
BPS: A Performance Metric of I/O System
Shuibing He, Xian-He Sun, Yanlong Yin

Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA 60616
{she11, sun, yyin2}@iit.edu

Abstract—It is known that I/O system rather than CPU and
memory is the performance killer of many of the newly
emerged data intensive applications. Evaluating and
understanding I/O system performance has become a timely
issue facing the high performance computing community.
Conventional I/O performance metrics, such as
Input/Output Operations Per Second (IOPS), bandwidth,
response time, etc., are effective for traditional I/O
environments. However, as I/O systems become more and
more complex, existing I/O metrics become less and less able
to catch the characteristic of I/O systems performance. In
this study, we reveal the limitations of existing metrics, and
introduce a novel I/O metric, Blocks Per Second (BPS), to
measure the performance of the I/O systems. A unique merit
of BPS is that it provides an overall I/O system performance,
not the file system performance or disk performance. This is
very important; since with concurrency and optimization at
the I/O stacks, file system performance and disk
performance no long represent the data access performance.
In fact, they are often misleading. A methodology is designed
to measure BPS, and experiments are conducted with
various I/O access patterns and storage configurations.
Experimental results show that BPS is significantly more
appropriate than existing metrics in I/O performance
evaluation.

Keywords-I/O performance evaluation, I/O metrics,
parallel I/O system

I. INTRODUCTION
During the last two decades, the advance of VLSI

technology has made a dramatically improvement in CPU
and memory performance. However, I/O performance has
not gained as much improvement as have CPU and
memory. For example, in modern computers [1], the CPU
cycles are in the range of several nanoseconds or even less
and memory access latency ranges from tens to hundreds
of nanoseconds; I/O latency of an ordinary disk is still up
to several milliseconds, which is three orders of magnitude
larger than CPU cycles. As a result, for many data
intensive applications in the high performance computing
(HPC) community, I/O rather than CPU and memory is the
performance bottleneck. Furthermore, the performance
gap between the I/O system and the rest of the computer
system is widening rapidly, hence I/O systems are
becoming the dominant performance factors for data
intensive applications.

Because I/O systems are the performance bottleneck,
evaluating and measuring I/O systems has become an

important issue facing HPC community. Existing I/O
metrics, such as Input/Output Operations Per Second
(IOPS), bandwidth, response time, etc., are designed for
traditional storage systems or devices. However, current
I/O systems are rapidly evolving and become more and
more complex. On the one hand, they include multiple
layers in the I/O stacks, such as I/O middleware, file
system, and the underlying storage system. On the other
hand, I/O systems often adopt multiple optimization
techniques to improve efficiency, such as application
optimizations, I/O middleware optimizations, and storage
layer optimizations. This complexity often is in terms of
concurrency or utilization of concurrency. While
conventional I/O metrics are effective for traditional I/O
environments, they are not designed to handle the more
and more sophisticated I/O systems, and become less and
less able to catch the characteristic of current I/O system’s
overall performance. In general, single component’s
improvement does not necessarily lead to an improvement
in terms of overall computer performance or overall I/O
performance. In fact, they are often misleading. For
example, a higher bandwidth value for file systems or
storage systems does not necessarily means a better overall
I/O performance. Like shown in Section IV.C.2, when
IOPS increases, the application execution time may
increase. In another example in Section IV.C.3, with
parallel I/O optimization applied, average response time
also shows misleading information on application
execution time.

There are two major reasons that existing I/O metrics
cannot directly characterize the overall I/O systems
performance. First, most I/O operations in modern I/O
systems are performed in parallel. Multiprocessing and
multithreading techniques [2, 3] increase the parallelism of
CPU execution and the I/O accesses. Parallel file systems,
such as Lustre [4], GPFS [5], PVFS [6], and PanFS [7],
allow multiple I/O servers to service I/O requests
concurrently. These techniques make the relationship
between I/O access and computer performance more
complicated. A single I/O access performance is no longer
able to represent the overall I/O system performance. In
these cases, evaluating I/O systems from a single access or
on a single component does not reflect the complexity of
modern I/O systems. A more appropriate I/O metric
should consider all the I/O concurrency to measure the
overall performance of an I/O system.

Second, because of the utilization of advanced I/O
optimizations, the amount of data required by applications

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.64

1954

may be largely different with the amount of data actually
moved through the I/O system. For instance, data sieving
[8, 9], a widely used optimization for small, noncontiguous
I/O accesses [10-12], will access some extra data regions
(holes) required by the applications. Data prefetching [13,
14] may also prefetch data more than required. However,
an additional data movement may not always be useful for
the data access performance as seen by applications. Thus,
the influence of the improvement of one particular
component becomes increasingly tangled and elusive. In
general, I/O metrics which only reveal the I/O
performance of particular component are not suitable to
reflect the overall I/O performance in modern computing
systems.

