
Stable, Gloablly Non-iterative, Non-overlapping Domain

Decomposition Parallel Solvers for Parabolic Problems �

Yu Zhuang y Xian-He Sun z

Abstract

In this paper, we report a class of stabilized explicit-implicit domain decomposition (SEIDD)

methods for the parallel solution of parabolic equations, based on the explicit-implicit domain

decomposition (EIDD) methods. EIDD methods are globally non-iterative, non-overlapping

domain decomposition methods which, when compared with Schwarz alternating algorithm

based parabolic solvers, are computationally and communicationally eÆcient for each sim-

ulation time step but su�er from time step size restrictions due to conditional stability or

conditional consistency. By adding a stabilization step to the EIDD methods, the SEIDD

methods are freed from time step size restrictions while retaining EIDD's computational and

communicational eÆciency for each time step, rendering them excellent candidates for large-

scale parallel simulations. Three algorithms of the SEIDD type are implemented, which are

experimentally tested to show excellent stability, computation and communication eÆcien-

cies, and high parallel speedup and scalability.

1. Introduction. In this paper, we report a class of stabilized explicit-implicit domain

decomposition (SEIDD) methods for the parallel simulation of time dependent systems governed

by the parabolic equation8<
:

@
@tu(t; x; y) = Au; (x; y)2
; t � 0

u(t; x; y) = b(t; x; y); (x; y)2@
; t � 0

u(0; x; y) = uo(x; y); (x; y)2
;
(1)

where
 � R2 is the spatial problem domain, A is a spatial elliptic operator given by A =

r2+a(x; y) @
@x+b(x; y)

@
@y+c(x; y). We allow c(x; y) to have positive values and hence the spatial

elliptic operator A might be inde�nite.

There exists a substantial literature in domain decomposition methods [5]. The Schwarz

alternating algorithms [4, 10, 11, 12, 13, 20] are the most intensively studied methods in the

last two decades. Schwarz methods are globally iterative methods for elliptic equations. Here

the term \globally" refers to the solution process for the problem over the entire domain as

opposed to solution processes for subdomain problems which could be either iterative or direct.

For parabolic problems, when implicit temporal discretization schemes are employed, an elliptic

equation must be solved for each time step. Thus the Schwarz algorithm can be used for the

parallel solution of parabolic equations by solving the elliptic equation in parallel. Cai [2, 3] used

the Schwarz methods in this manner to solve parabolic problems. Since the Schwarz methods

are solvers for the time independent elliptic equations, it has an advantage in preserving the

unconditional stability of the implicit temporal discretization as along as the Schwarz solver is

iterated until the solution error becomes small enough to have no inuence on stability.

In the parallel implementation of domain decomposition algorithms, when di�erent sub-

domains are assigned to di�erent processors, globally iterative methods incur repeated data

transmission among processors. Since communication is more time consuming per byte than

�This research was supported in part by NSF under NSF grant CCR-9972251 and by ONR under PET/Logicon
yDepartment of Computer Science, Texas Tech University, Lubbock, Texas 79409, zhuang@cs.ttu.edu. The pa-

per was written when the author was visiting the Computer Science Department of Illinois Institute of Technology.
zDepartment of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, sun@cs.iit.edu

1

computation, it is appealing to keep the global iterations to a small number. In 1988, Kuznetsov

[14] proposed a one-iteration overlapping Schwarz algorithm for the approximate solution of the

elliptic equation obtained from an implicit temporal discretization, based on a property of the

Green's function of the temporal discretization. Kuznetsov's solver has good stability but re-

quires an overlap size of O(
p
�t log �) for an local error tolerance of O(�). A method of lesser

overlap size requirement was developed by Mathew, Polyakov, Russo and Wang [19] in 1998 us-

ing the multi-dimensional ADI method [8] combined with domain decomposition based operator

splitting. But the stability of their algorithm deteriorates when the number of subdomains goes

above two.

