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Scalability of Parallel Algorithm—Machine
Combinations

Xian-He Sun and Diane T. Rover

Abstract— Scalability has become an important consideration
in parallel algorithm and machine designs. The word scalable,
or scalability, has been widely and often used in the parallel
processing community. However, there is no adequate, commonly
accepted definition of scalability available. Scalabilities of com-
puter systems and programs are difficult to quantify, evaluate,
and compare. In this paper, scalability is formally defined for
algorithm-machine combinations. A practical method is proposed
to provide a quantitative measurement of the scalability. The
relation between the newly proposed scalability and other existing
parallel performance metrics is studied. A harmony between
speedup and scalability has been observed. Theoretical results
show that a large class of algorithm—-machine combinations is
scalable and the scalability can be predicted through premeasured
machine parameters. Two algorithms have been studied on an
nCUBE 2 multicomputer and on a MasPar MP-1 computer.
These case studies have shown how scalabilities can be measured,
computed, and predicted. Performance instrumentation and visu-
alization tools also have been used and developed to understand
the scalability related behavior.

Index Terms— Scalable high performance computing, perfor-
mance metrics, performance evaluation of parallel algorithms
and machines, scalability, scientific computation, visualization.

I. INTRODUCTION

N 1988, researchers at Sandia National Laboratory achieved

speedup greater than 1000 on a 1024-processor multi-
computer [1], [2]. The Sandia work [1] is based on the
scaled up principle: problem size increases with the size
of the given computer system. Three applications, in wave
mechanics, fluid dynamics, and beam-strain analysis, were
implemented on a hypercube architecture multicomputer [1].
The implementation results show that when the problem size
is scaled up with the system size the speedup increases linearly
with the system size. Each of these applications provides an
ideal situation. For massively parallel computing, we would
like the performance to increase linearly with the system
size. In general, because of design restrictions and physical
limitations, the efficiency provided by a given computer for
a given algorithm will decrease when the system size is
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increased. Problem size in general has to be increased to
achieve a linear increase of performance. The ratio of system
size and problem size increases is closely related to the
computation and communication patterns of the application,
and to the hardware support of the underlying architecture.
The word scalable, or scalability, has been widely used in
practice to describe how the system size and problem size will
influence the performance of parallel machines and algorithms.
Scalability is an important issue in parallel processing. It
measures the ability of a parallel architecture to support
parallel processing at different machine sizes, and measures
the inherent parallelism of a parallel algorithm. Scalability
can be used to predict the performance of large system and
problem sizes based on the performance of small system and
problem sizes. It suggests which computer systems could be
built with more processors and which algorithms might be
more suitable for larger computer systems. Despite the fact
that scalability is important and has been widely used in
practice, there is no adequate, commonly accepted definition of
scalability available. Indeed, scalabilities of computer systems
and programs are difficult to quantify, evaluate, and compare.
Intensive research has been conducted in this area during
recent years [3]. Some metrics have been proposed to measure
the scalability of algorithms and computer systems [4], [5],
and a formal definition for the scalability of parallel machines
also has been proposed [6]. Although these proposed metrics
provide ways to measure some special properties of algorithms
and architectures, each has certain deficiencies for measuring
the scalability of an algorithm-machine combination. In this
paper, the isospeed metric is proposed. Based on the new
metric, the scalability of a parallel algorithm-machine combi-
nation is formally defined. The validity of the new definitions
is discussed and studied. Three approaches for obtaining the
scalability of an algorithm-machine combination are proposed,
implemented, and compared. A scalability analysis is applied
to actual algorithms. In addition to analytical results, the
scalability of these algorithms is experimentally measured on
an nCUBE 2 multicomputer and on a MasPar MP-1 data
parallel computer. The analytical and experimental results
show that the newly defined scalability metric provides a
unique quantitative measurement to describe the behavior of
a parallel algorithm-machine combination as sizes are varied,
which cannot be provided by any other performance metric.
The remainder of this paper is organized as follows. In
Section Il we present a historical background and the re-
quirements of scalability. The isospeed metric and formal
definitions of scalable and scalability are proposed in Section
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III. The relationships between scalability and execution time
and between scalability and speedup are studied. Performance
prediction is considered. A formula based on scalability is
derived for a large class of algorithm-machine combinations.
In Section IV, three approaches to obtain scalabilities are
proposed. The Burg algorithm [7], which is a popular and com-
putationally efficient signal processing procedure, is studied in
detail to illustrate the concept of scalability and to compare
the three approaches for obtaining scalabilities. The behavior
and scalability of a more complicated program, solving a
radiosity application [8], is also visualized and studied in
Section IV. This visualization approach provides a unique way
to reveal characteristics which correspond to the scalability of
an algorithm-machine combination. The scalability of the two
algorithms are measured on the nCUBE 2 and MasPar MP-1
parallel computers. The observed results are compared, and
the influence of hardware design on scalability are discussed.
Section V gives the conclusion and comments.

For the purpose of this study, we assume the underlying
parallel machine is homogeneous, i.e., all processors are
identical. The isospeed scalability proposed in this paper can
be applied to any machine architecture. However, the scala-
bility prediction of heterogeneous computing would be more
sophisticated than that of homogeneous computing studied
here.

II. BACKGROUND AND PRELIMINARY

Scalability has been used in practice as a property that
describes the demand for proportionate changes in perfor-
mance with adjustments in system size. So, a simple, intuitive
definition of scalability might be given as follows.

Definition 1: Scalability is a property which exhibits per-
formance linearly proportional to the number of processors
employed.