In summary, we need a new I/O metric to measure the
performance of modern I/O systems. To reach this goal,
the new I/O metric—Blocks Per Second (BPS) metric is
proposed in this study. A unique merit of BPS is that it
provides an overall I/O system performance, not the file
system performance or storage device performance.
Component-width performance evaluation certainly has its
usefulness, but with the preeminence increase of I/O
systems, measurement and understanding of the overall
I/O system performance is in high demand and is timely
important in assisting I/O performance optimization.

The introduction of BPS is threefold. First, this study
introduces the definition of BPS; then it presents the
measurement methods of determining the number of
blocks and the time of I/O accesses; finally, numerous
experiments are conducted to confirm that BPS is
significantly more appropriate than the existing I/O
performance metrics. The statistical variable correlation
coefficient is used to evaluate the effectiveness and
accuracy of the metrics. BPS has a 0.91 correlation
coefficient value with the overall system performance,
whereas conventional metrics only have good or
acceptable correlation in certain cases.

The rest of this paper is organized as follows. We
discuss the advantages and disadvantages of the existing
I/O metrics in Section II. Section III gives the definition of
BPS and presents the measurement methodology. Section
IV evaluates BPS by a series of experiments. Finally, we
conclude the paper in Section V.

II. EXISTING I/O METRICS
As the same as the performance measurement of CPU

and memory system, I/O system’s evaluation also involves
several different metrics. We present an overview of these
metrics in this section.

One of the most commonly used I/O performance
metrics is throughput. Throughput describes the rate at
which the I/O system transfers data, and is usually
measured in two ways: I/O rate and data rate. I/O rate is
denoted by Input/Output Operations Per Second (IOPS)
and data rate is denoted by bandwidth [15]. For a given
period, IOPS indicates the number of I/O accesses per
second, and bandwidth indicates the amount of data
accessed per second. These two metrics are used to
evaluate the performance of traditional storage systems or

storage devices. IOPS is usually used for approximate
performance evaluation in cases where the size of each
request is small, such as online transaction processing [16].
Bandwidth is generally used for applications where the
size of each request is large [17, 18].

While IOPS works well to evaluate I/O performance
for fixed-size I/O requests, it is not practical asking all
general HPC applications to issue I/O requests with the
same size in real systems. If IOPS is used to evaluate
performance in I/O systems where a lot of varied-size I/O
requests exist, it may fail badly in correctness. For
example, Figure 1(a) describes two I/O access cases where
two requests R1 and R2 are served by an I/O system. In
the left case, R1 and R2 are served with a small size of S
and an I/O time of T1 and T2. In the right case, the two
requests are served together with a large size of 2S, and a
less I/O time of T1. Assuming T1=T2=T, according to the
definition of IOPS, the left case has a value of
(2)/(2T)=1/T, just as the same as that of the right one.
However, in terms of overall computer performance or
overall I/O performance as seen by the application, the
right case performs better than the left one, because of the
shorter execution time or I/O time. The mismatch between
IOPS and the overall I/O performance shows that it is
inefficient to evaluate performance in general HPC
applications. In contrast, our BPS can measure the I/O
performance accurately for variably-sized I/O requests.

Bandwidth is a metric similar to BPS. It uses the
amount of data moved into file systems or storage systems
to evaluate the I/O performance. The main difference is
that bandwidth measures the performance of the
underlying file systems but BPS measures the performance
of the I/O systems. The argument of BPS is that many
optimizations/managements are conducted in I/O stacks,
before sending the requests through the network. I/O
systems performance is no long equal to the file system
performance in modern computer systems. For example, in
the two I/O access cases in Figure 1(b), though bandwidth
in the right part is higher than that of the left one, their
overall I/O access time is the same from an application
point of view, which means the overall performance
remains the same for their data accesses. It shows that
bandwidth is not a good metric to evaluate I/O systems of
HPC. By measuring the I/O performance using data
required by application, BPS is proved a good
performance metrics.

Another performance metric for I/O systems is
response time (or latency). Response time measures how
long it takes a system to finish an I/O operation. As the
response time of each I/O request in the I/O systems may
be different with one another, average response time
(ARPT), which is the arithmetic mean of all the I/O
request response times, is often used to measure the I/O
performance. Figure 1(c) demonstrates two I/O access
cases with sequential and concurrent I/O requests
respectively. These two cases have the same APRT value
T, but obviously the concurrent I/O access case has higher
overall I/O performance. As ARRT does not consider the
I/O access concurrency, it is also not suitable to measure

1955

the performance of the overall I/O systems. Contrastively,
BPS evaluates the performance of I/O systems using the
overlapped I/O time, and thus is effective for both
sequential and concurrent requests.