For domain decomposition methods, non-overlapping algorithms are obviously more appeal-

ing if all other algorithmic conditions are the same. In 1991, Dryja [9] proposed a globally

non-iterative, non-overlapping domain decomposition based �nite element solver for the elliptic

equation obtained from Crank-Nicolson temporal discretization. His solver is a fractional step

method from the viewpoint of temporal discretization, and a one-iteration multiplicative Schwarz

method from the viewpoint of elliptic solver. Dryja's method is unconditionally stable but has

a very low global accuracy of order O(
p
�t)+O(h). A similar non-iterative, non-overlapping

method was developed by Laevsky and Rudenko [18] in 1995 which achieves unconditional con-

vergence and a global accuracy O(�t)+O(h), an improvement over Dryja's method in temporal

accuracy but still low in spatial accuracy. Another non-iterative, non-overlapping method of

Laevsky [15] uses a domain decomposition based ADI-type method to solve the elliptic equa-

tion resulting from the Crank-Nicolson scheme with only one iteration. The global error of

this algorithm is of order O(h + (�t)2 + �(1 + �)1=2) with � = (�t)2=h. However the term

�(1 + �)1=2 has placed a restriction on the ratio of �t and h. Furthermore, his method becomes

only conditionally stable when number of subdomains is larger than two.

One reason for the low accuracy of the aforementioned non-iterative, non-overlapping algo-

rithms is the lack of an adequately accurate interface boundary conditions. Explicit-implicit

algorithms have solved the problem of the availability of interior boundary conditions for non-

iterative, non-overlapping methods. In 1988, Kuznetsov [14] proposed an explicit-implicit scheme

using nonoverlapping domain decomposition. The interior boundary conditions are �rst pre-

dicted using an explicit method. Then a stable implicit temporal scheme can be applied to

the equation on the subdomains and the resulted elliptic equation on each subdomain can be

solved independently, and thus in parallel. When the forward Euler scheme is used to predict

the interface boundary condition and the backward Euler scheme is used for the equation on

the subdomains, the explicit-implicit method can be represented as

u
n+1 = (I ��tA2)

�1(I + �tA1)u
n
; (2)

where A1 is the restriction of discretized spatial operator Ah on the interface boundary, and

A2 the restriction of Ah on subdomains. This method has a global error of O(�t)+O(h2).

However, the explicit predictor of the interface boundary condition (I+�tA1) in (2) causes

numerical instability unless the time step size is restricted to �t = O(h2). To reduce the

numerical instability, Dawson, Du and Dupont [7] factorize the fully explicit predictor in (2)

into a partially explicit and partially implicit predictor with the explicit prediction carried out

only across the interface boundaries, resulting in a method mathematically representable as

u
n+1 = (I ��tA2)

�1(I � �tA
y
1)
�1(I + �tA

x
1)u

n
; (3)

where the underlined is the partially explicit predictor. Their method retains the same order of

accuracy and achieves a better numerical stability. However it is still not unconditionally stable

2

due to the explicit part in the predictor (see testing results in Tables 1 and 2). A penalized

explicit-implicit algorithm proposed by Black [1] has achieved numerically veri�ed unconditional

stability. However it has an error term of order O(�th)
2, making the algorithm inconsistent unless

paying a price of restricting time step size to an order of O(h2) to attain a �rst order temporal

accuracy, a restriction quantitatively similar to, though qualitatively di�erent from, the stability

related time step size restriction.

To eliminate time step size restrictions of the explicit-implicit domain decomposition (EIDD)

algorithms, we introduced a class of stabilized explicit-implicit domain decomposition (SEIDD)

algorithms [22] by adding a stabilization step to the EIDD methods. In this paper we report a

generic parallel SEIDD method with three speci�c algorithms of this SEIDD type. The proposed

SEIDD algorithms not only are freed from time step size restrictions, but more importantly

for parallel computing, the stabilization is proven to add zero communication cost and very

low computation cost to EIDD algorithms, yielding excellent parallel speedup and scalability

con�rmed by testings on an SGI Origin 2000 computer.

