
S4D-Cache: Smart Selective SSD Cache for Parallel
I/O Systems

Shuibing He, Xian-He Sun, Bo Feng
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
{she11, sun, bfeng5}@iit.edu

Abstract—Parallel file systems (PFS) are widely-used in mod-
ern computing systems to mask the ever-increasing performance
gap between computing and data access. PFSs favor large
requests, and do not work well for small requests, especially
small random requests. Newer Solid State Drives (SSD) have
excellent performance on small random data accesses, but also
incur a high monetary cost. In this study, we propose a hybrid
architecture named the Smart Selective SSD Cache (S4D-Cache),
which employs a small set of SSD-based file servers as a selective
cache of conventional HDD-based file servers. A novel scheme
is introduced to identify performance-critical data, and conduct
selective cache admission to fully utilize the hybrid architecture
in terms of data-access parallelism and randomness. We have
implemented an S4D-Cache under the MPI-IO and PVFS2
parallel file system. Our experiments show that S4D-Cache
can significantly improve I/O throughput, and is a promising
approach for parallel applications.

Keywords-Parallel I/O System; I/O Middleware; Solid State
Drive

I. INTRODUCTION

Many modern HPC applications are becoming increasingly
data intensive. For example, the astro program in astronomy,
generates tens of gigabytes of data in one run [1]. To meet
the high I/O demands of these applications, HPC clusters rely
on parallel I/O systems to provide data accesses. Typically,
a parallel I/O system consists of several layers including
applications, I/O middleware, parallel file systems (PFSs),
and storage systems. In general, a parallel file system, such
as PVFS [2], Lustre [3] and GPFS [4], will stripe file data
across multiple file (I/O) servers and allows data requests to be
served concurrently by multiple file servers. Thus, I/O system
efficiency is significantly improved by exploiting parallelism
when serving large I/O requests from a PFS.

While PFSs are an effective approach to cap the perfor-
mance gap between the computing system and I/O system
for large requests, they fail to perform well when serving
clusters of small requests, especially random requests. In the
meantime, hard disk drives (HDD), which are the dominant
storage media deployed on current file servers, are notoriously
slow in random data access due to the mechanical nature of
disk head movements. Combining the difficulty of parallelism
and slow access times, small random requests are easily the
number one performance killer of PFSs.

To illustrate the performance degradation from this issue,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Request Size

Sequential
Random

Fig. 1. I/O throughput for sequential and random reads

we ran IOR [5] benchmark on a PVFS2 file system built on
eight I/O servers (each server includes a single HDD). We
limited the overall file size to 16GB, the number of processes
to 16, and varied the request size from 4KB to 32MB. Each of
the n MPI processes reads its own 1/n of the shared file, and
continuously issues requests with sequential or random offsets.
Figure 1 demonstrates the aggregated bandwidth for different
request sizes during sequential and random I/O operations.
The average bandwidth is reduced by more than half when
small random accesses are conducted with different request
size from 4KB to 32KB. For request size larger than 4MB,
the random I/O performance is comparable to the sequential
performance. These results confirm that small random access
is a major performance impediment on parallel I/O systems.

A number of approaches have been proposed in the I/O
hierarchy to speed up the small random accesses over the past
years. For example, I/O middleware approaches improve disk
throughput by transforming a large number of small and non-
contiguous requests into large contiguous requests [6], [7].
Memory caching strategies reduce the I/O latency by accessing
more data from memory [8], [9]. I/O scheduling approaches
reorganize the incoming I/O requests to create more sequential
accesses in order to improve performance [10]. These methods
are very helpful, however, they need to be extended to take
the advantage of the availability of new technologies, such as
solid state drive (SSD).

Advanced storage devices, such as SSD, provide a possible
hardware solution to improve small random access perfor-
mance on PFSs. Currently, An SSD is commonly used as a

cache [11]–[14] of HDD or as a hybrid storage [15], [16] on
each file server. While this is straightforward to implement,
it requires a large number of SSDs thus may be costly.
Furthermore, since SSDs are deployed on each file server, the
global utilization of SSDs becomes impossible which can be
very useful to improve performance [17], [18].

In this paper, we propose the Smart Selective SSD Cache
(S4D-Cache) architecture to combine the merits of SSDs
with parallel file systems. The main idea is to employ a
small set of SSD-based file servers as a selective cache for
conventional HDD-based file servers. With a smart selective
algorithm, S4D-Cache can significantly improve I/O through-
put by buffering or caching large amounts of performance-
critical data during both read or write requests.

Conventionally, a cache uses data locality principals to
increase cache efficiency. However, a different scheme is
used for the S4D-cache. The SSD-based cache in the S4D-
Cache architecture is designed to utilize an SSD’s ability to
support small random data accesses. Therefore, the selection
algorithm of S4D-Cache is derived from the randomness of
data accesses, not the data access locality. Application-aware
scheduling to utilize random access performance on SSDs and
the parallelism on PFS is a key strength of S4D-Cache.

In summary, this study makes the following contributions.

• A novel system-level cache architecture is proposed to
use SSDs as a selective cache on top of the traditional
HDD-based file servers. This cache is pluggable and
makes the employment of SSDs cost-effective.

• A cost model is introduced for parallel file requests,
which can evaluate the access time of the request in
parallel file systems built on different data storage media.

• A scheduling scheme which first identifies performance
critical data via the cost model, and then uses a smart
selective cache admission policy to take full advantage
of the hybrid SSD and PFS architecture is introduced.