Besides the above three widely used I/O metrics, there
are other performance metrics for some special storage
device. With rotating drives, the seek time measures the
time it takes the disk head assembly on the actuator arm to
travel to the track of the disk where the data will be read or
written. In addition, rotational latency is the delay waiting
for the rotation of the disk to bring the required disk sector
under the read-write head. It depends on the rotational
speed of a disk (or spindle motor), measured in revolutions
per minute (RPM). For most magnetic media-based drives,
the average rotational latency is based on the empirical
relation that the average latency is half of the rotational
period.

In summary, existing I/O performance metrics, such as
IOPS, bandwidth, and response time, are inadequate to
evaluate the overall performance of modern I/O systems.
In other words, with concurrency and optimization at the
I/O stacks, a better value in one of existing I/O metrics
may not mean a better performance of the overall I/O
system. Recently, Sun and Wang have proposed a new
memory performance metric—Access Per Cycle (APC) to
measure memory system [19]. APC separates memory
system performance from overall computer performance
but in the meantime correlates with overall computer
performance. Considering the different characteristics
between memory system and I/O system, and inspired by
the thought of APC, we propose the new metric of BPS to
measure the overall I/O system performance.

III. BPS DEFINITION AND MEASUREMENT
In this section, we describe the formal definition of

BPS, and give the method of calculating the number of
blocks and the time of I/O accesses used in the BPS
equation in a real I/O system.

A. BPS Definition
BPS is proposed to evaluate the performance of overall

I/O system and is measured as the number of I/O blocks
per second. We use the term “block” because I/O systems
usually read/write data from/to a block device.
Definitively, BPS is the number of I/O blocks (e.g.,
512bytes) required from application divided by the time of
I/O accesses. We use the amount of data required by
applications to reveal the overall I/O system performance
rather than a component performance. Letting B denote the
number of I/O blocks (Read/Write), and T denote the total
time consumed by these accesses, BPS is defined as
equation (1).

��� =
�
�

 (1)

The definition is simple. However, because modern

CPU and I/O systems use a large number of advanced
techniques to improve application performance, several
I/O accesses may co-exist in the system at the same time.
Measuring time T is not as simple as it may seem.

� T should only include the time when I/O operation

is performing, which means the inactive time is
not included in T when there are no I/O accesses
in the system during an observed time period.

� In addition, T should be measured based on the
overlapping mode. That is to say, for several
concurrent I/O accesses overlapped together, T is
the wall time of the overlapping I/O time.

Figure 2 gives an example of how to measure T for

four concurrent I/O requests (R1, R2, R3, and R4) in an
I/O system. Among them, R1, R2, and R3 overlap with
each other partially. Instead of using (T1+T2+T3), we use
∆t1 as T—the total time of I/O access in equation (1) for
the first three requests. For R4, T is equal to ∆t2 (or T4).
The idle I/O period between t6 and t7 is not included. In

R1

T1

R2

T2

R1

T1

R2

T2

R1

T1

R2

T2

time time

R1

T1

time timetime

R1

T1

R2

T2

time

R1

T1

R2

T2

(a)Different I/O sizes (b)Different actual amounts
of data movement (c)Different I/O concurrency

Figure 1. Two I/O requests R1 and R2 are served by an I/O system in 6 different cases. In each case, each request is represented by a rectangle, of which the
length means the I/O completion time and the height means the I/O request size. Each subfigure presents two I/O access cases for comparison.

1956

this scenario, the overall T for these four requests is equal
to ∆t1+ ∆t2.

For the other parameter B in equation (1), all the I/O
blocks issued from the application are counted, including
all successful accesses, non-successful ones, and all
concurrent ones. For example, in terms of the requests in
Figure 2, B will be the sum of all the I/O blocks of R1 to
R4, which is equal to the total amount of data of these
requests divided by the block unit size.

time

R1

R2

R3

T1

T2

T4

0

T3

R4

t1 t2 t3 t4 t5 t6 t7 t8

Δt1 Δt2

 BPS: T =Δt1 + Δt2
Figure 2. Measurement of time T in BPS equation

B. BPS Measurement Methodology
Monitoring computer performance is a long-standing

topic of concern. In order to measure the CPU
performance, modern computer cores, such as Intel Core
[20] and IBM POWER3 [21], have provided a number of
hardware performance counters to describe the detailed
information of the internal hardware components. Some
high-level programming interface for accessing hardware
performance counters from application, such as PAPI [22],
is available today. However, in terms of I/O performance,
there are no hardware counter supports in existing
computer cores. As a result, we measure BPS with a
software approach.

Calculating I/O access time in a real environment is
indirect for two reasons. First, I/O access does not occur in
every clock cycle. Secondly, many different I/O accesses
can overlap with each other. Ideally, the I/O access time
should be counted only once in the total I/O access time
even if there are several different I/O accesses occurring at
the same time as shown in Figure 2.