2. The Stabilized Explicit-implicit Domain Decomposition Method. The domain

 is divided into p subdomains
1,
2, � � �,
p with interface boundaries denoted by B. The

complement of the interface boundary B is denoted by B
c and hence B

c is the union of all

subdomains, i.e. Bc =
1[
2[� � � [
p. In this paper we assume that the interface boundaries

1
2 � � �
p�1
p

Figure 1

do not cross into each other in the interior of the domain as in Figure 1 and Figure 2. The

treatment of more general domain partition schemes that allow cross-over of interface boundaries

will be investigated in a future project, and in this paper we choose to focus on the stabilization

technique for EIDD methods on such-partitioned domains.

Figure 2

With the decomposition of the original non-discrete domain
, we de�ne the partitioning of

the discrete domain
h simply by inheriting the partitioning of the original domain:(

h;i =
h \
i for i = 1; 2; � � � ; p;
Bh =
h \B:

3

We denote the interface boundary between subdomains
i and
j by Bi;j for i < j (Bi;j could be

a empty set), and denote the i-th processor by pi. Now a generic parallel domain decomposition

algorithm (SEIDD) for computing the solution u
n+1
h at the (n+1)-th time step from the current

n-th time step is given below.

The Parallel SEIDD Algorithm

0. Assign subdomain
i and interface boundary Bi;j to pi.

1. Compute u
n+1
h on Bh using an explicit scheme. Then pass from pi to pj the newly predicted

u
n+1
h on Bi;j.

2. Compute un+1
h on the subdomains Bc

h using any unconditionally stable scheme using exterior

boundary conditions and the interface boundary conditions computed at step 1. Then pass

part of the solution of un+1
h on
j near Bi;j from pj to pi.

3. Throw away the interface boundary condition computed at step 1, and bring back u
n on Bh.

Then implicitly re-compute u
n+1
h on Bh, using solution data u

n+1
h on nearby subdomain as

boundary conditions. Go back to step 1 for the next time step iteration.

In step 1 of the algorithm, we do not pass the value of any u
n from pj to pi before the

explicit computation of the interface boundary condition un+1. The computation of the interface

boundary condition does need those data. However since processor pi already received them from

pj at step 2 of the previous time step and no update has been performed on the data on the

subdomains, no new data transfer is necessary. On the other hand, for any EIDD method the

two data transfer operations in the �rst two steps are necessary for predicting the interface

boundary condition and for implicitly computing the solution on the neighboring subdomain

assigned to another processor.

Furthermore, using any method to compute interface boundary condition needs solution data

from nearby. This incurs one data transferring operation. And to compute the solution near

the interface boundary also incurs one data transferring operation. Thus, the number of data

transferring operations for each time step by any method is at least two. Therefore, we have

arrived at the following conclusion concerning the communication cost of the parallel SEIDD

methods.

� The stabilization (step 3) of parallel SEIDD adds zero communication cost to the EIDD

method.

� the parallel SEIDD methods is optimal in terms of number of data transferring operations

for each time step.

Since each of the two data transferring operations are carried out by p�1 processors si-

multaneously with almost equal load, the total communication time of each time step satis�es

Tcomm � 2�
NB

p�1 ; (4)

if the communication time is proportional to the amount of data transferred, where � is some

system dependent data transfer rate, and NB denotes the number of grid points on the interface

boundaries.

