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Abstract—It is known that I/O system rather than CPU and 
memory is the performance killer of many of the newly 
emerged data intensive applications. Evaluating and 
understanding I/O system performance has become a timely 
issue facing the high performance computing community. 
Conventional I/O performance metrics, such as 
Input/Output Operations Per Second (IOPS), bandwidth, 
response time, etc., are effective for traditional I/O 
environments. However, as I/O systems become more and 
more complex, existing I/O metrics become less and less able 
to catch the characteristic of I/O systems performance. In 
this study, we reveal the limitations of existing metrics, and 
introduce a novel I/O metric, Blocks Per Second (BPS), to 
measure the performance of the I/O systems. A unique merit 
of BPS is that it provides an overall I/O system performance, 
not the file system performance or disk performance. This is 
very important; since with concurrency and optimization at 
the I/O stacks, file system performance and disk 
performance no long represent the data access performance. 
In fact, they are often misleading. A methodology is designed 
to measure BPS, and experiments are conducted with 
various I/O access patterns and storage configurations. 
Experimental results show that BPS is significantly more 
appropriate than existing metrics in I/O performance 
evaluation. 

Keywords-I/O performance evaluation, I/O metrics, 
parallel I/O system 

I.  INTRODUCTION 
During the last two decades, the advance of VLSI 

technology has made a dramatically improvement in CPU 
and memory performance. However, I/O performance has 
not gained as much improvement as have CPU and 
memory. For example, in modern computers [1], the CPU 
cycles are in the range of several nanoseconds or even less 
and memory access latency ranges from tens to hundreds 
of nanoseconds; I/O latency of an ordinary disk is still up 
to several milliseconds, which is three orders of magnitude 
larger than CPU cycles. As a result, for many data 
intensive applications in the high performance computing 
(HPC) community, I/O rather than CPU and memory is the 
performance bottleneck. Furthermore, the performance 
gap between the I/O system and the rest of the computer 
system is widening rapidly, hence I/O systems are 
becoming the dominant performance factors for data 
intensive applications. 

Because I/O systems are the performance bottleneck, 
evaluating and measuring I/O systems has become an 

important issue facing HPC community. Existing I/O 
metrics, such as Input/Output Operations Per Second 
(IOPS), bandwidth, response time, etc., are designed for 
traditional storage systems or devices. However, current 
I/O systems are rapidly evolving and become more and 
more complex. On the one hand, they include multiple 
layers in the I/O stacks, such as I/O middleware, file 
system, and the underlying storage system. On the other 
hand, I/O systems often adopt multiple optimization 
techniques to improve efficiency, such as application 
optimizations, I/O middleware optimizations, and storage 
layer optimizations. This complexity often is in terms of 
concurrency or utilization of concurrency. While 
conventional I/O metrics are effective for traditional I/O 
environments, they are not designed to handle the more 
and more sophisticated I/O systems, and become less and 
less able to catch the characteristic of current I/O system’s 
overall performance. In general, single component’s 
improvement does not necessarily lead to an improvement 
in terms of overall computer performance or overall I/O 
performance. In fact, they are often misleading. For 
example, a higher bandwidth value for file systems or 
storage systems does not necessarily means a better overall 
I/O performance. Like shown in Section IV.C.2, when 
IOPS increases, the application execution time may 
increase. In another example in Section IV.C.3, with 
parallel I/O optimization applied, average response time 
also shows misleading information on application 
execution time.  

There are two major reasons that existing I/O metrics 
cannot directly characterize the overall I/O systems 
performance. First, most I/O operations in modern I/O 
systems are performed in parallel. Multiprocessing and 
multithreading techniques [2, 3] increase the parallelism of 
CPU execution and the I/O accesses. Parallel file systems, 
such as Lustre [4], GPFS [5], PVFS [6], and PanFS [7], 
allow multiple I/O servers to service I/O requests 
concurrently. These techniques make the relationship 
between I/O access and computer performance more 
complicated. A single I/O access performance is no longer 
able to represent the overall I/O system performance. In 
these cases, evaluating I/O systems from a single access or 
on a single component does not reflect the complexity of 
modern I/O systems. A more appropriate I/O metric 
should consider all the I/O concurrency to measure the 
overall performance of an I/O system.  

