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Abstract; Symmetric Toeplitz tridiagonal systems arise in many scientific applications.
An efficient algorithm, the Simple Parallel Prefix (SPP) algorithm, was previously
proposed for solving symmetric Toeplitz tmdiagonal systems on SIMD and wvector
computers. Based on the SPP algonthm, a scalable parallel algorithm is proposed for
solving peniodic symmetric Toeplitz tridiagonal systems in this study. The newly
proposed algorithm has the same parallel computation count as that of the SPP algorithm
for non-periodic systems, and it requires only shift communication.

1 INTRODUCTION

A matrix 1s Toeplitz if its entnes along each diagonal are the same. Symmetric Toeplitz
tnidiagonal systems arise in many scientific applications. They appear in multigrid
methods, Alternating Direction Imphcit (ADI) method, wavelet collocation method, and
in line-SOR preconditioners for conjugate gradient methods [3]. In addition to solving
PDE's, Toeplitz tndiagonal systems also arise in digital signal processmng, image
processing, stationary time series analysis, as well as in spline curve fitting [7].

Because of its importance, intensive research has been done on the development of
efficient parallel tridiagonal solvers. Many algorithms have been proposed [6], including
the well known recursive doubling reduction method (RCD) developed by Stone [2], and
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the cyclic reduction or odd-even reduction method (OER) developed by Hockney [1]. In
general, parallel Toeplitz tridiagonal solvers require global communications which makes
them inefficient on distributed-memory architectures. Recently, we have taken a new
approach [3,4]: increasing parallel performance by introducing bounded numerical error.
Two new algorithms, namely the Parallel Diagonal Dominant (PDD) algorithm [3] and
the Simple Parallel Prefix (SPP) algorithm [4], have been proposed based on this
approach for MIMD and SIMD machines respectively. These two algorithms take the
advantage of that most of the tridiagonal systems arising in scientific applications are
diagonal dominant. Backed by nigorous accuracy analysis, the algorithms truncate
communication and computation without degrading the accuracy. Theoretical and
experimental results have shown that these two algorithms are efficient, practical and
applicable to many scientific applications.

In this paper, a new algorithm is introduced for solving periodic systems. The newly
proposed algorithm has the same parallel computation count as that of the SPP algorithm.
It requires only shift communications. Since the new algorithm is an extension of the SPP
algorithm, it is well believed that the accuracy results regarding the SPP algorithm can be
applied to the new algorithm as well. The discussion of the SPP algorithm is given in
Section 2. The new algorithm for periodic symmetric Toeplitz tridiagonal systems is
introduced in Section 3. The final section gives the conclusion.

2 THE SIMPLE PARALLEL PREFIX ALGORITHM

The Simple Parallel Prefix (SPP) algorithm [4] is a “tearing” algorithm. It first solves a
modified system, and, then, it corrects the intermedian result to get the final solution. The
SPP algorithm 1is designed for fine-grain computing. With n processors, it solves an n-
dimensional tridiagonal system with Zrlg(n)-|+l AXPY operations. Two prefix
communications are required in the computing (tearing) phase and one broadcast
communication is needed in the correction phase. When the tridiagonal system is
diagonally domunant, both the computing and correction phases can be truncated without
influencing the accuracy. The truncation makes the SPP algorithm superior to other
existing methods, even on vector machines.

2.1 The SPP Algorithm
We are interested in solving a linear system
Ax=d, (1)

where A is a symmetric Toeplitz tridiagonal matrix of order n:
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4= . . . |=fel] )

and x=(x,",x,)"and d=(d,, --,d,)" are n-dimensional vectors. We assume that

matrix 4 is diagonally dominant (i.e., |c| >2).