• A prototype of S4D-Cache is implemented and integrated
under MPI-IO library on a computer cluster equipped
with the PVFS2 parallel file system. This implementa-
tion is transparent to applications, and portable to many
different parallel file systems. S4D-Cache is evaluated
with representative benchmarks, including IOR, HPIO,
and MPI-TILE-IO. Experimental results show that I/O
throughput is significantly improved.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III describes the design of
S4D-Cache and section IV presents the detailed implementa-
tion. Section V evaluates the performance of S4D-Cache with
representative benchmarks. Finally, we conclude the paper in
section VI.

II. RELATED WORK

This section focuses on previous work related to this study
by looking at three separate aspects.

A. I/O Request Stream Optimization

To tackle the performance issue of small random requests,
a lot of efforts have focused on I/O request stream reorgani-
zations in the middleware layer. For multiple noncontiguous
smaller requests, Data sieving [6] technique integrates them
into a larger contiguous chunk including the additional data
(hole) instead of accessing them separately. Datatype I/O [7]
and List I/O [19] techniques allow users to merge multiple
I/O requests with different patterns within a single I/O routine.
Collective I/O [6] is another technique proposed to rearrange
concurrent I/O accesses among a group of processes of a
parallel program to a larger contiguous request.

All these techniques succeed in exploiting regular group
relation for parallelism, but they are not designed to utilize
SSDs for random access. S4D-Cache can use not only these
techniques for its underlying parallel file systems but also
utilize SSDs’ characteristics.

B. Using System Memory as Cache

Traditionally the problem of small requests is addressed by
using system main memory as cache. These cache schemes
are deployed on both client side and server side in a parallel
environment, including client-side file caching in GPFS [4]
and Lustre [3], cooperative caching [20], active buffering [9]
and collective caching [8].

In contrast to these memory-based methods, S4D-Cache has
larger cache capacity and is reliable due to its use of non-
volatile SSDs. SSDs are a complement of memory cache and
can be served as an extension of memory cache. However,
S4D-Cache has a totally different selection algorithm and
runtime system design. The integration of memory cache and
S4D-Cache will be an interesting topic for future study.

C. SSD-based Storage System

Using SSDs as a cache of traditional HDDs is a widely
used strategy in I/O systems, such as FlashCache [12],
Conquest [21], SieveStore [14], iTransformer [13], and iB-
ridge [11]. Liu et al. simulates a system using SSD storage
on I/O nodes as buffers to handle burst I/O requests [22].
Tiered checkpointing redirects all write data to the RAM
disks or SSDs in the computing nodes [23]. SSD-based hybrid
storage is another popular method to make full use of SSD.
This method integrates an SSD and a hard disk as one block
device [24], [25]. I-CASH is a new hybrid storage architecture
based on data-delta pairs to improve I/O performance for I/O-
intensive workloads [16]. Hystor identifies critical data blocks
with strong temporal locality and redirects them to SSD for
fast future accesses [15].

These approaches succeed in exploiting data access informa-
tion within single file server or computing node. But unlike this
work, S4D-Cache leverages the global data access information
in parallel environment to improve I/O performance. Our pre-
vious work CARL similarly uses the global data information
and SSDs to boost performance [26]. However, the SSD-
based servers are used as persistent storage instead of cache.
With a small set of SSD-based file servers and the selective

Application

Middleware

PFS client

PFS server

Original PFS(OPFS)

SSD SSD

Compute Nodes

CSservers

HDD

P P P P P P

HDD HDD HDD HDD HDD

S4D-Cache

MPI-IO

Cache PFS(CPFS)

DServers

The original system The plug-in system

Fig. 2. The S4D-Cache architecture

cache policy, S4D-Cache provides a feasible and cost-effective
solution for large-scale data intensive applications.

III. DESIGN OF S4D-CACHE

S4D-Cache aims to use SSD-based file servers to cache
small random accesses in parallel I/O system with non-uniform
workloads. By exploiting SSD’s strong performance advantage
for small random request, the I/O system performance can be
significantly improved.

A. Architecture Overview

Figure 2 shows the high performance computer systems
for which S4D-Cache is designed. S4D-Cache acts as an
augmented module to MPI-IO library [27]. In these systems,
besides the traditional HDD-based file servers (DServers),
there are a small number of SSD-based File servers (CServers).
DServers are accessed by the original parallel file system
(OPFS); CServers act as a fractional cache of DServers and
are accessed by the cache parallel file system (CPFS). When
application processes pass their I/O requests to MPI-IO, S4D-
Cache intercepts all the requests and choose the proper servers
to serve them.

Positioning S4D-Cache at the middleware layer is ideal for
several reasons. First, key global data access information, such
as file-level, process-level, and MPI Rank-level attributes are
accessible. Second, the middleware layer is independent of
the file system, allowing the solution to support multiple file
systems, such as PVFS [2], Lustre [3], and GPFS [4]. Third,
the plug-in design is transparent to applications, therefore user
programs do not require modifications to utilize the increased
performance. Finally, because only a small cluster of SSDs
are deployed into the system, the design is flexible and highly
cost-effective.

S4D-Cache consists of three key software components: Data
Identifier, Redirector and Rebuilder, as shown in Figure 3.
Data Identifier intercepts every file request issued to DServers,
and identifies requests for performance-critical data using
a data access cost model. Redirector redirects the selected
requests to the high-performance CServers. While selected
write requests and cached read requests are redirected to
CServers, other write requests and missed read requests are
directed to the traditional DServers. Rebuilder is responsible

Data Identifier

Redirector
Rebuilder

(Helper

thread)

OPFS CPFS

Request

CDT

DMT

Application

main thread

Process 0

Data Identifier

Redirector
Rebuilder

(Helper

thread)

Request

CDT

DMT

Application

main thread

Process 1

S
4

D
-C

a
ch

e

...