The computation cost of the stabilization depends on the number of grid points on interface

boundaries. Since the number of grid points on interface boundaries is much smaller than the

total number of grid points, the computation overhead is therefore also very small. Let f1, f2
and f3 denote the computation complexity functions for the predictor, the subdomain solver

and the stabilizer respectively. Then the total computation cost for each time step is the sum of

4

the prediction time f1

�
NB

p�1

�
, the subdomain solver time f2

�
N�NB

p

�
and the stabilization time

f3

�
NB

p�1

�
, yielding

Tcomp = f1

�
NB

p�1

�
+ f2

�
N�NB

p

�
+ f3

�
NB

p�1

�
; (5)

Then using (4) and (5), the parallel speedup, de�ned as single processor execution time T1 over

parallel execution time Tp, can be estimated to be at least

Sp =
p f2(N)

f2(N)+
p

p�1
[2�NB+f2(NB)]

when assuming f2(n) � f3(n) � f1(n). And the corresponding parallel eÆciency, de�ned as

speedup over number of processors, is

Ep =
f2(N)

f2(N)+
p

p�1
[2�NB+f2(NB)]

:

The SEIDD method given before is generic and allows many choices for the explicit predictor

in step 1, the subdomain scheme in step 2, and the stabilizer in step 3. In the following, we give

three speci�c algorithms of the SEIDD types.

The SEIDD1 method. When we use the forward Euler scheme for the predictor and use the

backward Euler scheme for the subdomain problems and the stabilizer, we obtain the stabilized

Kuznetsov's method

u
n+1
h = (I � �tAh;1)

�1
h
�
Bh

+ �
Bc
h
(I��tAh;2)

�1(I+�tAh;1)
i
u
n
h; (6)

where Ah;1 is the restriction of the discretized spatial operator Ah on the interface boundaries,

Ah;2 is the restriction of Ah on the subdomains, and �
S is a diagonal matrix with 1 on entries

corresponding to grid points in the set S and zero elsewhere.

It is proven in [21, 22] that when the spatial operator A is self-adjoint (or symmetric in the

case that A is a matrix), the SEIDD1 algorithm is unconditionally von Neumann stable and

unconditionally convergent in the sense that the convergence requires no restriction on the ratio

of time step size to the spatial mesh size.

The SEIDD2 method. To illustrate the design of a stabilizer for a given predictor and

to examine the e�ectiveness of the stabilization technique of the SEIDD method, we choose to

stabilize the algorithm of Dawson, Du and Dupont [7]. The predictor they used is (I��tAy
h;1)

�1(I+

�tAx
h;1). To stabilize the predictor we employ the following stabilizer (I��tAx

h;1)
�1(I��tAy

h;1)
�1.

Then we arrive at the following stabilized Dawson-Du-Dupont algorithm

u
n+1 = (I��tA

x
h;1)

�1(I��tA
y
h;1)

�1
h
�
Bh

+�
Bc
h
(I� �tAh;2)

�1(I��tA
y
h;1)

�1(I+�tA
x
h;1)

i
u
n
: (7)

The SEIDD3 method. The subdomain problems of the two SEIDD algorithms given above

involve solving an elliptic equation of the form (I � �tA)u = r, which is the major source

of computation cost of the two algorithms. When A is nonsymmetric, this computation cost

is not low. However the backward Euler scheme used for the subdomain problems can be

factorized directionally to reduce the computation cost to linear order O(N) on a grid with N

grid points. E.g., for 2-D problems, replacing the subdomain scheme of SEIDD1 (I��tAh;2)
�1

by (I��tAx
h;2)

�1(I��tA
y
h;2)

�1, we arrive at

u
n+1 = (I��tAh;1)

�1
h
�
Bh

+ �
Bc
h
(I��tA

x
h;2)

�1(I��tA
y
h;2)

�1
(I+�tAh;1)

i
u
n
h; (8)

5

where the underlined is the subdomain scheme. For a two dimensional problem, the discretized

directional components of A are usually tridiagonal matrices. Thus, (I��tAx
h) and (I��tA

y
h)

can be easily inverted with a computation cost of linear order.