Second, because of the utilization of advanced I/O 
optimizations, the amount of data required by applications 
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may be largely different with the amount of data actually 
moved through the I/O system. For instance, data sieving 
[8, 9], a widely used optimization for small, noncontiguous 
I/O accesses [10-12], will access some extra data regions 
(holes) required by the applications. Data prefetching [13, 
14] may also prefetch data more than required. However, 
an additional data movement may not always be useful for 
the data access performance as seen by applications. Thus, 
the influence of the improvement of one particular 
component becomes increasingly tangled and elusive. In 
general, I/O metrics which only reveal the I/O 
performance of particular component are not suitable to 
reflect the overall I/O performance in modern computing 
systems. 

In summary, we need a new I/O metric to measure the 
performance of modern I/O systems. To reach this goal, 
the new I/O metric—Blocks Per Second (BPS) metric is 
proposed in this study. A unique merit of BPS is that it 
provides an overall I/O system performance, not the file 
system performance or storage device performance. 
Component-width performance evaluation certainly has its 
usefulness, but with the preeminence increase of I/O 
systems, measurement and understanding of the overall 
I/O system performance is in high demand and is timely 
important in assisting I/O performance optimization. 

The introduction of BPS is threefold. First, this study 
introduces the definition of BPS; then it presents the 
measurement methods of determining the number of 
blocks and the time of I/O accesses; finally, numerous 
experiments are conducted to confirm that BPS is 
significantly more appropriate than the existing I/O 
performance metrics. The statistical variable correlation 
coefficient is used to evaluate the effectiveness and 
accuracy of the metrics. BPS has a 0.91 correlation 
coefficient value with the overall system performance, 
whereas conventional metrics only have good or 
acceptable correlation in certain cases. 

The rest of this paper is organized as follows. We 
discuss the advantages and disadvantages of the existing 
I/O metrics in Section II. Section III gives the definition of 
BPS and presents the measurement methodology. Section 
IV evaluates BPS by a series of experiments. Finally, we 
conclude the paper in Section V. 

II. EXISTING I/O METRICS 
As the same as the performance measurement of CPU 

and memory system, I/O system’s evaluation also involves 
several different metrics. We present an overview of these 
metrics in this section.  

One of the most commonly used I/O performance 
metrics is throughput. Throughput describes the rate at 
which the I/O system transfers data, and is usually 
measured in two ways: I/O rate and data rate.  I/O rate is 
denoted by Input/Output Operations Per Second (IOPS) 
and data rate is denoted by bandwidth [15]. For a given 
period, IOPS indicates the number of I/O accesses per 
second, and bandwidth indicates the amount of data 
accessed per second. These two metrics are used to 
evaluate the performance of traditional storage systems or 

storage devices. IOPS is usually used for approximate 
performance evaluation in cases where the size of each 
request is small, such as online transaction processing [16]. 
Bandwidth is generally used for applications where the 
size of each request is large [17, 18]. 

While IOPS works well to evaluate I/O performance 
for fixed-size I/O requests, it is not practical asking all 
general HPC applications to issue I/O requests with the 
same size in real systems. If IOPS is used to evaluate 
performance in I/O systems where a lot of varied-size I/O 
requests exist, it may fail badly in correctness. For 
example, Figure 1(a) describes two I/O access cases where 
two requests R1 and R2 are served by an I/O system. In 
the left case, R1 and R2 are served with a small size of S 
and an I/O time of T1 and T2. In the right case, the two 
requests are served together with a large size of 2S, and a 
less I/O time of T1. Assuming T1=T2=T, according to the 
definition of IOPS, the left case has a value of 
(2)/(2T)=1/T, just as the same as that of the right one. 
However, in terms of overall computer performance or 
overall I/O performance as seen by the application, the 
right case performs better than the left one, because of the 
shorter execution time or I/O time. The mismatch between 
IOPS and the overall I/O performance shows that it is 
inefficient to evaluate performance in general HPC 
applications. In contrast, our BPS can measure the I/O 
performance accurately for variably-sized I/O requests. 