Cost

Model

Cost

Model

Fig. 3. Software structure of S4D-Cache

for flushing the selected write data back to DServers, and
fetching the selected read data to CServers.

B. The Data Access Cost Model

TABLE I
PARAMETERS (SHORT IN PARS) IN COST ANALYSIS MODEL.

Pars Description

M Number of HDD file servers
N Number of SSD file servers (N < M)
str Stripe size of parallel file system
d Logical address distance between ri and ri−1

f File offset of request ri
r Data size of request ri
R Average rotation delay for HDD
S Maximum seek time for HDD
βD Cost of access one unit of data for HDD
βC Cost of access one unit of data for SSD

Because each CServer is of relatively limited size, S4D-
Cache only caches performance-critical data. Thus, the poten-
tial performance benefit of redirecting a request to CServers
must be evaluated to prioritize their eligibility for caching. To
this end, a cost model is derived to evaluate the data access
time for each file request in parallel file systems, and the
corresponding parameters are listed in Table I.

For each file request req served by DServers, the access
cost is defined as

TD = Ts + Tt (1)

Ts is the startup time, including disk seek and rotation delay.
Tt is the data transfer time spent on actual data movement. Let
α denote the startup time in each server, then α is usually a
random variable. Assume α follows uniform distribution on
[a, b], then the probability function of α is

P (α < x) =
x− a
b− a

, a 6 x 6 b (2)

Here a = F (d) + R, b = S + R. The request distance d
can be a metric to measure the randomness of a request, and
F is a function for converting d to seek time. We use the
approach described in [28] to derive this function from an
offline profiling of the HDD storage.

Request

File Servers

File

Str

r

(1) (2) (3)

r

Sm Sm

r

File Servers File Servers

Request

File

Request

File

r

(4)

r

File Servers

Request

File

f f

Sm

f f

Sm
b

e

b
e

b
e

Fig. 4. Four cases where a file request involves a different number of sub-
requests.

For a parallel request req, it may involve multiple sub-
requests on m file servers, and the overall startup time of
req is determined by the maximum of all sub-requests. Let
α1, α2, · · · , αm be the startup time of the m file servers,
X = max(α1, α2, · · · , αm), then the probability density
function of X is

f(x) =
m× (x− a)m−1

(b− a)m
, a 6 x 6 b (3)

Hence, the expectation of the maximum startup time

Ts =

∫ b

a

xf(x)dx = a+
m

m+ 1
(b− a) (4)

On the other hand, the data transfer time Tt of request
req should be the maximum of all m file servers, which is
proportional to the data size in each file server. Let s(i) is
the size of the sub-request on file server i (1 ≤ i ≤ m), and
sm = max{s(1), s(2), ..., s(m)}, then

Tt = sm ∗ βD (5)

Assume the parallel file is placed on DServers with a fixed-
size stripe in a round-robin way, then for a given request with
offset f and size r, the serial number of the involved beginning
file stripe is B = b f

str c, the ending file stripe is E = b f+r
str c.

Hence, the number of the involved file servers is

m =

{
E −B + 1, E −B + 1 < M

M, otherwise
(6)

Accordingly, the size of the beginning fragment can be
calculated as b = str − f%str, and the size of the ending
fragment is e = (f + r)%str. For a parallel I/O request, it
will be served by multiple file servers concurrently. Figure 4
shows an example of the possible sub-request layouts of req.
Let 4 = E − B, then 4 > 0, and sm can be calculated as
table II. Based on Equation 6 and table II, TD of each file
request in Equation 1 can be obtained.

In contrast, for request req served at CServers, we calculate
the access cost without consideration of the seek time because
SSDs are insensitive to spatial locality. Assume Sn is the
maximum data size when all SSD file servers are involved
in parallel data accesses, it can be defined as

TABLE II
MAXIMUM SIZE OF SUB-REQUEST IN DIFFERENT FILE ACCESSES CASES.

Case Maximum size of sub-request (sm) Conditions
1 r 4 = 0

2 max{b+ e+ (d4
M
e − 1) ∗ str, 4 > 0&4%M = 0

d4
M
e ∗ str}

3 max{b+ (d4
M
e − 1) ∗ str, 4 > 0&4%M = 1

e+ (d4
M
e − 1) ∗ str}

4 d4
M
e ∗ str otherwise

TC = Sn∗βC (7)

Then the performance benefit of serving a request issued to
DServers if it were served by CServers can be calculated as
following:

B = TD − TC (8)

C. Critical Data Identification

With the proposed data access cost model, Data Identifier is
able to obtain the performance benefit (B) for each incoming
request. By examining the above equations, it can be noted that
small random requests lead to more benefit from CServers,
because single CServer has performance advantage in serving
them. However, large continues requests will get less or even
no benefit because DServers have higher parallelism due to
more file servers. A positive B means that serving the request
at CServers will reduce the I/O access time, i.e., increase the
parallel I/O system performance. In such a case, since the
space of CServers is limited, the request should be served at
CServers. Otherwise, serving the request at DServers helps
improve the I/O performance and there is no need to serve it
at CServers.