3. Experimental Results. We have chosen a set of parabolic problems with known solutions,

and solved them on an NCSA Origin 2000 machine with a total of 256 nodes, each of 250 MHz,

running IRIX 6.5.9 operating system.

Table 1: ut = �u with u = e
�2t cos(x+y)

�t 1=50 1=100 1=200 1=400 1=800

SEIDD1 4:2e � 03 8:9e� 04 1:5e� 04 5:3e � 05 3:1e � 05

SEIDD2 3:8e � 04 2:2e� 04 1:2e� 04 6:8e � 05 3:6e � 05

SEIDD3 4:8e � 03 1:1e� 03 2:2e� 04 3:7e � 05 1:4e � 05

BEuler 6:1e � 04 3:0e� 04 1:5e� 04 7:6e � 05 3:8e � 05

EIDD1 1 1 1 1 1
EIDD2 3:9e + 54 2:4e+ 98 1 1 1
EIDD3 1 1 1 1 1
The symbol 1 denotes an error larger than 1:0e+ 100.

The domain is [0; 3]�[0; 1] with h = 1=64, which is divided into 3 subdomains.

Table 2: ut = �u+ sin(x)2ux + [3� sin(x) cos(x)]u with u = e
t sin(x) sin(y)

�t 1/25 1/50 1/100 1/200 1/400 1/800

SEIDD1 5.7e{02 2.8e{02 1.4e{02 7.1e{03 3.7e{03 2.0e{03

SEIDD2 5.7e{02 2.8e{02 1.4e{02 7.2e{03 3.7e{03 2.0e{03

SEIDD3 3.9e{01 1.9e{01 9.1e{02 4.5e{02 2.3e{02 1.1e{02

BEuler 5.7e{02 2.8e{02 1.4e{02 7.2e{03 3.7e{03 2.0e{03

EIDD1 4.4e+45 5.6e+94 1 1 1 1
EIDD2 8.6e+21 2.2e+42 1.6e+74 1 1 1
EIDD3 2.6e+42 6.1e+88 1 1 1 1

The domain is [0; 2�]�[0; �] with mesh size h = �=128, which is divided into 2 subdomains.

Tables 1 and 2 contain the maximal error of the numerical solutions at t = 1 computed

using the indicated methods, where BEuler denotes the \most" stable backward Euler method.

The EIDD methods listed are the corresponding SEIDD methods without the stabilization step.

Thus, EIDD1 is Kunnetsov's method (2), and EIDD2 is the method of Dawson, Du and Dupont

(3). It is well known that for an unconditionally stable method, the simulation error remains

small even when the time step size �t is large relative to the spatial mesh size. As indicated

by the experimental results in Tables 1-2, the errors of the SEIDD algorithms remain relatively

small when the time step size �t is large, and they are almost as small as those of the backward

Euler method, experimentally supporting the e�ectiveness of the stabilization of the SEIDD

algorithms. The proof of the unconditional stability and convergence given in [21, 22] is built

upon the self-adjointness (or symmetry) of the spatial operator. Though rigorously it is still

open if the SEIDD algorithms remain unconditionally stable for problems with non-symmetric

operators, the numerical experiment data in Table 1 and 2 (also see Table 4-5) show that

the proposed algorithms are robust and retain the unconditional stability for non-selfadjoint

problems.

Table 3 contains the testing data for the comparison of SEIDDmethods versus EIDD methods

in execution time for solving a heat equation on [0; 8�]� [0; 2�]. The domain is divided into

6

Table 3: Execution Time: SEIDD methods vs. EIDD methods

Method T total T comp T comm Max Err nprocs

SEIDD1 5.3e+01 5.24e+01 3.0e{01 2.1e{04 4

SEIDD2 5.4e+01 5.28e+01 3.0e{01 2.1e{04 4

SEIDD3 2.5e+01 2.44e+01 3.0e{01 1.3e{04 4

EIDD1 5.3e+01 5.22e+01 3.0e{01 2.1e{04 4

EIDD2 5.3e+01 5.25e+01 3.0e{01 2.1e{04 4

EIDD3 2.5e+01 2.46e+01 3.0e{01 1.3e{04 4

The equation is ut = uxx + uyy with u = e
�2t cos(x+y).