Bandwidth is a metric similar to BPS. It uses the 
amount of data moved into file systems or storage systems 
to evaluate the I/O performance. The main difference is 
that bandwidth measures the performance of the 
underlying file systems but BPS measures the performance 
of the I/O systems. The argument of BPS is that many 
optimizations/managements are conducted in I/O stacks, 
before sending the requests through the network. I/O 
systems performance is no long equal to the file system 
performance in modern computer systems. For example, in 
the two I/O access cases in Figure 1(b), though bandwidth 
in the right part is higher than that of the left one, their 
overall I/O access time is the same from an application 
point of view, which means the overall performance 
remains the same for their data accesses. It shows that 
bandwidth is not a good metric to evaluate I/O systems of 
HPC. By measuring the I/O performance using data 
required by application, BPS is proved a good 
performance metrics.  

Another performance metric for I/O systems is 
response time (or latency). Response time measures how 
long it takes a system to finish an I/O operation. As the 
response time of each I/O request in the I/O systems may 
be different with one another, average response time 
(ARPT), which is the arithmetic mean of all the I/O 
request response times, is often used to measure the I/O 
performance. Figure 1(c) demonstrates two I/O access 
cases with sequential and concurrent I/O requests 
respectively. These two cases have the same APRT value 
T, but obviously the concurrent I/O access case has higher 
overall I/O performance.  As ARRT does not consider the 
I/O access concurrency, it is also not suitable to measure 
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the performance of the overall I/O systems. Contrastively, 
BPS evaluates the performance of I/O systems using the 
overlapped I/O time, and thus is effective for both 
sequential and concurrent requests. 

Besides the above three widely used I/O metrics, there 
are other performance metrics for some special storage 
device. With rotating drives, the seek time measures the 
time it takes the disk head assembly on the actuator arm to 
travel to the track of the disk where the data will be read or 
written. In addition, rotational latency is the delay waiting 
for the rotation of the disk to bring the required disk sector 
under the read-write head. It depends on the rotational 
speed of a disk (or spindle motor), measured in revolutions 
per minute (RPM). For most magnetic media-based drives, 
the average rotational latency is based on the empirical 
relation that the average latency is half of the rotational 
period. 

In summary, existing I/O performance metrics, such as 
IOPS, bandwidth, and response time, are inadequate to 
evaluate the overall performance of modern I/O systems. 
In other words, with concurrency and optimization at the 
I/O stacks, a better value in one of  existing I/O metrics 
may not mean a better performance of the overall I/O 
system. Recently, Sun and Wang have proposed a new 
memory performance metric—Access Per Cycle (APC) to 
measure memory system [19]. APC separates memory 
system performance from overall computer performance 
but in the meantime correlates with overall computer 
performance. Considering the different characteristics 
between memory system and I/O system, and inspired by 
the thought of APC, we propose the new metric of BPS to 
measure the overall I/O system performance. 

III. BPS DEFINITION AND MEASUREMENT 
In this section, we describe the formal definition of 

BPS, and give the method of calculating the number of 
blocks and the time of I/O accesses used in the BPS 
equation in a real I/O system. 

A. BPS Definition 
BPS is proposed to evaluate the performance of overall 

I/O system and is measured as the number of I/O blocks 
per second. We use the term “block” because I/O systems 
usually read/write data from/to a block device. 
Definitively, BPS is the number of I/O blocks (e.g., 
512bytes) required from application divided by the time of 
I/O accesses. We use the amount of data required by 
applications to reveal the overall I/O system performance 
rather than a component performance. Letting B denote the 
number of I/O blocks (Read/Write), and T denote the total 
time consumed by these accesses, BPS is defined as 
equation (1).  

 

��� =
�
�

 (1) 

 
The definition is simple. However, because modern 

CPU and I/O systems use a large number of advanced 
techniques to improve application performance, several 
I/O accesses may co-exist in the system at the same time. 
Measuring time T is not as simple as it may seem.  

 
� T should only include the time when I/O operation 

is performing, which means the inactive time is 
not included in T when there are no I/O accesses 
in the system during an observed time period.  

� In addition, T should be measured based on the 
overlapping mode. That is to say, for several 
concurrent I/O accesses overlapped together, T is 
the wall time of the overlapping I/O time. 