When the benefit B of a request is larger than zero, Data
Identifier regards the requested data as performance-critical
data, and records it to the critical data table (CDT). As
shown in Figure 5, each entry in CDT consists of four
variables, D file, D offset, Length, and C flag. They indicate
the file name in DServers, the data offset in the file, the data
length, and whether the data needs to be cached in CServers,
respectively. Based on the CDT, critical read/write data can be
identified and redirected to the high-performance CServers.

CDT

D_file

DMT

D_offset Length C_flag

D_file D_offset Length C_flag

D_file D_offset C_file C_offset Length D_flag

D_file D_offset C_file C_offset Length D_flag

Fig. 5. The data structure of CDT and DMT

D. Cache Metadata Management

S4D-Cache creates a correlating cache file for each origial
file and uses Data Mapping table (DMT) to keep track of data

information that has been cached in CServers. As shown in
Figure 5, each entry in DMT includes six important fields.
D file and D offset are the file name and offset for the data
in the original file, C file and C offset are the file name and
offset for the data in the cache file. Length is the size of the
cached data, and D flag indicates whether the cached data
is dirty. The D flag is set when CServers contains data that
requires to be copied back to DServers. The DMT is updated
each time a data location has changed. By maintaining the
DMT, Redirector can continuously track the most up-to-date
location of the data, which ensures data consistency between
DServers and CServers.

In memory, the table is organized as a hash table to speedup
lookups, which only incur minimal overhead with several
memory accesses. Since only remapped data needs to be
tracked in the mapping table, the spatial overhead of the
mapping table is small. Besides the memory-resident copy, the
DMT table is also maintained in persistent storage. In order to
reduce the I/O delay of DMT access, in our implementation,
DMT is written to an addressable file in CServers. Changes
to the mapping table are synchronously written to the storage
in order to survive power failures.

In parallel I/O environment, multiple processes possibly ac-
cess DMT concurrently. In order to keep metadata consistency,
DMT is maintained in a global data file, and each process
sends a lock request to access the DMT table. To simplify the
implementation, we leverage the mechanism in Berkeley DB
to perform metadata operations and address lock contentions.
Techniques, similar to the distributed cache meta data [8], can
also be applied to distribute meta data among the application
processes, so that the communication contention for accessing
metadata can be minimized.

E. Selective Caching Scheme

Redirector is a core module in S4D-Cache, it selectively
caches data based on four factors: (1) the mapping entry in
DMT, indicating if the request can be served by CServers, (2)
the entry in CDT, indicating if the missed request should be
admitted in CServers, (3) type of I/O request (read or write),
and (4) the available space in CServers.

Upon each I/O request, Redirector looks up the DMT and
checks if the request hits CServers or not. If so, Redirector
directly serves the request with the data in CServers. Other-
wise, Redirector handles the request obeying a selective cache
policy.

Algorithm 1 shows the work-flow of Redirector for each I/O
request. The algorithm attempts to utilize CServers whenever
possible. For write requests, CServers are regarded as a write
buffer. If there is a sufficient space in CServers (line 5 and
10) or the request is already mapped (line 22), the request will
be absorbed by CServers. In order to reduce data migration
overhead, the algorithm first looks for free space in CServers
when allocating an available space for a write request. If free
space cannot be found, a clean space will be the candidate
based on a LRU policy. For read requests, Redirector uses
CServers as a caching area. When the required data misses,

Algorithm 1 Redirection Algorithm
Require: I/O Request: req, Data Mapping Table: DMT, Crit-

ical Data Table: CDT.
1: if req misses in DMT then
2: if req is write then
3: if req is in CDT then
4: find free space in CServers
5: if free space is found then
6: add new entry in DMT (mark dirty)
7: change the req location as the DMT entry
8: else
9: find clean space in CServers

10: if clean space is found then
11: change the entry in DMT (mark dirty)
12: change the req location as the DMT entry
13: end if
14: end if
15: end if
16: else
17: if req is in CDT then
18: set the C flag of the entry in CDT
19: end if
20: end if
21: else
22: change the req location as the DMT entry
23: end if
24: send request req

the request is cached in a “lazy” way. This means that
Redirector marks the C flag in the corresponding entry of
CDT (line 18), which indicates to Rebuilder that an actual
data movement should be performed in the following data
reorganization stage. This method reduces the response time
of read requests. Please note that this algorithm is selective:
instead of writing or reading all data, it only attempts to absorb
the most performance-critical requests in the CDT (line 3 and
17), to maximize use of CServers space.

F. Data Reorganization

Rebuilder plays the role of freeing CServers space for future
use. It is triggered periodically, and performs two kinds of
operations. 1) It writes dirty data back to DServers, and then
sets the D flag in DMT to 0, indicating the data is clean and
the space is available for future use. 2) It reads data from the
DServers into CServers by consulting the CDT table, and then
sets, the C flag to 0 to show the data has been cached.

The data reorganization activities may interfere with the
normal I/O activities. For this reason, Rebuilder issues low-
priority I/O requests for the reorganization to reduce the
interference.

IV. IMPLEMENTATION

We have implemented the S4D-Cache selective scheme and
its runtime system under MPICH2 [29]. The primary and
challenging parts are explained below.

A. Cache Metadata Mapping Table

Both Redirector and Rebuilder need to get application data
access information from the DMT. The DMT is a key structure
to save the mapping relation between the data cached in
CServers and DServers.