While Definition 1 is very understandable and acceptable,
it does not provide enough information. Two questions remain
open. First, what performance metric should be chosen to
measure the scalability? Second, having selected a metric,
how should it be measured? Since speedup is one of the
most commonly used metrics for parallel processing, and the
Sandia work has shown a linear increasing of speedup, speedup
seems to be a natural choice. If we choose speedup as the
metric, then we need to decide how to measure the speedup.
There are three known notions of speedup, fixed-size speedup,
fixed-time speedup, and memory-bounded speedup [9], [10].
Fixed-size speedup fixes the problem size and emphasizes how
fast a problem can be solved. Amdahl’s law [11] is based on
the fixed-size speedup model. Therefore, fixed-size speedup
is bounded by the reciprocal of the serial fraction of the
algorithm. This hard performance limitation implies that fixed-
sized speedup is inadequate [6]. Fixed-time speedup argues
that parallel computers are designed for otherwise intractably
large problems. It fixes the execution time and emphasizes
how much more work can be done with parallel processing
within the same time. Memory-bounded speedup assumes that
a physical limitation of the machine, its memory capacity,
is the primary constraint on larger problem sizes. It allows
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memory capacity to increase linearly with the number of
processors available. Both fixed-time and memory-bounded
speedup are forms of scaled speedup. Each allows problem
size to increase with the system size. The difference between
the two speedups is that fixed-time speedup uses execution
time to limit the problem size, and memory-bounded speedup
uses the memory capacity to limit the problem size. The term
“scaled speedup” is used for memory-bounded speedup by
many authors [1], [6].

In general, operational complexity increases faster than
storage complexity for a given application. Thus, memory-
bounded speedup typically yields higher performance than
fixed-time speedup. Unfortunately, even with the most liberal
speedup, i.e., memory-bounded speedup, no parallel program
can possibly exhibit speedup which is linearly proportional to
the number of processors available unless the program contains
no sequential portion (see [9], [15], and [6]). Speedup is
defined to measure the performance gain of parallel processing.
It compares the parallel performance over the sequential
performance. Operating on a scaled problem size, sequential
execution could be impossible or could be very slow, and,
therefore, yield a very high speedup. Speedup is a tool for
analysis, not the goal of parallel processing. It is not an
acceptable metric for representing scalability.

To measure the scalability of parallel algorithms, Kumar
et al. [4] proposed the isoefficiency concept. Isoefficiency
fixes the efficiency and measures how much work must be
increased to keep the efficiency unchanged. An isoefficiency
function, f(N), is defined to measure the scalability of parallel
algorithms, where IV is the number of processors and f(N)
is the amount of work needed to maintain the efficiency. The
value of f(NN) could be arbitrarily large. Efficiency is defined
as speedup divided by N. So, constant efficiency means that
speedup increases linearly with system size. Thus, Kumar et
al. still use speedup as the performance metric. The significant
improvement of their work is its independence of any of the
notions of the three speedup models. By using an isoefficiency
function, they allow the problem size to increase without
bound to attain the requisite efficiency. This approach not only
lets algorithms meet the isoefficiency requirement on a given
architecture but also prescribes a quantitative measurement.
Although the isoefficiency approach is more advanced than
the speedup approaches, it is deficient because of its inherent
ties to parallel speedup.

Nussbaum and Agarwal [6] proposed a definition of scal-
ability of parallel machines. They define the scalability of a
parallel machine, ¥ (W), where W is the problem size, as the
best speedup of the given architecture over the best speedup of
an ideal parallel machine. This definition of W(W) still relies
on speedup as the performance metric; however it measures
the speedup differently. It determines the best speedup over
the number of processors used, given an unbounded number
of processors. While U(W) provides a way to evaluate the
design of an architecture, what it represents is the ratio of
the best possible performance of the given architecture to
the best possible performance of an ideal architecture. In
other words, it gives the achieved design efficiency of the
architecture. Observe that a given architecture could achieve
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its best performance at N equals 10, and the ideal architecture
could achieve its best performance at N equals 100. ¥(W)
does not give us any information on how increases in system
size will influence algorithm performance. Because of this, it
does not match our intuitive understanding of scalability (see
Definition 1).

To develop a good definition, we must identify the essential
characteristics of scalability. First, based on the intuitive
Definition 1, scalability should provide information about
how the system size will influence the performance. Can
the performance be scaled up with the system size? And,
what price must we pay to achieve this scaled performance?
Scalability should be a function of the variation of system size.

Second, in general, scalability is a function of the pair of
parallel algorithm and machine. Both algorithms and archi-
tectures have parallel overhead, and when large system size
is employed, the overhead may significantly degrade perfor-
mance. The sources of degradation are sometimes specified
with respect to algorithm and architecture. The commonly
considered algorithmic degradation is uneven allocation, or
load imbalance [9]. The commonly considered architecture
degradation is communication cost which contains the com-
munication latency and other delay incurred by interprocessor
communication. These two degradations cannot be clearly
separated. On the one hand, the communication delay will
influence the achieved degree of parallelism of a given al-
gorithm. On the other hand, unless we have synchronous
communication, the communication cost will vary with the
inherent degree of parallelism of a given algorithm, even
for algorithms with the same communication requirement.
With some simplified assumptions, we could distinguish be-
tween algorithmic scalability and architectural scalability. For
instance, we could use idealized parallel machines and al-
gorithms [5], [6]. However, in general, when we talk of
algorithm scalability, we mean the algorithm’s scalability with
respect to a given architecture. If the architecture represents
a large class of architectures, then the algorithm scalability
is a general scalability suitable for the class of architectures.
Similarly, architecture scalability is a scalability with respect
to a given algorithm unless this algorithm represents a class of
algorithms. Scalability is an inherent property of algorithms,
architectures, and their combinations. Scalability should first
be considered for algorithm-machine combinations. Algorithm
scalability and architecture scalability could then be defined
based on the scalability of the algorithm-machine combination.

Third, scalability should be a meaningful and quantitative
performance metric that can be evaluated and compared. Its
meaning should be driven by the motivations and goals of
parallel processing. Its value must be calculated by a method
that is consistent with the meaning we assign to scalability.

We do not consider physical constraints of the hardware.
If the performance cannot scale up with the system size, we
say that the machine, or the algorithm-machine combination,
is unscalable even if it achieves the best performance using
today’s technology. Distinguishing such performance degra-
dations will motivate the need for new technologies. For
instance, constrained by the three dimensionality of space
and today’s technologies, systems having more processors

require longer wires for interprocessor connection. Therefore,
the communication cost will increase at least logarithmically
with the system size for a large class of algorithms. This
degradation has spurred the development of new technologies,
e.g., optical communication, for the next generation parallel
machines.