 
Figure 2 gives an example of how to measure T for 

four concurrent I/O requests (R1, R2, R3, and R4) in an 
I/O system. Among them, R1, R2, and R3 overlap with 
each other partially. Instead of using (T1+T2+T3), we use 
∆t1 as T—the total time of I/O access in equation (1) for 
the first three requests. For R4, T is equal to ∆t2 (or T4). 
The idle I/O period between t6 and t7 is not included. In 
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(a)Different I/O sizes (b)Different actual amounts 
of data movement (c)Different I/O concurrency

Figure 1. Two I/O requests R1 and R2 are served by an I/O system in 6 different cases. In each case, each request is represented by a rectangle, of which the 
length means the I/O completion time and the height means the I/O request size.  Each subfigure presents two I/O access cases for comparison. 
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this scenario, the overall T for these four requests is equal 
to ∆t1+ ∆t2.  

For the other parameter B in equation (1), all the I/O 
blocks issued from the application are counted, including 
all successful accesses, non-successful ones, and all 
concurrent ones. For example, in terms of the requests in 
Figure 2, B will be the sum of all the I/O blocks of R1 to 
R4, which is equal to the total amount of data of these 
requests divided by the block unit size.  
 

time

R1

R2

R3

T1

T2

T4

0

T3

R4

t1 t2 t3 t4 t5 t6 t7 t8

Δt1 Δt2

 BPS:     T =Δt1  +   Δt2  
Figure 2. Measurement of time T in BPS equation 

 

B. BPS Measurement Methodology 
Monitoring computer performance is a long-standing 

topic of concern. In order to measure the CPU 
performance, modern computer cores, such as Intel Core 
[20] and IBM POWER3 [21], have provided a number of 
hardware performance counters to describe the detailed 
information of the internal hardware components. Some 
high-level programming interface for accessing hardware 
performance counters from application, such as PAPI [22], 
is available today. However, in terms of I/O performance, 
there are no hardware counter supports in existing 
computer cores. As a result, we measure BPS with a 
software approach. 

Calculating I/O access time in a real environment is 
indirect for two reasons. First, I/O access does not occur in 
every clock cycle. Secondly, many different I/O accesses 
can overlap with each other. Ideally, the I/O access time 
should be counted only once in the total I/O access time 
even if there are several different I/O accesses occurring at 
the same time as shown in Figure 2. 

In this study we measure BPS via the following steps. 
Step 1: Recording I/O access information of each 

process 
We use one record to capture the information of each 

I/O access of a process. Each record includes process ID, 
I/O size (blocks), I/O start time, and I/O end time. Multiple 
I/O accesses of a process lead to multiple records. We get 
this information in the I/O middleware layer for MPI-IO 
applications, or I/O function libraries for ordinary POSIX 
interface applications, to avoid the modification of 
applications. After the execution of the application, the 
detailed information related to each I/O access is obtained. 

If the application has multiple processes, the information 
of each process is recorded. If the I/O system services 
more than one application concurrently, we record the I/O 
access information of all the applications.  

Step 2: Gathering the information of all processes into 
a global collection 

We collect the I/O access information of all processes 
to have a comprehensive knowledge of the performance of 
the overall I/O system. First, we accumulate the number of 
I/O blocks of each process into B—to get the total number 
of I/O blocks in BPS definition. Second, we gather the I/O 
time information of all processes into one time collection 
(col_time) to prepare for the total I/O time in BPS 
definition. The time information collection contains the 
value pairs of beginning and ending time of all I/O 
accesses.  

Step 3: Calculating the overlapped I/O access time 
 

Input: I/O access time collection (col_time)
Output: Overlapped I/O access time (T)

/* sort all records in col_time according to the start time of each 
record */
sort()

tempRecord =first Record of col_time
while col_time has next do

if tempRecord.endtime < nextRecord.starttime then
  T =tempRecord.endtime-tempRecord.starttime
endif
else

nextRecord.starttime =tempRecord.starttime
if nextRecord.endtime <tempRecord.endtime

nextRecord.endtime = tempRecord.endtime
endif

endelse
 tempRecord=nextRecord
endwhile
T =tempRecord.endtime - tempRecord.starttime

 
Figure 3. BPS time calculating algorithm 

 
Figure 3 gives the algorithm to calculate the I/O access 

time. It takes the record sequence col_time as input, and 
then gives an output of the total I/O access time. The 
algorithm is straightforward. It includes two parts. One is a 
sort function, which orders the records according to the 
start time of each record. This part is very similar to an 
ordinary fast sort function, and it is used to speed up the 
process of I/O time calculating. The other is actual time 
calculating, which produces the final total I/O time in BPS 
definition through a step-by-step record comparison.  