In this study we measure BPS via the following steps.
Step 1: Recording I/O access information of each

process
We use one record to capture the information of each

I/O access of a process. Each record includes process ID,
I/O size (blocks), I/O start time, and I/O end time. Multiple
I/O accesses of a process lead to multiple records. We get
this information in the I/O middleware layer for MPI-IO
applications, or I/O function libraries for ordinary POSIX
interface applications, to avoid the modification of
applications. After the execution of the application, the
detailed information related to each I/O access is obtained.

If the application has multiple processes, the information
of each process is recorded. If the I/O system services
more than one application concurrently, we record the I/O
access information of all the applications.

Step 2: Gathering the information of all processes into
a global collection

We collect the I/O access information of all processes
to have a comprehensive knowledge of the performance of
the overall I/O system. First, we accumulate the number of
I/O blocks of each process into B—to get the total number
of I/O blocks in BPS definition. Second, we gather the I/O
time information of all processes into one time collection
(col_time) to prepare for the total I/O time in BPS
definition. The time information collection contains the
value pairs of beginning and ending time of all I/O
accesses.

Step 3: Calculating the overlapped I/O access time

Input: I/O access time collection (col_time)
Output: Overlapped I/O access time (T)

/* sort all records in col_time according to the start time of each
record */
sort()

tempRecord =first Record of col_time
while col_time has next do

if tempRecord.endtime < nextRecord.starttime then
 T =tempRecord.endtime-tempRecord.starttime
endif
else

nextRecord.starttime =tempRecord.starttime
if nextRecord.endtime <tempRecord.endtime

nextRecord.endtime = tempRecord.endtime
endif

endelse
 tempRecord=nextRecord
endwhile
T =tempRecord.endtime - tempRecord.starttime

Figure 3. BPS time calculating algorithm

Figure 3 gives the algorithm to calculate the I/O access

time. It takes the record sequence col_time as input, and
then gives an output of the total I/O access time. The
algorithm is straightforward. It includes two parts. One is a
sort function, which orders the records according to the
start time of each record. This part is very similar to an
ordinary fast sort function, and it is used to speed up the
process of I/O time calculating. The other is actual time
calculating, which produces the final total I/O time in BPS
definition through a step-by-step record comparison.

After these three steps, we can get the BPS value with
equation (1).

1957

C. Overhead Analysis
Because our BPS measurement is based on a software

approach, it does not need extra hardware to evaluate the
I/O performance. However, there are two overheads need
to be considered in our measurement.

One is the space overhead in recording the I/O access
information. In our method, the number of record is
proportional to the number of I/O requests. All these
records can be located on available media, such as
memory or disk space, according to a configuration file
defined by users. As the size of each record is 32 bytes,
even for 65535 I/O operations, all the records need about 3
megabytes, which is ignorable in modern computer
system.

The other is the time cost in calculating the overlapped
I/O time. The complexity of the algorithm is O(nlog2n),
where n is the number of records. Since this calculation
can be overlapped with data accesses, the computing
overhead of this algorithm is very affordable for modern
CPUs. Please notice, while I/O performance has received
more and more attention in recent years, hardware counter
for I/O performance is expected to be available in the near
future. Therefore, the correctness and effectiveness of BPS
is the focus of this study, not its overhead.

IV. EXPERIMENTAL EVALUATION
This section first introduces the mathematical concept

of correlation coefficient. With correlation coefficient as
the proximity measurement, a series of experiments are
conducted with different I/O access cases to confirm our
BPS is a better metric than the existing ones.

A. Correlation Coefficient
The motivation of I/O evaluation is due to the fact that

the final overall computer performance is heavily
influenced by I/O system performance for data-intensive
applications. Therefore, an appropriate I/O metric should
correlate the system performance. The mathematical
statistic variable correlation coefficient (CC) is used in this
study to determine which I/O metric most closely trends
with the overall computer performance variation.
Correlation coefficient describes the proximity between
two variables' changing trends from a statistics viewpoint.
It measures how well two variables match with each other.
Please notice, correlation does not mean proportional. For
instance, car’s sale correlates with the quality of the car.
But, the quality and sale are two totally different concepts
and there is not direct measurement comparison.

 Given two variables X and Y, CC can be calculated as
equation (2). CC has a value range from -1 to 1. Two
points about the correlation between X and Y can be
derived from the CC value. (1) Correlation direction. A
positive CC value means positive correlation, which
means if X increases, Y also increases. Otherwise, it is a
negative correlation direction between the two. (2)
Correlation strength. The higher the absolute CC value is,
the stronger relation the two variables would have. If it is 1
or -1, the two variables' trends are perfectly matched to

each other; if it is zero, there is no correlation between the
two variables.