III. DEFINITION AND ANALYSIS

There are three main driving forces behind parallel process-
ing: faster execution time; solving otherwise intractably large
problems; and providing a better system cost-performance
ratio. If we focus on the first two factors, then the performance
that we seek from parallel processing involves both execution
time and problem size. What we seek from parallel processing
is speed, where speed is defined as work divided by time.
For scientific applications, work is generally measured as
floating point operations performed. A parallel algorithm may
increase parallelism by sacrificing mathematical efficiency. For
this reason, the floating point operations count of parallel
processing is usually based on a conventional sequential
algorithm. Problem size sometimes has been referred to as
a parameter which determines the floating point operations,
e.g., the order of a matrix. For this study, we will use the term
work and problem size interchangeably without distinction.
While we agree with others that this measure of work is
less than adequate in some contexts, we measure work in
terms of floating point operations in this study because of
its prevalence. Our objective here is to define scalability not
work. The scalability metric we define is not biased toward any
particular work measure and can adopt a better work measure
when one is developed. With speed as a goal, we seek the
power to solve problems of some magnitude in a reasonably
short amount of time. Speed is a quantity that ideally would
increase linearly with system size. So, it is consistent with the
scalability property proposed in Definition 1. Based on this
reasoning, we propose the isospeed approach.

Definition 2: The average unit speed is the achieved
speed of the given computing system divided by N, the
number of processors.

We refer to average unit speed as average speed when the
context is clear. Saying that the speed of a computing system is
linearly proportional to the system size is the same as saying
that the average speed is a constant number independent of
system size. Using average speed, following Definition 1,
we give the following definition for any algorithm-machine
combination in which the parallel machine is homogeneous.

Definition 3: An algorithm-machine combina-
tion is scalable if the achieved average speed of the
algorithm on the given machine can remain constant with
increasing numbers of processors, provided the problem size
can be increased with the system size.

By Definition 3, scalability is expressed in terms of system
size. In general, increasing the problem size will increase
the computation/overhead ratio, and therefore, increase the
speed. This is especially true for parallel processing where
the computation/communication ratio increases with problem
size for most algorithms. For a large class of algorithm-
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machine combinations, the average speed can be maintained
by increasing problem size (see case studies in Section IV).
The necessary problem size increase varies with algorithms,
machines, and their combination. This variation provides a
quantitative measurement for scalability. Let W be the amount
of work of an algorithm when N processors are employed
in a machine, and let W’ be the amount of work of the
algorithm when N’ > N processors are employed to maintain
the average speed, then we define the scalability from system
size N to system size N’ of the algorithm-machine combination
as follows.

N'W
The work W is determined by the isospeed (or, to be accurate,
the iso-average-speed) constraint. In the ideal situation, we
have trivial parallelism, or the local computation model [12].
There is no communication necessary and work is replicated
on each processor. In this case, W' = % and Y(N,N') =
1. In general, W’ > ¥ and (N, N') < 1. The initial work
W is a problem size which can achieve the initial speed. It is
determined by the average speed constraint. To have a unique
scalability for an algorithm-machine combination, we need to
define the initial average speed uniquely for each algorithm-
machine pair. Borrowing the asymptotic performance idea
from Hockney [13], we define the asymptotic average unit
speed of an algorithm-machine combination, r., as the max-
imum speed reached by the single processor execution of the
algorithm on the machine when problem size goes to infinity.
The initial average speed is a fraction of the asymptotic speed.
Following the n/, defined in [13], we choose the initial
average speed, 712, as half of the asymptotic speed.

When N = 1, we denote (N, N’) by ¢»(N’). Recall that
speed is equal to work divided by time, and average speed
is equal to speed divided by the number of processors. Let
Tn. Tn: be the execution time when N and N’ processors
are employed, respectively; then when the average speeds are
the same, we have

P(N,N') = (H

W W

NTy ~ N'Twn

N'W Ty

NW' ™ Ty’

and

Tar

BN, N') = 7= @
N

When N equals one,

T
N)y=_—
YV = L
_ sequential execution time with problem size W

" parallel execution time with problem size W'

3

Equation (3) has a representation similar to the traditional
definition of speedup. The difference is that in traditional
speedup the problem size is fixed and in scalability the
speed is fixed. Speedup measures the performance gain of

E .
Problem )‘(If:icmu:on

Size

1 234 5

Number of Processors (N)

1234 5

Number of Processors (N)

Fig. 1. Traditional speedup: Fix problem size, measure execution time.

Average Exec'ution
Cnit Time
Speed

1 23 4 5

Number of Pracessors (N}

123 4 5

Number of Processors (N)

Fig. 2. Scalability: Fix average speed, measure execution time.

parallel processing versus sequential processing (see Fig. 1).
Scalability measures the performance degradation of larger
parallel systems versus smaller parallel systems (see Fig. 2).
From (3), we can see the harmony and discord between
speedup and scalability.

* Both speedup and scalability depend on the initial status
(initial problem size and number of processors) and the
“distance”, i.e., the incremental change in the number
of processors. In general, as “distance” increases, the
speedup will increase and the scalability will decrease.

* Both speedup and scalability are dimensionless quanti-
ties, unlike performance metrics such as execution time
or speed. However, each relates to these dimensioned
performance metrics in some way. Speedup provides the
variation ratio of the chosen dimensioned performance
metric when the system size is increased. Scalability
indicates the ability of the system to maintain the chosen
dimensioned performance metric when the system size is
increased.

Traditionally, speedup has been defined as sequential execu-
tion time over parallel execution time. A generalized speedup
was recently introduced by Gustafson and Sun [14]. The rela-
tionship between generalized speedup and traditional speedup
has been studied in [14]. The generalized speedup is defined as

arallel speed
14 14 )

Generalized speedup = m.
If generalized speedup is used and assuming the sequential
speed is independent of problem size (which is not true in
general), then two implementations have the same efficiency if
and only if they have the same average speed. In this case, the
isospeed approach is the same as the isoefficiency approach.
In general, sequential execution speed varies with problem
size. Overhead exists, and achieved speed rarely matches
peak speed. Excluding any virtual memory effects, it is likely
that increasing the problem size will increase the sequential
execution speed. We use p(W) to represent the sequential
execution speed when W amount of work is done. When
N processors are used concurrently, the parallel execution
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time can be divided into two parts, Ty = t.n + ton. Where
t.n (c stands for computing) is the computation time, and
ton (o stands for overhead) is the cumulative time spent on
communication, synchronization and other overhead caused by
parallel processing. The following theorem shows that a large
class of algorithm-machine combinations is scalable and the
scalability can be calculated from precomputed parameters.