After these three steps, we can get the BPS value with 
equation (1). 
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C. Overhead Analysis 
Because our BPS measurement is based on a software 

approach, it does not need extra hardware to evaluate the 
I/O performance. However, there are two overheads need 
to be considered in our measurement. 

One is the space overhead in recording the I/O access 
information. In our method, the number of record is 
proportional to the number of I/O requests. All these 
records can be located on available media, such as 
memory or disk space, according to a configuration file 
defined by users. As the size of each record is 32 bytes, 
even for 65535 I/O operations, all the records need about 3 
megabytes, which is ignorable in modern computer 
system.   

The other is the time cost in calculating the overlapped 
I/O time. The complexity of the algorithm is O(nlog2n), 
where n is the number of records. Since this calculation 
can be overlapped with data accesses, the computing 
overhead of this algorithm is very affordable for modern 
CPUs. Please notice, while I/O performance has received 
more and more attention in recent years, hardware counter 
for I/O performance is expected to be available in the near 
future. Therefore, the correctness and effectiveness of BPS 
is the focus of this study, not its overhead. 

IV. EXPERIMENTAL EVALUATION 
This section first introduces the mathematical concept 

of correlation coefficient. With correlation coefficient as 
the proximity measurement, a series of experiments are 
conducted with different I/O access cases to confirm our 
BPS is a better metric than the existing ones. 

A. Correlation Coefficient 
The motivation of I/O evaluation is due to the fact that 

the final overall computer performance is heavily 
influenced by I/O system performance for data-intensive 
applications. Therefore, an appropriate I/O metric should 
correlate the system performance. The mathematical 
statistic variable correlation coefficient (CC) is used in this 
study to determine which I/O metric most closely trends 
with the overall computer performance variation. 
Correlation coefficient describes the proximity between 
two variables' changing trends from a statistics viewpoint. 
It measures how well two variables match with each other. 
Please notice, correlation does not mean proportional. For 
instance, car’s sale correlates with the quality of the car. 
But, the quality and sale are two totally different concepts 
and there is not direct measurement comparison. 

 Given two variables X and Y, CC can be calculated as 
equation (2). CC has a value range from -1 to 1. Two 
points about the correlation between X and Y can be 
derived from the CC value. (1) Correlation direction. A 
positive CC value means positive correlation, which 
means if X increases, Y also increases. Otherwise, it is a 
negative correlation direction between the two. (2) 
Correlation strength. The higher the absolute CC value is, 
the stronger relation the two variables would have. If it is 1 
or -1, the two variables' trends are perfectly matched to 

each other; if it is zero, there is no correlation between the 
two variables. 

 

CC =
∑�� − �	 �
 − 
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 − 
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(2) 

 
We use CC to reflect the relationship between the 

overall computer performance and I/O system 
performance. For a given application, we use the 
application execution time to denote the overall computer 
performance, and different I/O metrics to denote I/O 
system performance. Table 1 lists the expected correlation 
directions (shown by CC value) when different metrics are 
used. We take the I/O metric as the most appropriate one if 
its variety trend has the closest match with that of the 
overall performance variation. Obviously, this closest 
match means a stable correlation direction and strongest 
correlation strength in different I/O access cases. 
 

Table 1. Expected correlation directions of each I/O metric 
I/O metrics CC value 

IOPS negative 
Bandwidth negative 
Average response time positive 
BPS negative 

 

B. Experiment Settings 
The experiments were conducted on a 65-node SUN 

Fire Linux cluster, in which there are 64 computing nodes 
and one head node. Each computing node has two Quad-
Core AMD Opteron(tm) processors, 8GB memory and a 
250GB 7200RPM SATA-II disk (HDD). All nodes are 
equipped with Gigabit Ethernet interconnection, and 17 
nodes are equipped with an additional PCI-E X4 100GB 
SSD. The operating system is Ubuntu 9.04, Linux kernel 
2.6.28.10. The parallel file system is PVFS2 version 2.8.1.  