CC =
∑�� − �	 �
 −
	

�∑(� − ��)
 ∙ �∑(
 −
�)

(2)

We use CC to reflect the relationship between the

overall computer performance and I/O system
performance. For a given application, we use the
application execution time to denote the overall computer
performance, and different I/O metrics to denote I/O
system performance. Table 1 lists the expected correlation
directions (shown by CC value) when different metrics are
used. We take the I/O metric as the most appropriate one if
its variety trend has the closest match with that of the
overall performance variation. Obviously, this closest
match means a stable correlation direction and strongest
correlation strength in different I/O access cases.

Table 1. Expected correlation directions of each I/O metric
I/O metrics CC value

IOPS negative
Bandwidth negative
Average response time positive
BPS negative

B. Experiment Settings
The experiments were conducted on a 65-node SUN

Fire Linux cluster, in which there are 64 computing nodes
and one head node. Each computing node has two Quad-
Core AMD Opteron(tm) processors, 8GB memory and a
250GB 7200RPM SATA-II disk (HDD). All nodes are
equipped with Gigabit Ethernet interconnection, and 17
nodes are equipped with an additional PCI-E X4 100GB
SSD. The operating system is Ubuntu 9.04, Linux kernel
2.6.28.10. The parallel file system is PVFS2 version 2.8.1.

We conducted 4 sets of experiments to confirm that
BPS is better than traditional I/O metrics. Table 2 lists the
detailed I/O access cases in our experiments.

Table 2. I/O acess cases

Experiments Descriptions
Set1 various storage device
Set2 various I/O request size
Set3 various I/O concurrency
Set4 various additional data movement

We conducted the evaluation with three popular I/O

benchmark tools, IOzone, IOR, and Hpio.
IOzone is a file system benchmark used to a broad I/O

performance analysis with a number of I/O access patterns
on different platforms [23]. It supports a bunch of file
operations, such as read, write, re-read, re-write, and read
backwards, small/large file sizes, small/large record sizes,
and single/multiple process I/O tests. We use IOzone to
produce the I/O access cases of set 1 to 3 in Table 2.

1958

IOR is a program in the ASCI Purple Benchmark Suite
developed at Lawrence Livermore National Laboratory
[25], it is a software used to test random and sequential I/O
performance of parallel file systems. We use IOR to
produce the concurrent I/O access cases in Table 2.

Hpio is a program designed by Northwestern
University and Sandia National Laboratories to evaluate
noncontiguous I/O performance for MPI-IO [24]. This
benchmark program can generate various data access
patterns by changing three parameters: region count,
region spacing, and region size. In our experiment, we use
Hpio to simulate the I/O access cases of set 4 in Table 2.
Specially, we fix region count and region size, and vary
region spacing from 8 bytes to 4096 bytes. When data
sieving optimization is used, each process will access
additional data required by the application.

In order to ensure that all data were accessed from
storage devices, the system caches of all computing nodes
and I/O servers were flushed prior to each run. We ran
each set of experiments 5 times, and the average was used
as the results. In addition, in order to show a clear
comparison we normalized the CC values in the following
way: If the value for each I/O metric showed a consistent
correlation direction with the expected one listed in Table
1, we recorded it with a positive value; otherwise, we
recorded it with a negative value. This applied to all the
results related with CC values in this paper.

C. Experiment Results
1) Results of various storage devices

Figure 4. The normalized CC values of IOPS, bandwidth (BW), average
response time (ARPT), and BPS.

We first watched the performance of IOPS, BW,

ARPT, and BPS when the storage devices are changed, in
number and in media. We ran IOzone in single process
mode to read a 64GB file sequentially in different storage
device configurations. In this case, the data was accessed
through local file systems mounted on HDD, SSD, and a
PVFS2 file system. In order to simulate different storage
performance, here the PVFS2 was also built on different
storage nodes, from 1 I/O server to 8 I/O servers,

respectively. When all runs were finished, we correlated
the values of IOPS, BW, ARPT, and BPS against the
values of application execution time to calculate the final
CC values.

Figure 4 reports the normalized results between each
I/O metric and application execution time. All of the four
metrics perform well, because not only they have right
correlation directions, but also they have strong correlation
strengths, with an absolute average value nearly 0.93. This
strong correlation means that all of the traditional IOPS,
BW, ARPT, and our BPS, work well for traditional storage
device improvement.

2) Results of various I/O sizes

Figure 5. The normalized CC values of IOPS, bandwidth (BW), average
response time (ARPT), and BPS in HDD environment

Figure 6. The normalized CC values of IOPS, bandwidth (BW), average
response time (ARPT), and BPS in SDD environment.

