
A Migratory Heterogeneity-Aware Data Layout
Scheme for Parallel File Systems

Shuibing He∗, Xian-He Sun†, Yang Wang§, and Chengzhong Xu§
∗School of Computer Science, Wuhan University, Wuhan, Hubei 430072, China

†Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA
§Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China

heshuibing@whu.edu.cn, sun@iit.edu, {yang.wang1, cz.xu}@siat.ac.cn

Abstract—Parallel file systems (PFSs) are widely deployed to
speed up the performance of high-performance computing (HPC)
applications. In recent years, hybrid PFSs that consist of HDD-
SSD servers, have attracted much attention in HPC community.
However, existing data layout schemes do not well consider
the characteristics of heterogeneous servers and heterogeneous
access patterns, thus may experience considerable inefficiencies.
In this study, we propose MHA, a migratory heterogeneity-aware
data layout scheme to improve the data distribution of hybrid
PFS. More specifically, to accommodate heterogeneous access
patterns, MHA first migrates file data into several regions, each
with similar access patterns. Then, by leveraging a data access
cost model, MHA determines the appropriate stripe sizes on
heterogeneous servers to get the best performance on each region.
We have implemented MHA under MPI-IO library on top of
OrangeFS file system. Experimental results show that MHA can
significantly improve the hybrid PFS I/O system performance
compared to existing data layout schemes.

Index Terms—Parallel I/O System; Parallel File System; Solid
State Drive; Data Layout

I. INTRODUCTION

Scientific applications are getting increasingly data-

intensive. This makes I/O the major performance bottleneck

of many high-performance computing (HPC) applications. To

address this I/O bottleneck issue, parallel file systems (PFS),

such as OrangeFS [1], Lustre [2], and GPFS [3], are widely

deployed in HPC centers. By utilizing the parallelism of

multiple storage servers, PFSs can greatly improve the system

I/O bandwidth and storage capacity. Although PFSs deliver

decent peak I/O performance, they still fail to perform well

for certain common-case access patterns in reality [4], [5].

Flash-based solid state drives (SSDs) provide an alternative

solution for I/O system designs. Comparing with traditional

hard disk drives (HDDs), SSDs have an order of magnitude

higher performance, thereby becoming an ideal medium to

build high-performance I/O systems [6]. Nevertheless, because

of the high costs, it might be impractical for SSDs to com-

pletely replace HDDs in large-scale PFSs. Therefore, hybrid

PFS, which consists of both HDD-based servers and SSD-

based servers, has attracted much attention in recent HPC

systems [7], [8]. For the rest of this paper, we refer to the

server equipped with an HDD as HServer and the server with

an SSD as SServer.

Although promising, the efficiency of hybrid PFS is closely

related to its data layout scheme, which defines the way how

a file distributes its data on underlying servers. Typical layout

schemes often distribute file data across multiple servers using

a fixed-size stripe [5], [9]. The benefits of these designs are

even data distribution on servers and decent I/O bandwidth in

certain cases. Although widely used in modern PFSs, these

schemes are only amenable to homogeneous access patterns

and file servers. With the emergence of hybrid PFSs and

heterogeneous access patterns, existing layout schemes suffer

from the following drawbacks.

First, the heterogeneous access patterns may compromise

the efficiencies of parallel I/O systems. Previous studies [10]–

[12] have pointed out that many HPC applications have

heterogeneous patterns. For example, request size can be large

at one file chunk but small at another; request type can be

read operation in one I/O phase but write in another; request

concurrency is high in one file location but low in another.

However, existing schemes adopt a fixed striping method for

the entire file, regardless of the access pattern changes at

different parts of the file. As a specific layout policy is often

efficient for a certain type of access patterns [13], these one-

size-fits-all schemes will entail I/O system inefficiencies for

applications with complicated access patterns.

Second, the heterogeneous servers can also offset I/O perfor-

mance. In hybrid PFS, as SServer is much faster than HServer,

it takes less I/O time to process the same amount of data

than the HServer. Nevertheless, current layout schemes do

not pay much attention to the performance disparity between

heterogeneous servers and still assign fixed-size file stripes to

them. This usually makes each server process the same amount

of data, leading to severe load imbalance among different types

of servers. As we have shown in our previous work [8], the

load difference among HServers and SServers can be 3.5X,

yielding considerable I/O system inefficiencies.