We use Berkeley DB to implement the DMT table. DMT is
a database file which has a standalone space in CServers. The
Berkeley DB is configured as a hash table, and each record
is a key-value pair. We generate a mapID by encoding the
following information: application name, number of process,
rank of the process, and the original file name. Each record
in the Berkeley DB hash table is a key-value pair; the key is
the mapID and the value contains the data access information
listed in Figure 5. By leveraging the light-weighted DB, the
lock contention is addressed and metadata operations are
performed efficiently. We also use a list to maintain the most
frequently accessed mapping entries which further reduces the
in-memory mapping table size.

B. I/O Redirection Module in MPI-IO

The I/O redirection module redirects data accesses on the
original files to the cache file. Usually an application issues a
data request with three parameters: the identifier of the original
file, the data offset, and the request size. The redirection
module translates the filename and offset between the original
file and the cache file and serves the request using the cache
file. We have made the following modifications to the standard
MPI-IO functions.

MPI File open: While opening a file, in addition to open
the original file, the method also opens a corresponding cache
file.

MPI File read: For each I/O read, this method first uses
the input parameters to calculate the performance using Equa-
tion 8. Next, the corresponding entry is added to the CDT
table if the request is a critical request and not in the CDT;
then the method checks whether the opened cache file contains
the requested content by looking up the DMT table. If this
condition is true, the module calculates the correct data offset,
and issues the data request using the new offset and the cache
file handle. Otherwise, the module gets the data using the
original file handle and offset. If the access data belongs to
the CDT, the method sets the C flag of the entry in the CDT
table, which will be later used by Rebuilder.

MPI File write: For each I/O write, this module uses the
input parameters to calculate the performance benefit and adds
the corresponding entry to the CDT table as necessary. Then,
the module checks whether the opened cache file contains the
requested content by initiating a lookup in the DMT table.
If this is true, the module calculates the correct data offset,
and issues the data request using the new offset and cache file
handle. Otherwise, the module determines whether the access
data belongs to the CDT. If so, the method tries to allocate
available space in the cache file for the critical write request,
updates the DMT entry, and issues a data request with the new
offset and cache file handle. Otherwise, the module writes the
data using the original file handle and offset.

MPI File close: It closes the opened cache file.
MPI File seek: It calculates the offset and conducts the

seek operation in the cache file.
When the requested data does not belong to any cache file

and is not performance-critical, this system will act the same
as the default MPI-IO implementation.

C. Data Movement Implementation Issues

In order to avoid interfering with the normal MPI I/O
operations, Rebuilder creates a new I/O helper thread in each
process to handle the background data movement. This I/O
thread is created when the process opens the first file by calling
MPI File open and destroyed after the last file is closed with
MPI File close. Each process can have multiple files opened,
but only one thread is created. Once the I/O thread is created, it
enters an infinite loop to perform the data movement operation
until it is signaled for termination. It communicates with the
main thread through shared variables that store file access
information, such as file handler, offset, etc.

V. PERFORMANCE EVALUATION

In this section, the performance of prototype implementation
of S4D-Cache is evaluated through extensive experiments.

A. Experimental Setup

The experiments were conducted on a 65-node SUN Fire
Linux cluster. Each computing node has two AMD Opteron
processors, 8GB memory and a 250GB HDD (SEAGATE
ST32502NSSUN250G). The operating system is Ubuntu 9.04
and the parallel file system is PVFS2 version 2.8.2. All nodes
are equipped with Gigabit Ethernet interconnection, and eight
nodes are equipped with an additional PCI-E X4 100GB SSD
(OCZ-REVODRIVE X2). Although a more high-end SSD
would certainly improve cache performance, this entry-level
SSD well demonstrates the effectiveness and potential of S4D-
Cache.

Among the available nodes, 32 nodes are used as comput-
ing nodes, eight are DServers, and four are CServers. Each
DServer uses the HDD as storage and each SServer uses the
SSD. DServers and CServers are separately accessed with
their PVFS2 parallel file system. MPICH2 [29] compiled with
ROMIO is used to generate the executable. When S4D-Cache
is enabled, the cache capacity is set to 20% of the application’s
data size. S4D-Cache does not benefit read performance if the
requested data have not been cached in CServers. However,
many MPI programs are executed several times and present
consistent data access patterns [17], [30]. The critical data
identified and cached by S4D-cache in the first run can
improve read performance in the later runs. Therefore, the
read performance improvement of S4D-Cache for the program
with a second run is shown in this paper. In order to show
the effectiveness of SD-Cache, the benchmarks of IOR [5],
HPIO [31], and MPI-Tile-IO [32] are used to evaluate the
performance.

 0

 50

 100

 150

 200

 250

 300

 350

8 16 32 64 4096

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Request Size (KB)

stock
S4D-Cache

(a) Throughput for write

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 32 64 4096

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Request Size (KB)

stock
S4D-Cache

(b) Throughput for read

Fig. 6. I/O throughputs of IOR with varied request sizes.

B. The IOR Benchmark

IOR is a parallel file system benchmark developed at
Lawrence Livermore National Laboratory [5]. It provides three
APIs: MPI-IO, POSIX, and HDF5; however, only the MPI-
IO is used in this benchmark. To simulate different data
access patterns at different moments, 10 instances of IOR are
created one by one with different parameters. Among these
instances, six issue sequential I/O requests and the remaining
send random I/O requests. In each instance, the test performs
write and read operations to a shared 2GB file. During these
benchmarks, 32 processes are used and the request size is kept
to 16KB unless otherwise specified.