We conducted 4 sets of experiments to confirm that 
BPS is better than traditional I/O metrics. Table 2 lists the 
detailed I/O access cases in our experiments.  

 
Table 2. I/O acess cases 

Experiments Descriptions 
Set1 various storage device 
Set2 various I/O request size 
Set3 various I/O concurrency 
Set4 various additional data movement 

 
We conducted the evaluation with three popular I/O 

benchmark tools, IOzone, IOR, and Hpio. 
IOzone is a file system benchmark used to a broad I/O 

performance analysis with a number of I/O access patterns 
on different platforms [23]. It supports a bunch of file 
operations, such as read, write, re-read, re-write, and read 
backwards, small/large file sizes, small/large record sizes, 
and single/multiple process I/O tests. We use IOzone to 
produce the I/O access cases of set 1 to 3 in Table 2. 
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IOR is a program in the ASCI Purple Benchmark Suite 
developed at Lawrence Livermore National Laboratory 
[25], it is a software used to test random and sequential I/O 
performance of parallel file systems. We use IOR to 
produce the concurrent I/O access cases in Table 2. 

Hpio is a program designed by Northwestern 
University and Sandia National Laboratories to evaluate 
noncontiguous I/O performance for MPI-IO [24]. This 
benchmark program can generate various data access 
patterns by changing three parameters: region count, 
region spacing, and region size. In our experiment, we use 
Hpio to simulate the I/O access cases of set 4 in Table 2. 
Specially, we fix region count and region size, and vary 
region spacing from 8 bytes to 4096 bytes. When data 
sieving optimization is used, each process will access 
additional data required by the application. 

In order to ensure that all data were accessed from 
storage devices, the system caches of all computing nodes 
and I/O servers were flushed prior to each run. We ran 
each set of experiments 5 times, and the average was used 
as the results. In addition, in order to show a clear 
comparison we normalized the CC values in the following 
way: If the value for each I/O metric showed a consistent 
correlation direction with the expected one listed in Table 
1, we recorded it with a positive value; otherwise, we 
recorded it with a negative value. This applied to all the 
results related with CC values in this paper. 
 

C. Experiment Results 
1) Results of various storage devices 

 

  
Figure 4.  The normalized CC values of IOPS, bandwidth (BW), average 
response time (ARPT), and BPS. 

 
We first watched the performance of IOPS, BW, 

ARPT, and BPS when the storage devices are changed, in 
number and in media. We ran IOzone in single process 
mode to read a 64GB file sequentially in different storage 
device configurations. In this case, the data was accessed 
through local file systems mounted on HDD, SSD, and a 
PVFS2 file system. In order to simulate different storage 
performance, here the PVFS2 was also built on different 
storage nodes, from 1 I/O server to 8 I/O servers, 

respectively. When all runs were finished, we correlated 
the values of IOPS, BW, ARPT, and BPS against the 
values of application execution time to calculate the final 
CC values. 

Figure 4 reports the normalized results between each 
I/O metric and application execution time.  All of the four 
metrics perform well, because not only they have right 
correlation directions, but also they have strong correlation 
strengths, with an absolute average value nearly 0.93. This 
strong correlation means that all of the traditional IOPS, 
BW, ARPT, and our BPS, work well for traditional storage 
device improvement. 

 
2) Results of various I/O sizes 

 

  
Figure 5. The normalized CC values of IOPS, bandwidth (BW), average 
response time (ARPT), and BPS in HDD environment 

 
Figure 6. The normalized CC values of IOPS, bandwidth (BW), average 
response time (ARPT), and BPS in SDD environment. 

 
For different I/O size testing, we ran IOzone to read a 

16GB file from the local file system with the record size 
from 4KB to 8MB. When each run is finished, we 
collected IOPS, BW, ARPT, BPS, and application 
execution time. After all the runs were finished, we got the 
final CC values. We conducted the experiments with two 
storage configurations: one uses a slow HDD device; and 
the other a faster SSD device. 

