 104KB>, and <36KB, 92KB>
respectively. For PSA, the optimal stripe sizes for sequential
and random read and write, are <120KB, 8KB>, <120KB,
8KB>, <116KB, 12KB>, and <120KB, 8KB> respectively.
This demonstrates both PA and PSA schemes adopt various
file stripes for different I/O operations. However, by allocating
small stripe sizes for SServers, PSA can makes better trade-off
between SSD’s performance and space to improve the overall
I/O performance. PSA’s read performance exceeds its write
performance because SSDs performs better for read operations
than write, as described in Section III-B. The experiments
prove PSA performs optimally and the stripe size determining
formula is effectiv.

2) Different Number of Processes: The I/O performance is
also evaluated with different number of processes. The IOR
benchmark is executed under the random access mode with 8,
32 and 64 processes.
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Fig. 7. Throughputs of IOR under different layout schemes with different
I/O modes

As displayed in Figure 8, the result is similar to the previous
test. PSA has the best performance among the three schemes.
Compared with DEF, PSA improves the read performance
by 62.8%, 59.5%, and 36.7% respectively with 4, 32 and
64 processes, and write performance by 74.3%, 70.9%, and
66.7%. Compared with PA, PSA improves read performance
by 36.2%, 41.9%, and 27.1% with 4, 32 and 64 processes,
and write performance by 32.1%, 25.4%, and 22.3%. As the
number of processes increase, the performance of the hybrid
PFS decrease because more processes lead to severer I/O
contention in HServers. These results show that PSA has
excellent scalability with the number of I/O processes.

3) Different Request Sizes: In this test, the I/O performance
is examined with different request sizes. The IOR benchmark
is executed with request sizes of 128KB and 1024KB and
the number of processes is fixed to 16. From Figure 9(a),
we can observe that PSA can improve the read performance
by up to 68.7%, and write by up to 74.4% in comparison
with DEF scheme. Compared with PA, PSA also has better
performance: the read performance is increased by up to
43.4%, and write performance is increased by up to 38.9%. We
also find that PSA provides higher performance improvement
for large request size because large requests benefit more
from the hybrid file servers than the pure HServers. These
results validate that PSA can choose appropriate stripe sizes
for HServers and SServers when facing different request sizes.

0

50

100

150

200

250

4 32 64

I/
O

 T
h

ro
u

gh
p

u
t 

(M
B

/S
ec

)

Number of Processes

DEF PA PSA

(a) Read throughput

0

50

100

150

200

250

4 32 64
I/

O
 T

h
ro

u
gh

p
u

t 
(M

B
/S

ec
)

Number of Processes

DEF PA PSA

(b) Write throughput

Fig. 8. Throughputs of IOR with varied number of processes
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Fig. 9. Throughputs of IOR with varied request sizes
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Fig. 10. Throughputs of IOR with varied file server configurations

4) Different Server Configurations: The I/O performance is
examined with different ratios of SServers to HServers. The
OrangeFS is built using HServers and SServers with the ratios
of 5:3, and 3:5.

Figure 10 shows the I/O bandwidth of IORwith different file
server configurations. Based on the results, PSA can improve
I/O throughput for both read and write operations. When the
ratio is 5:3, PSA improves the read and write performance by
up to 58.6% and 68.2% respectively, when compared to DEF.
Compared with PA scheme, PSA increases the read perfor-
mance by 35.3%, and write performance by 28.6%. When the
ratio is 3:5, we can observe that PSA has similar behavior. In
the experiments, read and write performance improve as the
number of SServers increase because the I/O performance of
hybrid requests benefits more from more SServers. By using
the optimal stripe sizes determined by the performance and
space-aware layout method in this paper, PSA can significantly
improve the hybrid file system performance with every file
server configuration.

All these experiment results have confirmed that the pro-
posed PSA scheme is a promising method to improve the
data layout of the hybrid PFSs. It helps parallel file system
provide high performance I/O service to meet the growing
data demands of many HPC applications.

V. RELATED WORK

A. Data Layout in HDD-based File Systems

Data layout optimization is an effective approach to im-
prove the performance of file systems. Parallel file systems
generally provide several data layout strategies for different
I/O workloads [12], including simple stripe, two dimensional
stripe, and variable stripe. Widely adopted techniques for data
partition [15], [19] and replication [12], [20], [21] are utilized
to optimize data layout depending on I/O workloads.

Simple stripe layout schemes are unable to obtain high
performance for applications that access I/O systems errati-
cally. Segment-level layout scheme logically divides a file into
several sections such that an optimal stripe size is assigned for
each section with non-uniform access patterns [10]. Server-
level adaptive layout strategies adopt various stripe sizes on
different file servers to improve the overall I/O performance of
parallel file systems [11]. PARLO utilizes various data layout
polices to accelerate scientific applications with heterogeneous
access patterns at I/O middleware layer [22]. However, these
efforts are suitable for heterogeneous file servers. AdaptRaid
addresses the load imbalance issue in heterogeneous disk
arrays [23] with adaptive number of blocks, which can not
be obtained in PFSs.

B. Data Layout in SSD-based File Systems

SSDs, which exhibit noticeable performance benefits over
traditional HDDs, are commonly integrated into parallel file
systems to improve I/O performance. Currently, most SSDs
are used as a cache to traditional HDDs, e.g. Sievestore [24]
and iTransformer [25]. SSD-based hybrid storage is another
popular method which utilizes the full potential of SSDs, such
as I-CASH [26] and Hystor [27]. Yet, the vast majority of these
techniques are done on single file servers. Our earlier work
CARL [8] selects and places file regions with high access
costs onto the SSD-based file servers at the I/O middleware
layer, but the HDD-based and SSD-based file servers work
independently. PADP [14] uses varied-size stripes to improve
the performance of hybrid PFSs, but the stripe sizes are only
optimized for server storage performance.

These techniques are effective in improving the performance
of PFSs. meager amount of effort is devoted to data layout in
a hybrid PFS, yet this knowledge is commonly needed when
aging HDD file servers are replaced by new SSD-base file
servers. Hybrid PFSs will lead issues of performance and space
disparities between heterogeneous servers, and this work helps
to deal with these challenges in hybrid storage architecture.

VI. CONCLUSIONS

With the availability of solid state drives (SSD), HDD-SSD
hybrid parallel file systems (PFS) have become common in
engineering practice. Compared to a traditional HDD, an SSD
commonly has higher storage performance but smaller storage
space. In this study, we have proposed a performance and
space-aware data layout (PSA) scheme, which distributes data
across HDD-based and SSD-based file servers with adaptive
stripe sizes. PSA determines file stripe size on each server



not only based on storage performance but also space. We
have developed and presented the proposed PSA data layout
optimization scheme in OrangeFS. In essence, PSA provides a
better matching of data access characteristics of an application
with the storage capabilities of file servers in a hybrid file
system. Experimental results show that PSA is feasible and
promising. PSA improves the I/O performance by 36.7% to
74.4% over the default file data layout scheme, and it provides
20.6% to 43.5% better I/O performance than the performance-
aware data layout scheme. We plan to extend the data layout
scheme to any hybrid PFS with two or more file server
performance profiles and complex I/O access patterns in our
future work.
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