1) Varying Request Sizes: While varying the request size
of IOR from 8KB to 4096KB, the overall I/O performance is
measured. As shown in Figure 6(a), S4D-Cache can improve
the overall write throughput by 51.3%, 49.1%, 39.2% and
32.5% over the stock I/O system with the request size of
8KB, 16KB, 32KB and 64KB respectively. For request size
of 4096KB, S4D-Cache nearly has the same I/O throughput
as the stock I/O system. With smaller request sizes, the I/O
throughput improvement is more significant because CServers
can lead to more benefits for them. For large continuous re-
quests, as DServers has higher parallelism and the performance
gap between CServer and DServer is reduced, placing them on
CServers incurs less or no performance benefits. Thus, S4D-
Cache can bring less performance improvement.

To better understand the reasons for the performance im-
provement, the accessed addresses of requests on DServers
and CServers are tracked using IOSIG, an I/O pattern analysis
tool developed in our previous work [33]. Table III shows
the request distribution at DServers and CServers during the

five-second period of IOR execution from the 50th second
with write request sizes of 16KB and 4096KB. For 16KB
requests, most of the requests are redirected to CServers, and
DServers mostly sees sequential requests. When the request
size is 4096KB, because serving them from DServer will
lead to higher performance, all the requests are dispatched
to CServers. This result shows S4D-Cache can effectively
identify the performance-critical data and redirect to them to
CServers to improve performance.

TABLE III
REQUEST DISTRIBUTION.

Request Size DServers (%) CServers (%)
16KB 16.3 83.7

4096KB 100.0 0.0

The read test yields similar result, as shown in Figure 6(b).
S4D-Cache can increases the throughput by up to 184.1% with
the request size of 8KB. Compared to the write test, S4D-
Cache has a larger improvement in read because the SSD
performs better for reads than for writes.

2) Varying Number of Processes: Each instance of IOR
benchmark was run with 16, 32, 64, and 128 processes.
Different processes access various regions of the original file
so that no process’ data co-locates with any other’s data.
Figure 7(a) gives the results of this test for write. Similar to the
previous test, S4D-Cache improves the overall I/O bandwidth
by 35.4% to 49.5%. With the number of processes increasing,
IOR’s bandwidth gets lower because each file server needs
to serve more processes’ requests and the competition among
processes gets more severe. This result also shows S4D-Cache
has a good scalability in terms of the number of processes.
The performance trend is similar for read requests, as shown
in Figure 7(b).

3) Varying SSD Cache Capacities: In general, the capacity
of CServers is much smaller than that of DServers and
could be even smaller than the I/O working set size for the
application. According to the algorithm, S4D-Cache could
elastically replace the cached data to increase the utilization of
the SSD space. Table IV shows the write throughputs when
the SSD cache capacity is varied from 0GB to 6GB. Here
0GB means that S4D-Cache is disabled. It is observed that I/O
throughput improves by increasing the capacity of CServers,
which is because more random I/O requests can benefit from
CServers. However, when most random requests are already
cached (the capacity is above 4GB), continuously enlarging
CServers will only bring limited performance improvement.

4) Varying Numbers of SSD file servers: Finally, the num-
ber of the file servers in CServers is varied while maintaining
the same available cache space and I/O access patterns. IOR
was benchmarked with different number of SSD file servers
from zero to six. (0 means the stock I/O system is used.)

Figure 8(a) shows the results for write operations. The
overall write bandwidth is improved by 20.7% to 60.1%.
With the number of CServers increasing, the I/O bandwidth
improves because CServers can serve the redirected requests

 0

 20

 40

 60

 80

 100

16 32 64 128

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Processes

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

16 32 64 128

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Processes

stock
S4D-Cache

(b) Throughput for read

Fig. 7. I/O throughputs of IOR with varied numbers of processes.

TABLE IV
I/O THROUGHPUTS OF IOR WITH VARIED SSD CACHE CAPACITIES.

SSD Capacity Throughput (MB/s) Speedup (%)
0GB 58.03 0
2GB 69.34 19.5
4GB 86.15 48.4
6GB 90.89 56.6

with better random performance. However, the improvement
reduces when continuously adding more nodes to CServers.
More specially, the I/O performance only slightly improves
when the number of file servers is above four. This is be-
cause only a portion of the I/O workload is random and the
improvement is bounded to these requests. Hence, choosing a
reasonable number of file servers based on the characteristic
of the I/O workload is critical to make full use of the SSDs.
For reads, the I/O throughput is higher writes, due to the better
random read performance of SSD, but it also has a plateau,
as shown in Figure 8(b).

C. The HPIO Benchmark

HPIO is a program designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
I/O [31]. This benchmark can generate various data access
patterns by changing three parameters: region count, region
spacing, and region size. The region spacing is used to gener-
ate noncontiguous data access patterns. In our experiment, the
number of process is set to 16 processes; the region count is
set to 4096; the region size is set to 8KB; and region spacing
is varied from 0KB to 4KB(0KB indicates sequential access).

As shown in Figure 9(a), S4D-Cache can increase the
I/O throughput by 18%, 28%, 30%, and 33% respectively.

 40

 50

 60

 70

 80

 90

 100

0 2 3 4 5 6

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of SSD I/O nodes

(a) Throughput for write

 40

 50

 60

 70

 80

 90

 100

 110

 120

0 2 3 4 5 6

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of SSD I/O nodes

(b) Throughput for read

Fig. 8. I/O throughputs for the IOR benchmark with varied numbers of
CServers.