Figure 5 and Figure 6 show the normalized CC values 
in HDD and SSD environment respectively. The first 
observation is that both BW and BPS have correct 
correlation directions, but it is not true for IOPS and ARPT. 
The second observation is that both BW and BPS have 
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stronger correlation strengths, with average CC values 
nearly 0.90. These strong relations also reflect the fact that 
the overall system performance of I/O intensive 
applications largely depends on the I/O performance.  

The reverse correlation direction of IOPS means that if 
IOPS increases, the overall computer performance may 
decrease, just as we mentioned in Section I. IOPS may be 
misleading because of the ignorance of I/O sizes. Given 
the same fixed I/O sizes, the larger the IOPS shows the 
higher the I/O performance. Otherwise, the conclusion is 
uncertain. Figure 7 gives the detailed results about IOPS 
and application execution time in the HDD environment 
when the I/O size is varied from 4KB to 8MB. When I/O 
size is 4KB, the IOPS is 5156.39 and the application 
execution time is 809.6 seconds; when I/O size is 64KB, 
the IOPS is 732.3 and the application execution time is 
358.1 seconds. Obviously, the IOPS is largely decreased, 
but the overall computer performance is largely increased. 
This example shows that IOPS is ill-suited to evaluate I/O 
performance.  

 

 
Figure 7. IOPS and application execution time with various I/O sizes in 
HDD environment. 

 
Figure 8. ARPT and application execution time with various I/O sizes in 
SSD environment. 

 
Similar to IOPS, ARPT may be also confusing. Figure 

8 shows the results of ARPT and application execution 
time when the I/O size was varied from 4KB to 8MB in 
the SSD environment. When I/O size is changed from 
4KB to 4MB, ARPT is increased from 0.00014 to 0.02235 
second, meaning a decreased I/O performance. However, 

the overall computer performance is largely increased 
because the I/O operations are performed with larger I/O 
sizes. From this example, we can see that ARPT has some 
limits to reveal the relation between the I/O performance 
and the overall computer performance accurately. 

Using our car sale example, CC pointing to a wrong 
direction means improving the quality of car will reduce 
car sale. That is terribly wrong. The only explanation is 
that the measurement of quality has some problem. IOPS 
and ARPT are designed for a specific group of 
applications that issue fixed-size I/O requests. They are not 
feasible to be used to evaluate general HPC I/O systems.  

 
3) Results of various I/O concurrency 

 
In these experiments, we evaluated the performance of 

BPS in two kinds of environments where concurrent I/O 
requests exist.  

We first ran IOzone in its throughput test mode to 
simulate a relative “pure” concurrent I/O environment, 
where the disk contention — a side effect led by I/O 
concurrency would be avoided.  To this end, each process 
of IOzone accessed its own PVFS2 file, and each file is 
hosted on an individual I/O server.  We limited each file to 
locate on one I/O server by setting the file stripe layout 
attributes when it was created. There were eight I/O 
servers in our experiments; the file system was accessed 
through the POSIX interface, and the total data amount of 
file accesses is 32GB.  

 

 
 
Figure 9. The normalized CC values of IOPS, bandwidth (BW), average 
response time (ARPT), and BPS. 

 
Figure 9 demonstrates the results of each I/O metric 

when the number of processes was varied from 1 to 8. 
Among the four metrics, IOPS, BW, and BPS perform 
well. They not only show right correlation directions, but 
also have strong correlation strengths, with an absolute 
average value nearly 0.96. For ARPT, it has a wrong 
correlation direction, with a lower CC value nearly 0.58. 
The incorrect correlation direction shows that ARPT is not 
a good metric for I/O performance evaluation in this 
situation. When there are many I/O requests in the system, 
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the average response time is not able to determine the wall 
time of all these requests. So only considering the average 
response time is not appropriate to evaluate the overall 
computer performance. Figure 10 demonstrates the values 
of ARPT and application execution time when the I/O 
concurrency was changed. From the detailed results, we 
can observe that compared with the variation of 
application execution time, ARPT has a smaller variation, 
so it is not able to reflect the overall computer 
performance accurately.  However, as seen from Figure 4, 
if I/O requests arrive at the I/O systems sequentially, 
APRT works as well as BPS. 