For different I/O size testing, we ran IOzone to read a

16GB file from the local file system with the record size
from 4KB to 8MB. When each run is finished, we
collected IOPS, BW, ARPT, BPS, and application
execution time. After all the runs were finished, we got the
final CC values. We conducted the experiments with two
storage configurations: one uses a slow HDD device; and
the other a faster SSD device.

Figure 5 and Figure 6 show the normalized CC values
in HDD and SSD environment respectively. The first
observation is that both BW and BPS have correct
correlation directions, but it is not true for IOPS and ARPT.
The second observation is that both BW and BPS have

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

CC
 v

al
ue

s

 IOPS BW ARPT BPS

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

hddCC
 v

al
ue

s

 IOPS BW ARPT BPS

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

ssdCC
 v

al
ue

s

 IOPS BW ARPT BPS

1959

stronger correlation strengths, with average CC values
nearly 0.90. These strong relations also reflect the fact that
the overall system performance of I/O intensive
applications largely depends on the I/O performance.

The reverse correlation direction of IOPS means that if
IOPS increases, the overall computer performance may
decrease, just as we mentioned in Section I. IOPS may be
misleading because of the ignorance of I/O sizes. Given
the same fixed I/O sizes, the larger the IOPS shows the
higher the I/O performance. Otherwise, the conclusion is
uncertain. Figure 7 gives the detailed results about IOPS
and application execution time in the HDD environment
when the I/O size is varied from 4KB to 8MB. When I/O
size is 4KB, the IOPS is 5156.39 and the application
execution time is 809.6 seconds; when I/O size is 64KB,
the IOPS is 732.3 and the application execution time is
358.1 seconds. Obviously, the IOPS is largely decreased,
but the overall computer performance is largely increased.
This example shows that IOPS is ill-suited to evaluate I/O
performance.

Figure 7. IOPS and application execution time with various I/O sizes in
HDD environment.

Figure 8. ARPT and application execution time with various I/O sizes in
SSD environment.

Similar to IOPS, ARPT may be also confusing. Figure

8 shows the results of ARPT and application execution
time when the I/O size was varied from 4KB to 8MB in
the SSD environment. When I/O size is changed from
4KB to 4MB, ARPT is increased from 0.00014 to 0.02235
second, meaning a decreased I/O performance. However,

the overall computer performance is largely increased
because the I/O operations are performed with larger I/O
sizes. From this example, we can see that ARPT has some
limits to reveal the relation between the I/O performance
and the overall computer performance accurately.

Using our car sale example, CC pointing to a wrong
direction means improving the quality of car will reduce
car sale. That is terribly wrong. The only explanation is
that the measurement of quality has some problem. IOPS
and ARPT are designed for a specific group of
applications that issue fixed-size I/O requests. They are not
feasible to be used to evaluate general HPC I/O systems.

3) Results of various I/O concurrency

In these experiments, we evaluated the performance of

BPS in two kinds of environments where concurrent I/O
requests exist.

We first ran IOzone in its throughput test mode to
simulate a relative “pure” concurrent I/O environment,
where the disk contention — a side effect led by I/O
concurrency would be avoided. To this end, each process
of IOzone accessed its own PVFS2 file, and each file is
hosted on an individual I/O server. We limited each file to
locate on one I/O server by setting the file stripe layout
attributes when it was created. There were eight I/O
servers in our experiments; the file system was accessed
through the POSIX interface, and the total data amount of
file accesses is 32GB.

Figure 9. The normalized CC values of IOPS, bandwidth (BW), average
response time (ARPT), and BPS.

Figure 9 demonstrates the results of each I/O metric

when the number of processes was varied from 1 to 8.
Among the four metrics, IOPS, BW, and BPS perform
well. They not only show right correlation directions, but
also have strong correlation strengths, with an absolute
average value nearly 0.96. For ARPT, it has a wrong
correlation direction, with a lower CC value nearly 0.58.
The incorrect correlation direction shows that ARPT is not
a good metric for I/O performance evaluation in this
situation. When there are many I/O requests in the system,

0
200
400
600
800
1000

0
1000
2000
3000
4000
5000
6000

Ti
m

e
(s

ec
on

d)

IO
PS

I/O size

IOPS Application Execution Time

0

200

400

600

800

0
0.01
0.02
0.03
0.04
0.05
0.06

Ti
m

e
(s

ec
on

d)

AP
RT

 (s
ec

on
d)

I/O size

 ART Application Execution Time

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

CC
 v

al
ue

s

 IOPS BW ARPT BPS

1960

the average response time is not able to determine the wall
time of all these requests. So only considering the average
response time is not appropriate to evaluate the overall
computer performance. Figure 10 demonstrates the values
of ARPT and application execution time when the I/O
concurrency was changed. From the detailed results, we
can observe that compared with the variation of
application execution time, ARPT has a smaller variation,
so it is not able to reflect the overall computer
performance accurately. However, as seen from Figure 4,
if I/O requests arrive at the I/O systems sequentially,
APRT works as well as BPS.