Theorem 1: If an algorithm has a balanced load on each
processor, its communication cost is independent of problem
size, and the single processor speed of the underlying ma-
chine increases with work load, then the algorithm-machine
combination is scalable and the scalability

-

~ w(W/N)

Proof: If N processors are used to implement W amount
of work, and W’ is the amount of work required to maintain
the average unit speed when N’ > N processors are employed,
then we have

toN

Y(N,N') = )

tuN’

W W
NT~x ~ N'Tn
w w’

N(tcN + toN) N Nl(tcN’ + toN’) ’

Since the work is distributed evenly among all processors,

w ~ w
W = W
N(m*‘tox\') N'(wm W,/N:)*i’tazv')
_ | 1 +NtoN _ Ntow 6)
uw(W/N)  (W'/N") wow
Since (o7ey — wzwy) © S > 0 and foy s in-

dependent of problem size, by (6), the algorithm-machine
combination is scalable and the amount of work required to
maintain the average unit speed is
N'tont
W' = . : 7

1 1 Nty;
(Gwrmy — o) + T

In this case

Nton
GV Ny = W WGy — mowr) + ]
’ NW/ Nion:
w W
_ Gy — gy + Nton
Nto!\fl
toN 1 [I(W/N)
= ten — teN .
toN' toN’ “(W//N,)
Therefore,
tcN .“‘(W/N) f’oN
N NY= "1 — ————~ — . 8
r¢’( 5 ) ton [ ;L(W’/N’) + ton (8)
|

Based on the proof of Theorem I, we can see that the
conditions ‘“‘communication cost is independent of problem
size” and “single processor speed of the underlying machine
increases with work load” are only used to guarantee Equation
(7) having a feasible solution. Replacing the two conditions
by (7), we have the following.

Theorem 2: 1f an algorithm has a balanced load on each
processor, and the equation

W - N'ton: (W)

on (W
(7w — mworey) + e

has a positive solution for any positive number W, then the
algorithm-machine combination is scalable and the scalability

toN(W)
f,oNr(W') ’

$(N, Ny = L) [ ©)

{(W/N)
= o (W) ] -

- W(W/N)

While its condition is more difficult to verify, Theorem 2 has
a weaker condition than Theorem 1. The following corollary
was used in our case studies.

Corollary 1: Under the assumptions of Theorem 1 (or
of Theorem 2), if the communication cost goes to infinity
as the system size goes to infinity, then for any fixed NV,
limy—eo (N, N') = 0.

Proof: By Theorem 1,

ton (W)

$(N,N') = O

ten (W) [

w(W/N)
Fort (W) ] *

- W(W/N)

By the definition of asymptotic speed 7o, p(W'/N') < reo.
Therefore,

_HW/N) W)
uw(W'/N') Too
tcN(W) IJ‘(W/N) toN(W)
0 < y¥(N,N) < 1- .
<P(N,N') < o (W) o o OF7)
Since t,n+ — oo, when N/ — oo, we have
. ten (W) uw(W/N) ton (W)
1 1- =0.
N (LoN,(W’) Too oy ) =0
Thus,
. n_
Nl'lgloow(N’N )=0
for any fixed V. O

In Theorem 1 and Theorem 2, we do not consider the
physical limitations of the underlying machine. We assume
that the target architecture has adequate memory capacity to
sustain problem size increases. This assumption may not be
generally applicable. If the memory capacity of a machine

becomes a factor, the condition W’/ < W, (or %—, < Wy
for distributed memory multiprocessors), for some constant
number Wy, should be included in the theorems. In general the
scalability of an algorithm-machine combination is constrained
by memory and communication requirements. That is, certain
combinations of problem and system sizes can result in
memory bound or communication bound program execution.
Fig. 3 diagrams the general scalability space of algorithm-

machine combinations.
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Fig. 3. Problem-ensemble space.

IV. CASE STUDIES: MEASUREMENT AND VISUALIZATION

In this section, we present four case studies that illustrate
the preceding definitions relating to scalability and show how
the scalability could be measured, computed, and predicted.
Each case study involves a parallel program having a structure
that is to some extent scalable on the parallel machine.
That is, each is executable over a range of problem sizes
on small scale to large scale system sizes. In each case,
we briefly describe the algorithm-machine combination, do a
scalability analysis, and highlight program characteristics via
performance visualization.

The two programs under study are: the Burg algorithm
and the modified SLALOM benchmark program. The Burg
program is a linear signal processing procedure for fitting an
autoregressive model to a time series data set [7]. Time (and
work, measured as the number of floating point operations
performed) varies linearly with the number of data points in
the series; storage also varies linearly. SLALOM (Scalable
Language-independent Ames Laboratory One-minute Mea-
surement) [15] is a program designed as a scalable computer
benchmark. It solves a radiosity problem by calculating the
equilibrium radiation given off by a coupled set of diffuse
surfaces that emit and absorb radiation. The surfaces are
decomposed into patches, which are the basis for a radiosity
matrix. The core computation of SLALOM is solving the
radiosity matrix by Gaussian elimination, resulting in at most
order n2 time (or work) and order n?2 storage, where n is the
number of patches.

The two machines under study are: the nCUBE 2 com-
puter and the MasPar MP-1 computer. The nCUBE 2 is a
distributed memory message-passing MIMD computer with
a hypercube interconnection topology. Each node is a 32-bit
custom CISC processor having a minimum of one megabyte
of memory and operating at 20 megahertz clock rate. To
contrast, while double-precision multiply and add require 6
clocks and 7 clocks, respectively, message overhead consumes
approximately 1600 clocks. At the beginning of this study, we
used a 64-node system in our laboratory (now, 128 nodes).
The largest installed system has 1024 nodes. The MasPar MP-
1 is a distributed memory massively parallel SIMD computer
with a high-speed two-dimensional toroidal mesh topology.
A control unit issues instructions at 12.5 megahertz clock
rate. Each processing element in the array is a 4-bit custom
load/store processor having a minimum of 16 kilobytes of
memory. While double-precision multiply and add require

Average

Unit 4 mg
Speed o™
< my
ooy
Reference
speed fy /
/? wmm) =t/
; .
oottty Execution
Time

Fig. 4. Ilustration of approach 2.