It means that S4D-Cache is effective with respect to HPIO
benchmark. However, though the I/O access of each process
is noncontiguous, it is not as random as the IOR benchmark.
Thus the improvements for HPIO are not as significant as those
for IOR. This also confirms the adaptability of S4D-Cache;
when the application’s I/O accesses have a poorer throughput
(due to the poorer data sequential locality among consecutive
accesses), more benefit is gained by using S4D-Cache. For
read operations, the performance has similar trend as presented
in Figure 9(b).

D. The MPI-Tile-IO Benchmark

MPI-Tile-IO is a test application from the Parallel I/O
Benchmarking Consortium [32]. It treats the entire data file
as a two-dimensional dense dataset and tests the performance
of noncontiguous data access patterns. Each process accesses
a chunk of data based on the size of each tile and the size of
each element. In the tests, the number of elements in the X
and Y directions are set to 10 and 10, the size of each element
is set to 32KB, and the number of processes is varied between
100 and 400.

Figure 10 shows the aggregated I/O throughputs. The ag-
gregated bandwidth increases by 21% to 33% for writes, and
18% to 31% for reads. As mentioned above, the data access
patterns of MPI-Tile-IO are nested-stride. This means, each
process has a fixed-stride access pattern and yields better data
locality than that of the IOR test. As a result, the performance
improvement of this benchmark is not as large as that of IOR,
but is still significant. This further confirms that S4D-Cache
brings additional benefits when data requests are more random
in nature.

 0

 20

 40

 60

 80

 100

 120

0 1 2 4

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Region spacing (KB)

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 4

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Region spacing (KB)

stock
S4D-Cache

(b) Throughput for read

Fig. 9. I/O throughputs of HPIO with varied region spacings.

 0

 20

 40

 60

 80

 100

 120

100 200 300 400

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Processes

stock
S4D-Cache

(a) Throughput for write

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400

I/
O

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Processes

stock
S4D-Cache

(b) Throughput for read

Fig. 10. I/O throughputs of MPI-Tile-IO with varied number of processes.

E. System Overhead

1) Metadata Space Overhead: To track data cached in
CServers and maintain data consistency, S4D-Cache uses a file
in CServers to store the DMT Table. This insures additional
storage space overhead. The amount of space consumed is
maximized when all the request sizes are 4KB.

Assuming the available storage space of CServers is S(GB);
and each entry in our implementation occupies 6 ∗ 4B, the

 0

 20

 40

 60

 80

 100

 120

 140

8 16 32

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Request size (KB)

Stock
S4D-Cache

Fig. 11. Performance overhead result.

maximum number of records in DMT is S/4 ∗ 106. Thus, the
metadata space overhead is 0.6%, which is negligible.

2) Performance Overhead: As shown in Figure 3, S4D-
Cache has some additional modules which may generate
overhead. S4D-Cache is able to improve the I/O performance
of applications with performance-critical requests. However,
it may degrade the I/O performance for some applications do
not have performance-critical requests. Thus it is necessary to
evaluate the following two possible sources of overhead during
runtime.

1) During file open, the I/O identifier module needs to
initialize the DMT table in memory, and decide whether to
create a new cache file in CServers.

2) During file read/write, the Identifier and Redirector need
to calculate the access cost, perform a lookup in the CDT and
DMT, and decide whether to cache the requested data. Since
the DMT table has been loaded from CServers, most of the
operations can be done in memory.

The two overheads mentioned above are very small com-
pared with I/O operations overheads. In order to show the
overhead is negligible, IOR is benchmarked with 32 processes,
a request size which varies from 8KB to 32KB, and each
process writes a shared 10GB file in a random pattern where
all the requests intentionally miss the CServers. This causes
the Redirector to redirect all requests to DServers. Figure 11
shows these results. As expected, the overhead is almost
unobservable.

VI. CONCLUSIONS

In this study, we have introduced the Smart Selective SSD
Cache (S4D-Cache) system to combine SSD devices with
parallel I/O systems. S4D-Cache deploys a small set of SSD
file servers to cache selected performance-critical requests on
top of a large set of conventional parallel HDD file servers. The
S4D-Cache design has several merits: (1) it is cost-effective
because only a small set of SSD are deployed; (2) it is smart in
fully utilizing the value of parallelism and the newly emerged
storage media, SSDs; (3) its plug-in design is transparent
to applications; therefore, user programs do not need to be
modified; (4) its design is general and can be applied to
different parallel file systems.

The data selective functionality of S4D-Cache is supported
by three different system components: Data identifier, Redi-

rector and Rebuilder. Data identifier identifies performance-
critical data from I/O request streams. Redirector makes the
data selection decision of the identified critical data to fully
utilize SSDs based on the access cost analysis. Rebuilder
reorganizes the content of the SSD cache space and conducts
data movements based on the changes of I/O workload.

The S4D-Cache design is implemented under MPICH2
I/O and the PVFS2 parallel file system environment. Its
performance is evaluated with different benchmarks, namely
IOR, HPIO, and MPI-TILE-IO, on a SSD-equipped computer
cluster. Experimental results show that S4D-Cache is feasible
and effective in improving parallel I/O performance.

ACKNOWLEDGMENT

The authors are thankful to their shepherd André Brinkmann
and the anonymous reviewers for their helpful comments in
reviewing this paper. This research was supported in part by
National Science Foundation under NSF grant CNS-0751200,
CCF-0937877 and CNS-1162540 and Huawei Corporation.