The domain is [0; 8�]�[0; 2�], which is divided into 4 subdomains.
Spatial mesh size h = �=64 with each subdomain of 128�128 grid points.
The simulation time interval is [0,1] with time step size of �t = 1=2000.

four square subdomains of equal size, each assigned to a processor. In the test, we choose

a suÆciently small time step size so that all EIDD method converge for the testing problem.

From the testing data, no increased computation time beyond machine variation range was

recorded, experimentally supporting the analysis in Section 2 that SEIDD methods incur very

small amount of overhead by stabilizing EIDD methods.

Table 4: Solving ut = �u+ sin(x)ux � cos(x)u with SEIDD1

Processors T total T comp T comm Speedup EÆciency Max-Err

1 2.08e+01 2.08e+01 0.0e-02 1 100% 1.4e-03

2 2.12e+01 2.10e+01 1.1e-01 1.96 98.1% 1.4e-03

3 2.12e+01 2.10e+01 1.9e-01 2.94 98.1% 1.4e-03

4 2.12e+01 2.10e+01 1.5e-01 3.92 98.1% 1.4e-03

5 2.12e+01 2.10e+01 1.7e-01 4.91 98.1% 1.4e-03

6 2.13e+01 2.10e+01 2.5e-01 5.86 97.7% 1.4e-03

7 2.13e+01 2.11e+01 2.9e-01 6.84 97.7% 1.4e-03

8 2.13e+01 2.11e+01 2.2e-01 7.81 97.7% 1.4e-03

10 2.14e+01 2.11e+01 3.1e-01 9.72 97.2% 1.4e-03

12 2.14e+01 2.10e+01 4.1e-01 11.7 97.2% 1.4e-03

14 2.14e+01 2.10e+01 3.7e-01 13.6 97.2% 1.4e-03

16 2.14e+01 2.10e+01 3.8e-01 15.6 97.2% 1.4e-03

20 2.15e+01 2.10e+01 4.8e-01 19.3 96.7% 1.4e-03

24 2.15e+01 2.11e+01 4.3e-01 23.2 96.7% 1.4e-03

28 2.16e+01 2.11e+01 5.0e-01 27.0 96.3% 1.4e-03

32 2.16e+01 2.10e+01 5.6e-01 30.8 96.3% 1.4e-03

48 2.12e+01 2.09e+01 3.3e-01 47.1 98.1% 1.4e-03

64 2.15e+01 2.10e+01 5.1e-01 61.9 96.7% 1.4e-03

128 2.14e+01 2.10e+01 4.4e-01 124 97.2% 1.4e-03

The spatial domain is [0; p�]�[0; �] witn h = �=256, where p is the number of processors.

The testing time interval is [0; 1] with �t =5.0e{03.

Listed in Table 4-5 are the scalability testing data of methods SEIDD1 and SEIDD3 for a

convection di�usion problem. The experimental data show that the computation time almost

remains the same as the problem size increases with the machine ensemble size such that the

memory usage on each processor remains the same. This phenomenon is well under expectation