Computing Phase
The SPP consists of two phases, the computing phase and the correction phase. In
the computing phase, the system

—~—

Ax =d 3)

is solved, where
A= =gt ey , [=a-bLol L)

a and b are the real solutions of:

a+b=c
{ 4)

a-b=1

Because a-b=1 and |c| > 2, we may further assume that |a| > land |b| <1. From
Eq.(3), X =a” - [0,,6]"'[b,1,0]"d = b-[0,,6] '[b,1,0] 'd . Let L =[-5,0,0]. Then
[6,1,0] = [0,1,0]-[-8,0,0]=7-L

and

[0.1,56]" =@+ 1y (I + YT + L). )

The superscripts of matrix L represent matrix multiplication. Similarly, let U = [0,0,—b].
Then,
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[5.1,0]=[0,,0]-[-5.00]=1-U
and
[01,6]" = (7 +U™ ™y (T + U +U).

Thus, the solution of Eq. (3) is

b-U+UT Yoo U+ U+ YT+ LT Yo+ YT+ D). (6)

x

Let v=(v,--,v,)" be an n-dimensional vector. Given the special structure of L',
we find ([ + L )v=v+(-b)"v,,, where v, =(0,---0,v,---,v, ;) and v, is the i+]
element of v,. Similarly, for U', we find (J+U')v=v+(-b)'v"", where

v = (v, ,,,,0,-0)" . The operation that a vector plus a multiple of another vector

¥

is called the AXPY operation. It can be implemented efficiently on SIMD and vector
machines. Equation (6) indicates that Eq. (3) can be solved in E-rlgﬂ] AXPY

operations. Because |b| <1, and both N_L"ﬂ—-r IJ,HU‘"—: 0, when n— oo, the AXPY

operations can be truncated without influencing the accuracy,

Correction Phase

Our goal is to find the solution of Eq. (1). Medification is needed to convert the
solution of Eq. (3) to the final solution. The relation between Eqg. (1) and Eq. (3) is given
by

x=X—AVI+ETAV)'%,

where X, is the first element of vector X , and

- — o I _biﬂ y I_ b:tn-l’] " l _ bl T

A VI +ETA7'M! =b’[m,-".{-b} mm-"‘,(‘b] '1—__—!;;-‘[‘,:1‘1‘} - (7
The final solution is

x=xX-Xz, (8)

where vector z is the right side of Eq. (7). Because ]b| <1, z can be truncated at some

integer &k, without affecting the accuracy. Furthermore, when n is large,

bu""ﬂ,i=ﬂ.l."*_k,.?-'ﬂi be less than machine accuracy, and z is reduced to
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z =((-b)° ,(—b)’,---,(—b)*“'z 0,---,0)". Totally, without truncation, 2- rlgn-[-c»l
AXPY operations are needed to get the final solution.

2.2 Accuracy Analysis

If the Toeplitz matrix under consideration is diagonal dominant, the 2-|-Ig.ﬂ AXPY
operations in the computing phase can be truncated to 2k AXPY operations without
influencing the accuracy, where k is an integer less than ﬂgﬂ. Let x be the solution of

the SPP algorithm without truncation and x be the corresponding solution with
truncation, the accuracy analysis in [4] shows that the relative error under /, norm is
bounded by

. )
B LM"{H‘@!”"‘ )|, - || b2 hap")
K - 1 (1-b2)1-b)

When the order of the tridiagonal system n is large, [b|" may be smaller than the
machine accuracy. In this case, the inequality (9) becomes

(10)

-]l as™) Hﬂ—lbl“mﬂbl}IH b ]
o I B 1- ] a-5*)1-p) )

In general the integer & is quite small. For instance, if the diagonal dominancy, [cl , 15
larger than or equal to 3, k equals 4 and 6 for single precision (107" )and double
precision (107" respectively.