REFERENCES

[1] M. Kandemir, S. W. Son, and M. Karakoy, “Improving I/O perfor-
mance of Applications through Compiler-DirectedCode Restructuring,”
in Proceedings of the 6th USENIX Conference on File and Storage
Technologies, 2008, pp. 159–174.

[2] P. H. Carns, I. Walter B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A
Parallel Virtual File System for Linux Clusters,” in Proceedings of the
4th Annual Linux Showcase and Conference, 2000, pp. 317–327.

[3] S. Microsystems, “Lustre File System: High-performance Storage Ar-
chitecture and Scalable Cluster File System,” Tech. Rep. Lustre File
System White Paper, 2007.

[4] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large
Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, 2002, pp. 231–244.

[5] “Interleaved Or Random (IOR) Benchmarks.” [Online]. Available:
http://sourceforge.net/projects/ior-sio/

[6] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O
in ROMIO,” in The Seventh Symposium on the Frontiers of Massively
Parallel Computation, 1999, pp. 182–189.

[7] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp, “Efficient
Structured Data Access in Parallel File Systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2003, pp. 326–
335.

[8] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
S. Tidemad, “Collective Caching: Application-Aware Client-Side File
Caching,” in Proceedings of the 14th IEEE International Symposium on
High PerformanceDistributed Computing, 2005, pp. 81–90.

[9] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO Output
Performance with Active Buffering plus Threads,” in Proceedings of
the International Parallel and Distributed Processing Symposium, 2003.

[10] Y. Xu and S. Jiang, “A Scheduling Framework that Makes any Disk
Schedulers Non-work-conserving Solely Based on Request Characteris-
tics,” in Proceedings of the 9th USENIX Conference on File and Storage
Technologies, 2011.

[11] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving Unaligned
Parallel File Access with Solid-State Drives,” 2013.

[12] M.Srinivasan and P. Saab, “Flashcache: A General Purpose
Writeback Block Cache for Linux,” 2013. [Online]. Available:
https://github.com/facebook/flashcache

[13] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve
Disk Scheduling for High-performance I/O,” in Proceedings of 26th
IEEE International Parallel and Distributed Processing Symposium,
2012, pp. 715–726.

[14] T. Pritchett and M. Thottethodi, “SieveStore: a Highly-Selective,
Ensemble-level Disk Cache for Cost-Performance,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture,
2010, pp. 163–174.

[15] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the international conference on Supercomputing, 2011,
pp. 22–32.

[16] Q. Yang and J. Ren, “I-CASH: Intelligently Coupled Array of SSD and
HDD,” in Proceedings of the IEEE 17th International Symposium on
High PerformanceComputer Architecture, 2011, pp. 278–289.

[17] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-Direct and
Layout-Aware Replication Scheme for Parallel I/O Systems,” in Pro-
ceedings of 27th IEEE International Parallel and Distributed Processing
Symposium, 2013.

[18] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
Prefetching Using MPI File Caching and I/O Signatures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2008, pp. 1–12.

[19] A. Ching, A. Choudhary, K. Coloma, L. Wei-keng, R. Ross, and
W. Gropp, “Noncontiguous I/O Accesses through MPI-IO,” in Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003, pp. 104–111.

[20] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative Caching: Using Remote Client Memory to Improve File
System Performance,” 1994.

[21] A.-I. A.Wang, P. Reiher, G. J. Popek, and G. H. Kuenning, “Conquest:
Better Performance through a Disk/persistent-RAM Hybrid File Sys-
tem,” in Proceedings of the 2002 USENIX Annual Technical Conference,
2002, pp. 15–28.

[22] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the Role of Burst Buffers in Leadership-Class
Storage Systems,” in Proceedings of the IEEE 28th Symposium on Mass
Storage Systems and Technologies, 2012, pp. 1–11.

[23] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[24] H. Payer, M. Sanvido, Z. Bandic, and C. Kirsch, “Combo Drive:
Optimizing Cost and Performance in a Heterogeneous Storage Device,”
in Proceedings of the First Workshop on Integrating Solid-state Memory
into the Storage Hierarchy, vol. 1, 2009, pp. 1–8.

[25] T. Bisson and S. A. Brandt, “Reducing Hybrid Disk Write Latency with
Flash-Backed I/O Requests,” in Proceedings of the 15th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2007, pp. 402–409.

[26] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware
Region-Level Data Placement Scheme for Hybrid Parallel I/O Systems,”
in Proceedings of the IEEE International Conference on Cluster Com-
puting, 2013.

[27] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, 1999, pp. 23–32.

[28] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy Con-
sumption,” in Proceedings of the 20th ACM Symposium on Operating
Systems Principles. New York, NY, USA: ACM, 2005, pp. 263–276.

[29] A. N. Lab, “MPICH2 : A High Performance and
Widely Portable Implementation of MPI.” [Online]. Available:
http://www.mcs.anl.gov/research/project-detail.php?id=2

[30] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings
of the 17th Annual International Conference on Supercomputing. San
Francisco, CA, USA: ACM, 2003, pp. 252–260.

[31] A. Ching, A. Choudhary, W.-k. Liao, L. Ward, and N. Pundit, “Evalu-
ating I/O Characteristics and Methods for Storing Structured Scientific
Data,” in Proceedings of the 20th International Parallel and Distributed
Processing Symposium, 2006.

[32] “MPI-Tile-IO Benchmark.” [Online]. Available:
http://www.mcs.anl.gov/research/projects/pio-benchmark/

[33] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 196–203.