530 and 180 clocks, respectively, the mesh network overhead
is approximately 12-30 clocks. We used an 8192-processor
system in our laboratory. The system now has been upgraded
to 16384 processors.

A. Calculation of Scalability

Three different approaches to obtain the scalabilities of
an algorithm-machine combination have been noticed and
compared in our study.

1) The scalability can be measured in software by a con-
trol program that invokes the application program and
searches for the run having the desired fixed average
unit speed.

2) The scalability can be computed by first finding the
relation between average unit speed and execution time
(or work) and then using Equation 2 (or Equation 1).

3) The scalability can be predicted by deriving a general
scalability formula.

The first approach is the most direct and accurate. It is
easy to understand and implement. The only point requiring
mention is that we do not include redundant work (extra
work added for parallel processing) in the work calculation.
The second approach provides more information than the first
approach. It shows the influence of initial speed. If we assume
the derived relation remains true for larger system size and
problem size or if we can predict the relation for large system
and problem size based on the performance of small system
and problem size, it also can be used to predict scalability. A
graphical method of calculating scalability based on approach
2 is shown in Fig. 4. The method uses a set of measured data
to find the relation between average unit speed and execution
time. One curve (relation) is plotted for each machine size,
with execution time on the horizontal axis and average unit
speed on the vertical axis. Execution time varies as the problem
size is varied. The third approach is the simplest one if a
formula can be derived. However, in general, a formula may
not be available or only can be found under certain simplified
conditions.

In the sample plot of Fig. 4, four curves are drawn, one per
machine size (typically mg is the smallest size), in order to
illustrate approach 2. Each curve is generated by measuring
average unit speed and execution time for runs of increasing
problem size. The maximum average unit speed is calculated
by taking the asymptotic limit of average unit speed with
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Fig. 5. Isospeed curves for the Burg algorithm.

respect to time as time (or work) approaches infinity. The
constant average unit speed used as the reference point could
be any fraction of this maximum: we choose half of the
maximum of single processor execution in our study. This
reference speed is marked in the figure with the horizontal
dashed line. The intersection of this speed line with each curve
determines the program execution time delivering that speed.
The ratios of these times, as defined in Section 3, yields a set
of scalability numbers. The relative horizontal time positions
indicate time (or work) variation and provide visual cues for
the scalabilities.

The Burg-nCUBE combination is used to compare the three
approaches.

B. Burg-nCUBE Combination

The Burg program employs a block decomposition form of
data parallelism on the nCUBE 2 computer. Each processor
does a number of calculations dependent primarily on its block
size, and so for evenly distributed data there is a balanced load.
The main loop of the Burg program can be approximately
divided into three phases [7]: 1) a linear shift operation to
align arrays, followed by local array calculations; 2) a global
sum operation; and 3) local array update calculations. The
number of communication steps required for the linear shift
operation is constant, and the number for the global sum is
logarithmic with respect to machine size. Communication in
the Burg algorithm is independent of problem size. The Burg
algorithm fits the conditions of Theorem 1 well.

The measured isospeed (i.e., constant average unit speed)
curves are shown in the contour plot of Fig. 5. Each curve
represents system size-problem size combinations that yield
approximately equal average speed per processor. The desired
average unit speed used as the reference point for calculating
scalabilities corresponds to a curve within this contour plot.
Considering Definition 3, we can see that the Burg algorithm is
scalable: a constant average speed can be identified as system
size increases. The background shading indicates the value
of the average speed, where lighter shading corresponds to
relatively higher speeds.

Selecting the isospeed corresponding to half of the asymp-
totic speed and applying approach 2, we derive a set of
scalabilities, listed in Table I. The asymptotic speed calcu-

TABLE 1

COMPUTED SCALABILITY OF BURG-2CUBE COMBINATION (APPROACH 2)
P(N,N") 1 2 4 8 16 32 64 128
1 1.00 0.441 0.296 0.215 0.188 0.157 0.136 0.121
2 1.00  0.670 0.488 0426 0357 0308 0274

4 1.00  0.728 0.635 0.532 0.460 0.408
8 .00  0.827 0.693 0.599 0.531
16 1.00 0.837 0.724 0.642
32 1.00  0.865 0.767
64 1.00 0.887
128 1.00

-\
32

128 65 TS

1]

Fig. 6. Variation in scalability: Three-dimensional surface plot of computed
scalability for the Burg-nCUBE combination (see Table I).

lated for this algorithm-machine combination is 1.7 MFLOPS
(millions of floating point operations per second), giving
a reference speed of 0.85 MFLOPS. As in Fig. 4, a set
of average unit speed (as a function of time) curves is
plotted based on measured data, and from this, a set of times
is obtained. The execution times (in milliseconds) used to
compute the scalabilities are shown in Table II. The variation
in scalability can be shown pictorially by representing the
tabular data (of Table I) as a three-dimensional surface plot, as
in Fig. 6. The table rows and columns map to two dimensions,
and scalability, to the third dimension. Higher scalability
values also are represented by darker shading for emphasis.
This plot portrays the range and trends of algorithm-machine
scalabilities at a glance.

Another useful pictorial representation of the tabular data
is shown in Fig. 7. A set of curves is drawn, one curve per
machine size N (or per row of Table I). Scalability % is on the
vertical axis, and machine size N’ (columns of Table I) is on
the horizontal axis. The variation in scalability is shown for 1)
each initial machine size with respect to larger machine sizes
(i.e., N with respect to N') and 2) increasing initial machine
sizes N.