Figure 10. ARPT and application execution time with various I/O
concurrency.

Secondly, we evaluated each metric’s behavior in the

I/O environment of general HPC systems. We ran IOR
with the MPI-IO interface to access a shared PVFS2 file,
which is striped across the underlying 8 I/O servers with a
default stripe layout. Each of n MPI processes is
responsible for reading its own 1/n of a 32 GB file. Each
process continuously issues requests of fixed transfer size
(64KB) with sequential offsets.

Figure 11. The normalized CC values of IOPS, bandwidth (BW),
average response time (ARPT), and BPS.

Figure 11 demonstrates the results of each I/O metric

when the number of process was varied from 1 to 32. We
observed that in a real I/O environment, though IOPS, BW,
and BPS perform a little worse than do they in a perfect
environment, they still have good performance, with an
absolute average value nearly 0.91. As expected, ARPT

still has a poor performance, with a wrong correlation
direction and a lower CC value nearly 0.39.

4) Results of various additional data movement

We compared BPS with the existing I/O metrics when

additional data movement was existed in I/O system. We
ran Hpio to simulate these I/O access cases. We tested the
noncontiguous file read operation on PVFS2 file system
configured with 4 I/O servers. Data sieving was enabled,
so that I/O middleware (MPI-IO library) would read a
bunch of additional file holes located between the adjacent
file regions. The region count was set to 4096000, and the
region size was set to 256 bytes. We varied the region
spacing from 8 bytes to 4096 bytes to produce various
additional data movement.

Figure 12. The normalized CC values of IOPS, bandwidth (BW),
average response time (ARPT), and BPS.

Figure 12 gives the results of each metrics. We

observed that IOPS, ARPT, and BPS have correct
correlation directions with application execution times as
we expect. At the same time, they have strong correlation
strengths, with the absolute value of CC nearly 0.92.
However, BW has a wrong correlation direction, which
will mislead people. This result shows that BW is not a
good I/O performance metric when additional data
movement exists in I/O system. In other word, it cannot
catch the I/O stack optimizations. In this case, file system
performance does not represent I/O system performance.
Using file system performance to represent I/O system
performance is incorrect.

5) Summary of experiment results

Through the above experiments and analyses, via

different I/O access scenarios, we have demonstrated that
BPS is the only metric that works well for all the scenarios.
BPS correctly correlates with the overall computer
performance in all the tests, and achieves high CC values.
In contrast, other I/O system metrics cannot accurately
reflect the system performance, and all mislead in some
testing scenario.

0

0.002

0.004

0.006

0.008

0.01

0

10

20

30

40

1 2 3 4 5 6 7 8

AR
PT

 (s
ec

on
d)

Ti
m

e
 (s

ec
on

d)

I/O concurrency

Application Execution Time ARPT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

CC
 v

al
ue

 IOPS BW ARPT BPS

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

CC
 v

al
ue

s

 IOPS BW ARPT BPS

1961

V. CONCLUSIONS
I/O is the identified performance bottleneck for many data
intensive applications. Evaluating and understanding I/O
system performance is a critical issue facing the HPC
community. Existing I/O metrics work well for traditional
I/O systems, but have some inherent flaws in catching the
complexity of modern parallel I/O systems. In order to
improve I/O performance, modern I/O systems have
adapted various advanced optimization techniques in
applications, I/O middleware, and storage systems and
devices. Faced with these complicated I/O systems where
concurrency and optimization at lower storage device level
and higher I/O stack level, traditional I/O metrics are no
longer effective.

In this paper, we propose a new I/O metric called BPS,
describe its measurement methodology, and demonstrate
its unique ability to measure the overall performance of
modern I/O systems. Intensive experiments were
conducted to verify the potential of BPS and to compare it
with existing I/O performance metrics. Experimental
results show that BPS is a significantly more effective I/O
metric than other existing ones on reflecting the overall
performance of I/O systems.

In the near future, we will conduct more performance
measurements using BPS. We will make BPS an easy-to-
use toolkit and release it to the public. With the better
understanding of I/O system performance, we will adopt
and evaluate different I/O optimization mechanisms and
their combinations in terms of overall I/O system
performance.

REFERENCE
[1] M. E. Thomadakis, "The Architecture of the Nehalem Processor

and Nehalem-Ep Smp Platforms," A research report of Texas
A&M university, Mar 2011.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, "Niagara: A 32-Way
Multithreaded Sparc Processor," Micro, IEEE, vol. 25, pp. 21-29,
2005.

[3] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, "Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor," in
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, 1996, pp. 191-202.