3 THE NEW ALGORITHM
When the boundary conditions are periodic, the discretization matrices of PDE's and
other scientific applications are periodic systems. For periodic systems, the matrix 4 in
the equation

Ax =d, (11)

has the form
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c 1 1 bY1 b
Ntk v LR e e (12)
O | o 2 oD
1  CRr & Lhb 1

0 -b
L,= Rh 5
5 0
Then,
1 b
iy b 1 )
b o1

It is easy to verify that the inverse of /7 — L, is

U—l@r'=T:£$FiI+LP+Li+~AJ$U. a3

The i-th power of L, has the form
(=b)'

L | D ap
(=)

(-b)'

where the first non-zero element in first column is the (i+/, I)-th entry, and the first non-
zero element in first row is the (/, n-i+I)-th entry. The inverse of matrix / — L, can be

computed through 2781 _1 matrix mulplications using the following equality:

(I +L, + I3+ I5Y) = (T + LD )T+ 112y (7 + L) (14)
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Similarly, let

0 -b
U, = ' .
d -b
-b 0
Then
I-u)™ =1T(1._;,7(I+U”+U’2’+"'+U;_,) (15)
1 n n
=1—_T5;-(I+U,2,ﬁ‘ I +UTent?y. . (1+U,) (16)

Based on Eq. (12), (14) and Eq. (16), the solution of (11) can be obtained by

x=Ad=atU-U,)'U-L,)"d

=ﬁfb—)n)?(l+U12>ng"]_1)"'(1+UP)(I+L§,rlg"]'l)...(I+LP)d

It requires 2-l- Ig n—|+1 matrix-vector mulplications. In general, matrix-vector

mulplication needs n”operations. Since the matrices L,and U} are special Toeplitz
matrices, the required matrix-vector multiplications can be done with AXPY operations.
For an n-dimensional vector, v = (v,,---,v, )T,

(I+LYw=v+(-b)'v,, an

. _ T
with Vi = (Vais1»Vanina VsV, v, )" and

(I+U;)v = v+(—b)iv(i) ,

with v =(v,,,v,, “+3 VY15V, e+, ¥;)T . Notice that for matrices L,and U}, the
second vector in the AXPY operation is a shift of the first vector along opposite
directions. The shift of vector requires “shift” communications on distributed-memory

machines. Figure 1 gives the proposed algorithm for solving periodic symmetric Toeplitz
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tridiagonal systems. With n processors the algorithm finds the solution in 2 »i_lg n-]+ 1

AXPY operations for a matrix of order n, Since |E:[ <1, we may assume that ]bi“ 1s less
than machine accuracy and assume that the AXPY operation can be truncated from
2- |-lg n‘]+1 to 2k + I without degrading the accuracy. The integer k is independent of

the order of matrix. Interested readers may refer [4] for detailed accuracy study. Using n
processors, each of the three j loops in Figure 1 can be executed in one AXPY operation

Jori«—0tok—1do
Jorj«1tondo
d;=d;+(-b)* A4 ;-2 okt
Jej+1
i—i+1

forie0Otok-1do
forj <« 1tondo

t:!'Jl =dJ,+|‘:—-b]rd
Je=j+1
{—i+1

(j+2') mod{n)

Jorj«1tondo
jej+1

Figure 1. The Proposed Algorithm for Periodic Systems.

4 CONCLUSION

A scalable parallel algorithm has been proposed for solving periodic symmetric Toeplitz
Tridiagonal systems for fine-grain computing. With n processors, the proposed algorithm
needs 2-r]gn_l+l AXPY operations for a system of »n equations. Most tridiagonal
systems ansing in scientific computing are diagonal dominant. The proposed algorithm
takes the advantage of diagonal dominancy and truncate the AXPY operations from
2 -I-lg n]+1 to 2k + 1 without influencing the accuracy. The proposed algorithm is an
extension of the SPP algorithm [4]. Based on the accuracy analysis and experimental
results given in [4], & 1s quite small. In general, k is equal to 4 and 6 for single and double
precision respectively. The truncation of computation and communication makes the
proposed algorithm efficient on vector machines, where AXPY operations can be
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implemented efficiently, as well as on SIMD machines. Since the integer k is independent
of the order of matrix, the truncation also makes the algorithm scalable. It is perfectly
scalable m terms of isospeed scalability [5], that is when problem size increases linearly
with the number of processors, the achieved average speed of the algorithm will maintain
the same.
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