The average unit speed requirement makes the execution
time unique for each system size. Notice that by the definition
of scalability (1) ¥(N, N") = (N, N’) xp(N', N") for any
0 < N < N’ < N”. The scalability matrix of Table I can
be abbreviated as a vector array as shown in Table III. All
the scalabilities in Table I can be computed directly from the
scalabilities in Table III

By Theorem 1, the scalability of the Burg algorithm also
can be predicted via (5). In hypercube multicomputers, mes-
sage transfer time between two adjacent processors can be
expressed as o+ 3S, where a is the communication latency, 3
is the transmission time per byte, and S is the number of bytes
in the message. We have measured o = 130 (microsecond)
and 3 = 0.5 (microsecond) for our RCUBE 2 multicomputer.
Substituting the communication cost of the Burg algorithm
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TABLE II
TIME VARIATION OF BURG-nCUBE COMBINATION

system size 1 2 4 16 32 64 128
Time 0.004029 0.00913 0.01362 0.01774 0.02144 0.02561 0.0296 0.03338
TABLE I
COMPUTED SCALABILITY OF BURG-nCUBE COMBINATION (APPROACH 2)
¥(1,2) ¥(2.4) ¥(4,8) ¥(8,16) ¥(16,32) ¥(32,64) ¥(64,128)
0.441 0.670 0.728 0.827 0.837 0.865 0.887
TABLE IV
PREDICTED SCALABILITY OF BURG-»CUBE COMBINATION (APPROACH 3)
P(N,N') 1 2 4 8 16 32 64 128
1 100 0410 0336 0.281 0.238 0.207 0.182 0.162
2 1.00  0.743 0.581 0.478 0.405 0352 0311
4 1.00  0.783 0.643 0.545 0.474 0.419
8 1.00  0.826 0.691 0.589 0.536
PN 16 1.00  0.837 0.713 0.652
32 1.00 0.852 0.769
64 1.00 0885
128 1.00
02 _} N=1
TABLE V
0.0 MEASURED SCALABILITY OF BURG-nCUBE COMBINATION (APPROACH 1)
. 2” "% & o 28 ONN) 1 2 4 8 16 32 64 128
‘s N 1 1.00  0.451 0.319 0240 0.193 0.161 0.138 0.121
Fig. 7. Variation in scalability: Interpolated plot of *(N') for each N (see 2 100 0707 0533 0427 0357 0306 0269
Table T). 4 100 0753 0.604 0504 0433 0380
3 1.00 0.802 0.670 0.575 0.504
16 1.0  0.835 0717 0.629
into (5), we have 32 1.00 0.859 0.753
64 1.00 0.876
‘Z)(N N/) _ teN 1 /L(W/N) 128 1.00
’ [a + 40] + log(N")[« + 80] u(W'/N")
[a + 48] + log(N)[a + 84]
(10) and N’ = 128: 0.118, 0.269, 0.400, 0.520, 0.629, 0.751,

[ + 48] + log(N")[a + 88]

The set of predicted scalabilities obtained by applying ap-
proach 3 and the prediction formula from (10) is shown in
Table IV. Finally, the set of directly measured scalabilities
obtained by applying approach 1 is given in Table V.

Compared to the measured scalability of Table V, both the
predicted scalability of Table IV and the computed scalability
of Table I provide good approximations for the Burg-nCUBE
combination. The predicted scalability tends to be slightly
higher than the measured scalability due to the fact that in
the actual algorithm, in addition to the communication cost
a + (S, extra operations are involved to prepare variables
for communication. For the computed scalability, its function
fitting method has included this extra cost in the fitting
function.

Taking advantage of the fitting function method used for
the computed scalability, we can predict the performance of a
larger system based on the performance of smaller systems.
For example, the predicted execution time for a 128-node
system, based on the computed execution times calculated
for systems up to 64 nodes, is 0.03409 sec. (only ~ 2%
greater than the number listed in Table II). Using this time
with the others yields the following scalabilities for N < 128

and 0.868. Comparing these numbers with the rightmost
column of Table IV, which is the scalability predicted by
approach 3, we observe that they more closely approximate
the actual numbers in the rightmost column of Table V, which
is the measured scalability. Here, prediction via computed
values from approach 2 is better than prediction via approach
3. Whereas approach 2 uses all the information available,
approach 3 only uses the single node execution information.

The communication cost of the Burg-nCUBE combination
increases slowly with the system size. If N — N = constant,
the second term of Equation (10), the ratio of communication,
will increase with N and approaches 1 as N approaches
infinity. As N grows, the Burg-nCUBE combination should
exhibit better scalability. This is confirmed by the measured
results (see Table V).

Another trend observed via the measured results can be
explained analytically. Note in Table V the lower scalabilities
for small N and large N’. This is consistent with Corollary
1 in Section III, which says that as N’ grows for fixed N,
scalability should approach zero. How fast it approaches zero
depends on the computation time versus communication time
ratio of the system and on the initial system size. Since this
ratio is small for the nCUBE 2 (e.g., 7 clock cycles/1600 clock
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Fig. 8. Spacetime diagrams of SLALOM program execution during matrix solution (4 processors).

cycles), the reduction in scalability for small initial system
sizes is steep. That is, despite increasing slowly with system
size, communication cost can be relatively high compared to
time spent in computation. The effort (in terms of increasing
problem size) needed to offset the overhead and to reach the
isospeed is then considerable.

C. SLALOM-nCUBE Combination

The SLALOM program does not satisfy the condition of
Theorem 1. Thus, approach 3 for calculating scalability is
not applicable. Results from applying approaches 1 and 2
are presented in this section. Tables VI and VII give sets
of computed and measured scalabilities for the SLALOM-
nCUBE combination, respectively. This version of SLALOM
for the nCUBE computer only executes on “‘square” hyper-
cubes (hence the N and N’ used in the tables). The asymptotic
speed calculated for the SLALOM-nCUBE combination is 1.5
MFLOPS, giving a reference speed of 0.75 MFLOPS.