[4] S. Microsystems, "Lustre File System: High-Performance Storage
Architecture and Scalable Cluster File System," Lustre File
System White Paper, Dec 2007.

[5] F. Schmuck and R. Haskin, "Gpfs: A Shared-Disk File System for
Large Computing Clusters," in Proceedings of the 1st USENIX
Conference on File and Storage Technologies(FAST'02), 2002, pp.
231-244.

[6] P. H. Carns, I. Walter B. Ligon, R. B. Ross, and R. Thakur, "Pvfs:
A Parallel Virtual File System for Linux Clusters," in Proceedings
of the 4th Annual Linux Showcase and Conference, 2000, pp. 317-
327.

[7] D. Nagle, D. Serenyi, and D. Serenyi, "The Panasas Activescale
Storage Cluster: Delivering Scalable High Bandwidth Storage," in
Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, 2004.

[8] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and Collective
I/O in Romio," in The Seventh Symposium on the Frontiers of
Massively Parallel Computation 1999, pp. 182-189.

[9] R. Thakur, W. Gropp, and E. Lusk, "A Case for Using Mpi's
Derived Datatypes to Improve I/O Performance," in Proceedings
of the 1998 ACM/IEEE conference on Supercomputing, San Jose,
CA, 1998, pp. 1-10.

[10] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E.
Long, and T. T. McLarty, "File System Workload Analysis for
Large Scale Scientific Computing Applications," in Proceedings of
the 21st IEEE / 12th NASA Goddard Conference on Mass Storage
Systems and Technologies, 2004, pp. 139-152.

[11] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclatter Ellis, and M.
L. Best, "File-Access Characteristics of Parallel Scientific
Workloads," IEEE Transactions on Parallel and Distributed
Systems vol. 7, pp. 1075-1089, 1996.

[12] E. Molina-Estolano, M. Gokhale, C. Maltzahn, J. May, J. Bent, and
S. Brandt, "Mixing Hadoop and Hpc Workloads on Parallel
Filesystems," in Proceedings of the 4th Annual Workshop on
Petascale Data Storage, Portland, Oregon, 2009, pp. 1-5.

[13] C. Yong, S. Byna, S. Xian-He, R. Thakur, and W. Gropp, "Hiding
I/O Latency with Pre-Execution Prefetching for Parallel
Applications," in High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008. International Conference
for, 2008, pp. 1-10.

[14] S. Byna, C. Yong, S. Xian-He, R. Thakur, and W. Gropp, "Parallel
I/O Prefetching Using Mpi File Caching and I/O Signatures," in
Proceedings of the International Conference forHigh Performance
Computing, Networking, Storage and Analysis (SC2008) 2008, pp.
1-12.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach: Morgan Kaufmann Pub, 4th edition, 2011.

[16] D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt, D.
Gawlick, H. Garcia-Molina, B. Good, and J. Gray, "A Measure of
Transaction Processing Power," Datamation, vol. 31, pp. 112-118,
1985.

[17] J. S. Vetter and A. Yoo, "An Empirical Performance Evaluation of
Scalable Scientific Applications," in Proceedings of the 2002
ACM/IEEE conference on Supercomputing, 2002, pp. 1-18.

[18] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, "A Cost-Intelligent
Application-Specific Data Layout Scheme for Parallel File
Systems," in Proceedings of the 20th international symposium on
High performance distributed computing, San Jose, California,
USA, 2011, pp. 37-48.

[19] X.-H. Sun and D. Wang, "Apc: A Performance Metric for Memory
Systems," ACM SIGMETRICS Performance Evaluation Review,
vol. 40, 2012.

[20] J. Doweck, "Inside Intel Core Microarchitecture and Smart
Memory Access,"
http://www.iuma.ulpgc.es/~nunez/procesadoresILP/Intel64-Core-
smartmemoryaccess-sma.pdf, Intel White Paper, 2011.

[21] S. Andersson, R. Bell, J. Hague, H. Holthoff, P. Mayes, J. Nakano,
D. Shieh, and J. Tuccillo, "Rs/6000 Scientific and Technical
Computing: Power3 Introduction and Tuning Guide,"
http://www.redbooks.ibm.com/redbooks/pdfs/sg245155.pdf, April
2011.

[22] "Performance Application Programming Interface,"
http://icl.cs.utk.edu/papi/, 2012.

[23] Iozone Filesystem Benchmark. Available: http://www.iozone.org/
[24] A. Ching, A. Choudhary, L. Wei-keng, L. Ward, and N. Pundit,

"Evaluating I/O Characteristics and Methods for Storing Structured
Scientific Data," in Proceedings of the 20th International Parallel
and Distributed Processing Symposium, 2006.

[25] Interleaved or random (IOR) benchmarks, 2012.
http://sourceforge.net/projects/ior-sio.

1962