A number of approaches have been proposed to address

these issues in the data layout for parallel I/O systems. These

efforts, for example, include optimizing file stripe size [10],

[14]–[16], refining the number of servers to distribute file

data [13], [17], optimizing the data scope to apply a specific

layout [10], and their combinations [5], [8], [18]. We note that

all these techniques optimize file data layout directly based

on the inherent data access orders in parallel files, without

grouping I/O requests with the same type of patterns. This is

insufficient to address the workload and server heterogeneity

1133

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00122

in hybrid PFS, meaning that the potential of the storage system

is not fully utilized.

In this paper, we propose MHA, a migratory heterogeneity-

aware data layout scheme to optimize the data placement

of hybrid PFS. To accommodate complex access patterns,

MHA first divides file requests into different groups, each

with similar access patterns, and then stores the data of each

group into a separate region. Since a specific data layout is

often efficient for a certain type of access patterns, such data

grouping (reordering) can choose a specific optimized data

layout, which is better to fit the file requests in that reordered

region. Then, by leveraging a proposed data access cost model,

MHA determines the variable stripe sizes on the heterogeneous

servers to achieve the best performance on each region. In

this way, all groups of reordered data are configured with

their individually optimized data layouts, rather than sharing

a global but inefficient layout.

To the best of our knowledge, this is the first attempt to

leverage data reordering and variable file stripes to enhance the

data layout for parallel I/O systems. MHA is designed as an

I/O middleware scheme, thus it is transparent to applications

and requires no changes of applications. Moreover, MHA is

independent of the file system layer, thus can be applied to

many kinds of PFSs, such as OrangeFS and Lustre.

In summary, this study makes the following contributions.

• We propose a data reordering method, which analyzes

file access patterns and migrates file data into different

regions, each with similar access patterns.

• We present a varied-size file striping scheme, which

determines the appropriate stripe sizes on heterogeneous

servers for each region based on their performance.

• We implement the MHA scheme in MPICH2 [19] library

on top of OrangeFS file system. Extensive experimental

results show that MHA can significantly improve the I/O

throughput of hybrid PFSs.

In practice, MHA is not necessary to apply to the entire file

system, but rather to critical data sets and data sections. It is

an effective tool for I/O performance optimization.

The remainder of this paper is organized as follows. Sec-

tion II presents the background and motivation of this work.

The design and implementation of MHA are described in

Section III and Section IV, respectively. Section V presents

the extensive evaluation of MHA. Section VI surveys related

work. Finally, the conclusions are summarized in Section VII.

II. BACKGROUND AND MOTIVATION

A. Existing File Striping Schemes

Typical layout schemes often distribute file data across

different servers using a fixed-size stripe in a round-robin

fashion, as shown in Fig. 1. In this example, a file is placed on

two HServers and two SServers using a fixed-size stripe, e.g.,

64KB. Although this policy leads to even data distribution

and decent I/O performance for homogeneous servers, it is

inefficient for hybrid PFS. For example, assuming that each

process issues requests at a size of 256KB, then a file request

����

����	��
 ����	��

���	��

�

�

� � �

� �

� � � � �
 � �

Fig. 1: Traditional fixed-size file striping scheme.

is divided into four sub-requests, each serviced by one server

at a size of 64KB. Since the SServers have relatively high

speed, they will complete the sub-requests much faster than the

HServers. Consequently, the SServers make no contribution

to the overall system performance because the I/O time of

a file request depends on the slowest sub-requests which are

typically on the HServers.

One solution to dealing with the server heterogeneity is to

distribute data across the servers using varied-size stripes [16].

By assigning the SServers with larger stripe sizes and the

HServers with smaller ones, all the servers can finish their

sub-requests nearly at the same time, thereby alleviating the

load imbalance among the servers. However, this approach is

only suitable for uniform access patterns. As the data access

patterns can be largely heterogeneous, such one-size-fits-all

policy is still inefficient for heterogeneous data accesses. Using

Fig. 1 as an example, a stripe pair of <32KB, 96KB> 1 may

be efficient for a request size of 256KB, but it fails to perform

well for a request size of 16KB in a different location because

of the under-utilized I/O parallelism on the servers.

B. Motivation of MHA

To address the above issues, we have proposed an

heterogeneity-aware region-level (HARL) data layout scheme

for hybrid parallel I/O systems. The term “region” refers to a

logical scope of a file. As shown in Fig. 2, HARL first divides a

file into several small regions, and then adjusts the stripe sizes

on the servers for each region based on the server performance.

More details can be found in our previous work [8]. Although

HARL often helps boost the I/O performance, it only tries

to optimize the data layout for all inherent requests in each

region, instead of an individual request. When the access

pattern of each request differs considerably, it is still hard for

HARL to find an efficient stripe pair for all the requests.