 

 
Figure 10. ARPT and application execution time with various I/O 
concurrency. 

 
Secondly, we evaluated each metric’s behavior in the  

I/O environment of general HPC systems. We ran IOR 
with the MPI-IO interface to access a shared PVFS2 file, 
which is striped across the underlying 8 I/O servers with a 
default stripe layout. Each of n MPI processes is 
responsible for reading its own 1/n of a 32 GB file. Each 
process continuously issues requests of fixed transfer size 
(64KB) with sequential offsets. 

 
Figure 11. The normalized CC values of IOPS, bandwidth (BW), 
average response time (ARPT), and BPS. 

 
Figure 11 demonstrates the results of each I/O metric 

when the number of process was varied from 1 to 32. We 
observed that in a real I/O environment, though IOPS, BW, 
and BPS perform a little worse than do they in a perfect 
environment, they still have good performance, with an 
absolute average value nearly 0.91. As expected, ARPT 

still has a poor performance, with a wrong correlation 
direction and a lower CC value nearly 0.39. 
 

4) Results of various additional data movement 
 
We compared BPS with the existing I/O metrics when 

additional data movement was existed in I/O system. We 
ran Hpio to simulate these I/O access cases. We tested the 
noncontiguous file read operation on PVFS2 file system 
configured with 4 I/O servers. Data sieving was enabled, 
so that I/O middleware (MPI-IO library) would read a 
bunch of additional file holes located between the adjacent 
file regions. The region count was set to 4096000, and the 
region size was set to 256 bytes. We varied the region 
spacing from 8 bytes to 4096 bytes to produce various 
additional data movement. 
 

 
Figure 12. The normalized CC values of IOPS, bandwidth (BW), 
average response time (ARPT), and BPS. 

 
Figure 12 gives the results of each metrics. We 

observed that IOPS, ARPT, and BPS have correct 
correlation directions with application execution times as 
we expect. At the same time, they have strong correlation 
strengths, with the absolute value of CC nearly 0.92. 
However, BW has a wrong correlation direction, which 
will mislead people. This result shows that BW is not a 
good I/O performance metric when additional data 
movement exists in I/O system. In other word, it cannot 
catch the I/O stack optimizations. In this case, file system 
performance does not represent I/O system performance. 
Using file system performance to represent I/O system 
performance is incorrect. 

 
5) Summary of experiment results 

 
Through the above experiments and analyses, via 

different I/O access scenarios, we have demonstrated that 
BPS is the only metric that works well for all the scenarios. 
BPS correctly correlates with the overall computer 
performance in all the tests, and achieves high CC values. 
In contrast, other I/O system metrics cannot accurately 
reflect the system performance, and all mislead in some 
testing scenario. 
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V. CONCLUSIONS 
I/O is the identified performance bottleneck for many data 
intensive applications. Evaluating and understanding I/O 
system performance is a critical issue facing the HPC 
community. Existing I/O metrics work well for traditional 
I/O systems, but have some inherent flaws in catching the 
complexity of modern parallel I/O systems. In order to 
improve I/O performance, modern I/O systems have 
adapted various advanced optimization techniques in 
applications, I/O middleware, and storage systems and 
devices. Faced with these complicated I/O systems where 
concurrency and optimization at lower storage device level 
and higher I/O stack level, traditional I/O metrics are no 
longer effective.  

In this paper, we propose a new I/O metric called BPS, 
describe its measurement methodology, and demonstrate 
its unique ability to measure the overall performance of 
modern I/O systems. Intensive experiments were 
conducted to verify the potential of BPS and to compare it 
with existing I/O performance metrics. Experimental 
results show that BPS is a significantly more effective I/O 
metric than other existing ones on reflecting the overall 
performance of I/O systems.  

In the near future, we will conduct more performance 
measurements using BPS. We will make BPS an easy-to-
use toolkit and release it to the public. With the better 
understanding of I/O system performance, we will adopt 
and evaluate different I/O optimization mechanisms and 
their combinations in terms of overall I/O system 
performance.  
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