7

Table 5: Solving ut = �u+ sin(x)ux � cos(x)u with SEIDD3

Processors T total T comp T comm Speedup EÆciency Max-Err

1 9.89e+00 9.89e+00 0.0e-02 1.00 100% 8.4e-04

2 1.04e+01 1.02e+01 1.9e-01 1.90 95.1% 8.4e-04

3 1.04e+01 1.02e+01 2.3e-01 2.85 95.1% 8.4e-04

4 1.05e+01 1.02e+01 2.9e-01 3.77 94.2% 8.4e-04

5 1.05e+01 1.02e+01 3.4e-01 4.71 94.2% 8.4e-04

6 1.06e+01 1.02e+01 3.5e-01 5.60 93.3% 8.4e-04

7 1.05e+01 1.02e+01 3.1e-01 6.59 94.2% 8.4e-04

8 1.05e+01 1.02e+01 2.8e-01 7.54 94.2% 8.4e-04

10 1.05e+01 1.02e+01 2.7e-01 9.92 94.2% 8.4e-04

12 1.05e+01 1.02e+01 3.0e-01 11.3 94.2% 8.4e-04

14 1.07e+01 1.01e+01 5.5e-01 12.9 92.4% 8.4e-04

16 1.06e+01 1.02e+01 4.1e-01 14.9 93.3% 8.4e-04

20 1.05e+01 1.01e+01 4.1e-01 18.8 94.2% 8.4e-04

24 1.05e+01 1.01e+01 4.0e-01 22.6 94.2% 8.4e-04

28 1.06e+01 1.02e+01 3.5e-01 26.1 93.3% 8.4e-04

32 1.07e+01 1.01e+01 5.5e-01 29.6 92.4% 8.4e-04

48 1.09e+01 1.00e+01 8.7e-01 43.6 90.7% 8.4e-04

64 1.07e+01 1.01e+01 5.6e-01 59.2 92.4% 8.4e-04

128 1.08e+01 1.01e+01 6.7e-01 117 91.6% 8.4e-04

The spatial domain is [0; p�]�[0; �] witn h = �=256, where p is the number of processors.

The testing time interval is [0; 1] with �t =5.0e{03.

since the stabilization process has a very low computation overhead. The communication time

increases slowly as the number of processors increases. As the number of processors increases

from one to one hundred twenty eight, the eÆciency has decreased less than 4 percentage points

for the SEIDD1 algorithm, and decreased about 9 percentage points for the SEIDD3 algorithm.

This rate of performance decrease is very slow, matching well with the analysis given in Section 2.

The di�erence in the decreased percentage between the SEIDD1 and SEIDD3 algorithm is

due to the di�erence of computation costs of the two algorithms. The computation time used

by the SEIDD3 algorithm is less than half of that used by the SEIDD1 algorithm while the

communication time consumed by the two algorithms are the same.

4. Conclusion. We developed a class of stabilized explicit-implicit domain decomposition

methods by adding a stabilization step to the explicit-implicit domain decomposition methods.

The EIDD methods are globally non-iterative, non-overlapping domain decomposition methods,

which are computationally and communicationally eÆcient for each time step calculation when

compared with Schwarz method based parabolic solvers. However EIDD methods su�er from

either stability or consistency related time step size restrictions, while Schwarz methods could

maintain the good stability condition of implicit temporal discretization schemes. The proposed

SEIDD methods have inherited the advantages of EIDD methods in time-stepwise eÆciency but

are free from any time step size restriction, thus possessing the advantages of both the EIDD

methods and the Schwarz method based parabolic solvers. These merits in stability, parallel

speedup and scalability of the SEIDD methods were con�rmed by tests on an SGI Origin 2000

computer.

8

Acknowledgement. The authors would like to thank four anonymous reviewers for their
comments and suggestions. The authors are also grateful to the National Center for Supercom-

puting Applications (NCSA) for providing access to its SGI Origin 2000 parallel computer.

References

[1] K. Black, Polynomial collocation using a domain decomposition solution to parabolic

PDE's via the penalty method and explicit/implicit time marching, J. Sci. Comput., 7 (1992),
no. 4, 313{338.

[2] X.-C. Cai, Additive Schwarz algorithms for parabolic convection-di�usion equations, Nu-
mer. Math., 60 (1991), 41{61.

[3] , Mulitiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput., 15
(1994), 587{603.