While the heterogeneous access patterns may exist in a

parallel file [10]–[12], we find that similar access patterns may

exist in the heterogeneous accesses from a global file view. To

illustrate this observation, we analyze the I/O trace of LANL

anonymous application [20]. For each loop in the application,

there are three I/O operations, one small request with 16 bytes,

and followed by two large requests with 128K-16 bytes and

1A stripe pair <h, s> means the stripe sizes on the HServers and the
SServers are h and s, respectively.

1134

����

����	��
 ����	��

�� �� ��

���	��

Fig. 2: Heterogeneity-aware region-level data layout scheme.

��
��
���
���
����
�����
���	�
���
��
����
�
�������

�
 � 	 �� �� �� �� �� ��
�

��
��
��
��
��
��
��
��
��
�

���������������

Fig. 3: Data access sequence in a loop of LANL application.

128 KB, respectively. Fig. 3 shows the size of each request in

the access sequence. We can see that the I/O requests with the

same size do not exist in a successive sequence but they exist

in the request sequence across the file. In addition to LANL

application, we can obtain the same observation in two other

applications (LU [21] and Cholesky [22] in Section V).

As a given layout is often efficient for a certain type of

access patterns, we can choose a specific optimized layout

better fitting the requests in a reordered region if we group

the requests with similar patterns (e.g., similar or same request

size) into the region. Since each region is configured with its

own efficient data layout, the overall file system performance

can be largely improved. This motivates us to propose the

MHA layout scheme.

III. DESIGN

In this section, we first introduce the basic idea of MHA,

and then describe its architecture, followed by the details of

each key component in MHA.

A. Idea of MHA

MHA aims to optimize the hybrid PFS layout by leveraging

data reordering. More specifically, to adapt to heterogeneous

access patterns, MHA first migrates file data with similar

access patterns into different regions before making a place-

ment policy, and then determines the appropriate stripe sizes

on the servers based on their performance to accommodate

heterogeneous servers for each region.

Fig. 4 illustrates the idea of MHA scheme. In this example,

there are six requests (A0-2 and B0-2) that access a parallel

file. Requests labeled as Ax or Bx have similar access patterns.

Before determining the optimized data layout, MHA migrates

A0-2 and B0-2, respectively. In other words, it constructs

�� �� ������� �� ��

�� ���� ���� ��

�������

����

���	��

����	��
 ����	��

���

�� ��

��
�

��
�

Fig. 4: Migratory heterogeneity-aware data layout scheme.

two new regions: R0 and R1. Then, for each region, MHA

determines the stripe sizes for the HServers and the SServers

based on the access patterns and the server performance.

For example, the optimized stripe sizes for R0 and R1 are

<h0, s0> and <h1, s1>, respectively. Compared to existing

approaches that directly optimize the file data layout based on

the inherent accesses in the original file, MHA can choose

a specific optimized data layout, which is better to fit the

requests in each reordered region, thus can improve the overall

file system performance.

The proposed scheme needs a prior knowledge of data

access patterns. Fortunately, many HPC applications have

predictable access patterns [17], [23], [24]. This is because

the data accesses of HPC applications are mostly determined

by their inherited numerical methods, not input data. For ex-

ample, the BTIO application [25] that solves block-tridiagonal

matrices has this feature. Once the parameters, such as the

size of array, the number of time steps, etc., are given, the

I/O behaviors of BTIO can be accurately predicted. Because

HPC applications often run multiple times to process different

datasets, this feature facilitates MHA to achieve the optimized

data layout based on I/O trace analysis. Similar approaches

have also been used numerous times in data partition, data

replication, and data prefetching to successfully improve I/O

system performance [17], [23], [26].

B. System Overview

Fig. 5 shows the system overview of MHA scheme. It

resides at the I/O middleware layer. Application processes call

the MPI-IO library to access the file data. MHA profiles the

����������

��� !�� "���

� � � � � �

#�$%$&

����	��
 ����	��

� � � �

#�$

�'' �'' �'' ��' ��'

$(&

�����)���

*+,�!�

'�������+���

$(&

������)���

#��

'+�+��

����-+��.��

'+�+

��+)��

Fig. 5: System Overview of MHA.

1135

APP

Placer/

Redirector

Placement/

Redirection Phase

PFS

Optimized

Layout

I/O

Collector

Tracing Phase

Data

Reorganizer

Cost

Model

Reordering Phase

Layout

Determinator

Determining Phase

APP

PFS

I/O Request

Original

Layout I/O
traces

Reordered

Regions

First run Subsequent runs

Fig. 6: The workflow of MHA scheme.

application on-line during the application’s first run, and makes

data placement optimization off-line based on I/O access

patterns and server performance analysis. Once the optimized

layout policy is obtained, MHA will place file data accordingly

for the subsequent runs of the application, which will greatly

improve the system performance.