The SLALOM algorithm has a more complex structure
than the Burg algorithm. The computed scalability of the
SLALOM-nCUBE combination does not match the measured
scalability as closely as in the Burg-nCUBE combination.
Performance instrumentation and visualization tools are es-

TABLE VI
COMPUTED SCALABILITY OF SLALOM-nCUBE COMBINATION (APPROACH 2)
Y(N,N') 1 4 16 64
1 1.00 0.65 0.54 0.38
4 1.00 0.83 0.59
16 1.00 0.71
64 1.00
TABLE VII
MEASURED SCALABILITY OF SLALOM-nCUBE COMBINATION (APPROACH 1)
P(N,N") 1 4 16 64
1 1.00 0.625 0.504 0.344
4 1.00 0.806 0.549
16 1.00 0.681
64 1.00

pecially useful for these more complex cases. The tools—by
capturing and depicting the dynamic behavior of parallel pro-
gram execution—can contribute to and expand our perception
of scalability. We applied the PICL (Portable Instrumented
Communication Library) [16] and ParaGraph [17] toolset to
the SLALOM-nCUBE combination for this purpose. PICL
produces an execution trace during an actual run of an in-
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Fig. 10. Average speed chart and clock for SLALOM program execution (16 processors).

strumented program, and ParaGraph replays this trace using
multiple views. Each was developed by researchers at Oak
Ridge National Laboratory and is available via netlib. We
selected appropriate views in ParaGraph to depict scalability-
related information. Because scalability involves a comparison
based on constant average unit speed, we compare views
under those conditions. Two of these views are the Spacetime
Diagram and the Average Speed Chart.

The Spacetime Diagram, supplied with ParaGraph, is pat-
terned after the diagrams that are used in physics to depict
interactions between particles. Processor activity is indicated
by horizontal lines, one for each processor, while messages
between processors are depicted by slanted lines between
the sending and receiving processor activity lines, indicating
the times at which each message was sent and received.

A blank horizontal line indicates that a processor is idle
waiting to receive a message. The color of a slanted line
represents the relative size of the message in bytes. The
Spacetime Diagram presents the structure of communication
for the algorithm-machine combination. Comparing multiple
Spacetime Diagram views, we observe how problem size
and/or system size variations affect the structure. We can detect
communication dependencies on problem size or system size,
uniformities, periodicities, etc., all of which can influence
scalability.

The structure of the SLALOM program is complicated. It
contains different phases which have totally different compu-
tation and communication structures. Fig. 8 shows Spacetime
Diagrams for one part of SLALOM, the core computation
of matrix solution. Fig. 8(a) depicts the beginning of the
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Fig. 13. Isospeed curves for SLALOM program.

factoring algorithm, and Fig. 8(b), the backsolving algorithm.
The communication requirement is high, and it depends on
both system size and problem size.

The Average Speed Chart, a view we designed and inte-
grated into ParaGraph, depicts the speed of individual pro-
cessors by a horizontal bar chart as a function of time. The

color of each bar indicates the average speed (in MFLOPS) of
the corresponding processor during each user-defined phase.
The Average Speed Chart demonstrates that the isospeed
conditions of scalability are being met and graphically displays
the execution times for comparative analysis. Execution times
for phases of the algorithm as well as the whole algorithm
are shown.

Figs. 9 and 10 show Average Speed Charts for two complete
runs of the SLALOM program. In each case, an average unit
speed of 0.75 MFLOPS is achieved. Fig. 9 corresponds to
a run using 4 nodes, and Fig. 10, 16 nodes. Problem sizes
are 276 patches and 490 patches, respectively. SLALOM’s
core computation part comprises the widest shaded bar in each
chart. Clock views, displaying simulated execution time, are
also shown in the figures. An estimate of the scalability, (4,
16), can be obtained by reading the Clocks and taking the
ratio of total execution times, T / Tig = 561/651 = 0.862.
(Note that the times are in Paragraph’s simulated time units,
which are related to real time units based on factors internal
to Paragraph and entered by the user.)

From the idle processors in Fig. 8 and the non-uniform
processor profiles in Fig. 10, we can se€ that the SLALOM
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program has noticeable load imbalance degradation. Compar-
ing Fig. 9 with Fig. 10, we can also see that the ratio of
the execution time of each phase to the total execution time
varies with system size. This variation makes the scalability
of a SLALOM-nCUBE combination (or a SLALOM-MasPar
combination) unpredictable with present analytical methods.
The variation is specifically shown in the Task Summary views
of Figs. 11 and 12 (4 and 16 node cases, respectively). These
views show the percent of total execution time spent in each
task, or phase, of the program. The tasks are identified with
numbers (circularly) on the horizontal axis, and the slice of
time taken by each task is displayed on the vertical axis. Seven
tasks are delineated within SLALOM.

Fig. 13 shows the isospeed curves of SLALOM-nCUBE
combinations. Comparing Fig. 13 with Fig. 5, we can see
that for the domain under study these isospeed curves have
a more complicated structure, including sharp turning points
and peaks. .

To contrast the SLALOM and Burg algorithms further, con-
sider selected Paragraph views of Burg-nCUBE combinations.
Figs. 14 and 15 show Spacetime Diagrams for two executions
of the Burg algorithm. Fig. 14 corresponds to a run using 4
nodes, and Fig. 15, 16 nodes. Problem sizes are 440 data points
and 2880 data points, respectively. In each case, an average

Spacetime diagram of Burg program execution, first iteration (16 processors).

unit speed of 0.85 MFLOPS is achieved. From these figures we
can see that the Burg algorithm has only two communication
patterns, and each is neatly structured. The first is independent
of system size, and the second has a number of communication
steps which increases logarithmically with system size (two
send-receive pairwise exchanges in Fig. 14 and four pairwise
exchanges in Fig. 15). Observe that no processors ever wait
to receive a message; the load is evenly distributed.

Figs. 16 and 17 show Average Speed Charts and Clocks
for the two executions of the Burg algorithm corresponding to
Figs. 14 and 15, respectively. An estimate of the scalability,
(4, 16), via reading the Clocks, is Ty / Tig = 195/301 =
0.648. The three phases of the algorithm (see Section 4.2) are
delineated within these Average Speed Charts. Taking note
of the Speed Legends in the figures and comparing the two
combinations, we see that the “phase speeds” (i.e., the speeds
of processors during the same phase) are approximately equal.
Differences in speed are due mainly to instrumentation artifact.
We can also see that the ratio of the execution time of each
phase to the total execution time is approximately unchanged.
This means that the scalabilities of the parts (i.e., the phases)
are equal to the scalabilities of the whole. This can be shown
analytically. As the Burg-nCUBE combination scales, so does
each particular phase of the algorithm.
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The nice properties of the Burg algorithm make its scala-
bility predictable. However, many practical algorithms behave
like the SLALOM program in terms of having load imbalance
degradation and communication cost varying with problem
size. It is difficult to derive a general scalability formula for
these algorithms. Performance measurement and visualization
provide a feasible way to analyze and estimate the scalability
of these algorithms.