[4] X.-C. Cai, W. D. Gropp and D. E. Keyes, A comparison of some domain decomposition

algorithms for nonsymmetric elliptic problems, J. Numer. Lin. Alg. Appl., 1993.

[5] T. F. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica, 1994,
61{143.

[6] C. Dawson and T. Dupont, Explicit/implicit, conservative domain decomposition pro-

cedures for parabolic problems based on block-centered �nite di�erence, SIAM J. Nu-
mer. Anal. 31 (1994), no. 4, 1045{1061.

[7] C. Dawson, Q. Du, and T. Dupont, A �nite di�erence domain decomposition algorithm

for numerical solution of the heat equation, Math. Comp. 57 (1991), no. 195, 63{71.

[8] J. Douglas and J. Gunn, A general formulation of alternating direction method: Part I.

Parabolic and hyperbolic problems, Numer. Math., 6 (1964), 428{453.

[9] M. Dryja, Substructuring methods for parabolic problems. Fourth International Symposium
on Domain Decomposition Methods for Partial Di�erential Equations (Moscow, 1990), 264{
271, SIAM, Philadelphia, PA, 1991.

[10] M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method

for the case of many subregions, Tech. Rep. 339, Courant Inst., New York Univ., 1987.

[11] W. D. Gropp and D. E. Keyes, Domain decomposition on parallel computers, Impact
of Computing in Science and Engineering, 1 (1989), 421{439.

[12] D. E. Keyes, Domain decomposition: a bridge between nature and parallel computers,
NASA ICASE Technical Report No. 92-44, NASA Langley Research Center Hampton, VA
23681-0001, 1992.

[13] D. E. Keyes and W. D. Gropp, A comparison of domain decomposition tech-

niques for elliptic partial di�erential equations and their parallel implementation, SIAM
J. Sci. Statis. Comput., 8 (1987), 166{202.

[14] Y. A. Kuznetsov, New algorithms for approximate realization of implicit di�erence

schemes, Sov. J. Numer. Ana.Math. Modell. 3 (1988), 99{114.

[15] Yu. M. Laevsky, A domain decomposition algorithm without overlapping subdomains for

the solution of parabolic equations. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 32 (1992), no. 11,
1744{1755; translation in Comput. Math. Math. Phys. 32 (1992), no. 11, 1569{1580.

[16] , Explicit-implicit domain decomposition method for solving parabolic equations. (Rus-
sian) Computing methods and technology for solving problems in mathematical physics
(Russian), 30{46, Ross. Akad. Nauk Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1993.

9

[17] Y. M. Laevsky and S. V. Gololobov, Explicit-implicit domain decomposition methods

for the solution of parabolic equations. (Russian) Sibirsk. Mat. Zh. 36 (1995), no. 3, 590{601,
ii; translation in Siberian Math. J. 36 (1995), no. 3, 506{516.

[18] Yu. M. Laevsky and O. V. Rudenko, Splitting methods for parabolic problems in non-

rectangular domains. Appl. Math. Lett. 8 (1995), no. 6, 9{14.

[19] T. Mathew, P. Polyakov, G. Russo and J. Wang, Domain decomposition operator

splittings for the solution of parabolic equations, SIAM J. Sci. Comput. 19 (1998), no. 3,
912{932.

[20] B. F. Smith, P. E. Bjorstad and W. D. Gropp, Domain Decomposition: Parallel

Multilevel Methods for Elliptic Partial Di�erential Equations, Cambridge University Press,
1996.

[21] Y. Zhuang, Classically Unstable Approximations for Linear Evolution Equations and Ap-

plications, Ph.D. dissertation, Department of Mathematics, Louisiana State University Ba-
ton Rouge, August 2000.

[22] , A Class of Stable, Globally Noniterative, Nonoverlapping Domain Decomposition

Algorithms for the Simulation of Parabolic Evolutionary Systems, Ph.D. dissertation, De-
partment of Computer Science, Louisiana State University Baton Rouge, December 2000.

10