D. Burg-Maspar and Slalom-Maspar Combinations

Next, we consider the scalability of the Burg and SLALOM
programs on the MasPar computer. The Burg program employs
a scattered decomposition form of data parallelism on the
MasPar MP-1 computer [7}. The program has exhibited supe-
rior performance on the MasPar computer [7]. Machine sizes

for this study include 1024 (or 1 K), 2048, 4096, and 8192
processors. The set of computed scalabilities (approach 2) for
the Burg-MasPar combination is given in Table VIII. The
asymptotic average unit speed calculated for the Burg-MasPar
combination is 41 KFLOPS, giving a reference speed of 20.5
KFLOPS. The times used to compute the scalabilities are
listed in Table IX. It is clear that while this scalability does
vary similar to the Burg-nCUBE combination scalability, it
is initially higher and decreases at a much slower rate. The
more gradual decline is due to the larger computation to
communication ratio of the MasPar system (e.g., 180 clock
cycles / 30 clock cycles). Comparing the scalabilities of the
Burg-nCUBE and the Burg-MasPar combinations, we can
see the influence of the computing/communication ratio on
scalability.
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TABLE VIII
COMPUTED SCALABILITY OF BURG-MASPAR COMBINATION (APPROACH 2)
Y(N,N') 1K 2K 4K 8K
1K 1.00 0.93 0.89 0.83
2K 1.00 0.95 0.90
4K 1.00 0.94
8K 1.00
TABLE IX
TIME VARIATION OF BURG-MASPAR COMBINATION (SECONDS)
system size 1K 2K 4K 8K
Time 0.0135 0.0145 0.0152 0.0162

Since the validation of Theorem 1 is only dependent on
the parallel algorithm’s properties, (5) also could be used for
predicting the scalability of the Burg-MasPar combination.

Table X gives the computed scalabilities of the
SLALOM-MasPar combination. The asymptotic average
unit speed calculated for this combination is 18 KFLOPS,
giving a reference speed of 9 KFLOPS. Table XI lists the
times used to compute the scalabilities. Recall that the MasPar
computer has a two-dimensional toroidal mesh connection.
When 1-K processors or 4-K processors are used, the
underlying machine topology is a 32 x 32 or 64 x 64 square
mesh, respectively. When 2-K processors or 8-K processors
are used, the connection topology is a 32 x 64 or 64 x 128
rectangular mesh, respectively. As previously noted, the core
computation of SLALOM is solving a dense n X n matrix by
Gaussian elimination. The work load is imbalanced during the
core computation. When the underlying machine connection
is non-symmetric—as for 2-K and 8-K processors—the load
imbalance is magnified and leads to lower performance
(relative to the symmetric configuration). This, for example,
accounts for the (2 K, 4 K) value in Table XI, which is the
scalability of a square machine with respect to a rectangular
one. The SLALOM-MasPar combination has shown how the
scalability could be influenced by the shape of the machine
configuration. More work is needed in this area.

V. CONCLUSION

As more and more people accept massively-parallel comput-
ing as a practical approach for achieving high performance,
more and more people start using the word scalable. The
term has a reputation as a nice property of parallel machines
and algorithms. However, with the lack of a clear defini-
tion, it is impossible to compare scalability over algorithms,
architectures, and algorithm-machine combinations. We all
know that scalability is the ability to scale, i.e., the ability
to adjust according to a proportion (Webster’s Dictionary
definition). But, adjust what? to what proportion? These are the
complicated parts which had not been clearly defined and often
lead to confusion. In our study, the scalability of algorithm-
machine combinations is carefully defined and a quantitative
measurement is proposed. We adjust the problem size (or
equivalently execution time) with the system size and propor-
tion the adjustment to obtain a fixed average unit processor
speed. We have shown that all three quantities, system size,

TABLE X
COMPUTED SCALABILITY OF SLALOM-MASPAR COMBINATION (APPROACH 2)
Y(N, N 1K 2K 4K 8K
1K 1.00 0.74 0.75 0.34
2K 1.00 1.02 0.46
4K 1.00 0.46
8K 1.00
TABLE XI
TIME VARIATION OF SLALOM-MASPAR COMBINATION (SECONDS)
system size 1K 2K 4K 8K
Time 8.42 11.37 11.20 24.60

problem size (work), and speed, are inter-related. Their relation
reflects the inherent parallel degradations of the algorithm and
architecture under consideration, and provides the scalability
information of the algorithm-machine combination. Scalability
is a metric which reveals aspects of the performance which are
not easily discerned from other metrics. Scalability itself is not
a measurement of parallel processing gain. It is a factor that
contributes to the ability of a system to deliver the expected
performance. It has valid uses for predicting the behavior of
large scale computations.

The scalability variation of algorithm-machine combina-
tions is also carefully studied. Scalability formulas have been
derived for a relatively large class of algorithm-machine
combinations. Three different approaches have been proposed
to measure, compute, and predict scalability. Two algorithms
have been investigated on an nCUBE 2 multicomputer and
on a MasPar MP-1 parallel computer. The first algorithm,
the Burg algorithm, has a nice structure. It satisfies the
preconditions of our theoretical results. The experimental
results match our theoretical results closely. The second al-
gorithm, the SLALOM algorithm, has a more sophisticated
structure. It has load imbalance degradation and a complicated
communication pattern. It contains several computing phases.
Each phase has a different speed and the relative duration
of each phase varies with the system size. The SLALOM
algorithm represents another class of algorithms. These al-
gorithms have an intricate system size, problem size, and
speed relation. There is no easy way to derive a satisfiable
scalability formula for this type of algorithm. To overcome the
lack of theoretical guidelines, performance instrumentation and
visualization tools for multicomputers are used and developed
to observe the algorithm behavior. Our experience shows that
visualization provides an accurate and perceptible indication
of the full-scale behavior of a parallel algorithm-machine
combination.
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