MHA follows a five-phase process, as shown in Fig. 6.

The I/O Collector in the tracing phase profiles application’s

I/O accesses. In the reordering phase, the Data Reorganizer
analyzes I/O traces and groups file data into several regions,

each with similar access patterns. In the determination phase,

the Layout Determinator determines the stripe sizes for each

server based on a data access cost model. In the placement
phase, each region is placed on heterogeneous servers with the

optimized stripe sizes by the Placer. Finally, in the redirection
phase, the I/O requests are sent to the proper locations by the

Redirector at runtime in the subsequent runs of the application.

C. I/O Access Collection

Although there are some techniques and tools that can be

used for this purpose, we choose IOSIG [27] to collect I/O

accesses because it can capture the required information of

MHA and yields acceptable overheads. IOSIG is developed

as a pluggable library at MPI-IO layer, which supports MPI-

IO and standard POSIX IO interfaces for portable deployment.

IOSIG profiles all file operations of a parallel application and

records this information in several trace files.

The collected information includes process ID, MPI rank,

file descriptor, request type, file offset, request size, and time

stamp information. To facilitate the following phases during

the layout optimization procedure, file operation records are

sorted in an ascending order in terms of their offsets.

D. Similar Access Detection

A key issue in our design is to identify two requests that

bear similar access patterns. A typical solution is to compare

the features abstracted from each access, where a pair of

similar requests will share many features. While it is possible

to enumerate the closest matches by comparing all features,

we use request size and request concurrency to characterize

each request because they give a good indication of how the

parallel file is accessed, which has been discussed in [13].

In our context, the request concurrency refers to the number

of requests that are simultaneously issued to the file. Each

Algorithm 1 Iterative Request Grouping

1: procedure RG(R[1,i])

2: if (i ≤ k) then
3: for (∀i ∈ [1, k]) do
4: Sgi ← randomly selected R[t]

5: end for
6: else
7: count← 0
8: while (Sgi is changed||count ≤ 3) do
9: Gi ← argmin

|Gj |
{||Ssj − Sgi ||}

10: Sgi ←
1

|Gi|
∑

Ssj
∈Gi

Ssj

11: count++
12: end while
13: end if
14: end procedure

request ri can be represented by a point (xi, yi) in a two-

dimensional Euclidean Space, where its x and y axises

denote respectively the request size and the request concur-

rency. The distance between any pair of points Si(xi, yi) and

Sj(xj , yj) can be expressed as

||Si − Sj || =
√√√√(

xi − xj

max
k
{xk} −min

k
{xk}

)2 + (
yi − yj

max
k
{yk} −min

k
{yk}

)2

(1)

where max
k
{xk/yk} − min

k
{xk/yk} represent the maximal

distance among the points projected to either x axis or y axis.

The normalization is required to enable different dimensions

to have a uniform compared space.

We classify all file requests into k groups, each with similar

access patterns. Inspired by the data clustering approach in

statistics domain [28], we try to find the centers of these groups

with an iterative refinement method as shown in Algorithm 1.

If the number of requests is less than or equal to k, the

algorithm randomly selects a request point as the initial value

of Sgi , which refers to the center of the i-th group. Otherwise,

each request point is assigned to group Gi, whose center

is closest to the request point. After all the request points

have been processed, the algorithm updates the center for

each group. This procedure is repeated until Sgi is no longer

changed or three times at most.

One potential issue is that this algorithm may generate too

many groups, leading to substantial meta-data management

overhead. To overcome this, we limit the value of k to an

upper bound. This tuning can guarantee that the number of

the groups is bounded by the number of the fixed-size region

division method [8]. Another concern is that the computational

overhead of the algorithm increases in proportion to the

number of requests. However, it runs off-line and only runs

once, so the overhead is acceptable in a modern HPC system.

1136

TABLE I: Parameters in the data cost model.

Symbol Meaning
o Offset of the file request
l Size of the file request
op Type of the file request (read or write)
M Number of HServers
N Number of SServers
t Unit data network transfer time
αh Average storage startup time on HServer
βh Unit data transfer time on HServer
αsr Average read startup time on SServer
βsr Unit data read transfer time on SServer
αsw Average write startup time on SServer
βsw Unit data write transfer time on SServer
h Stripe size on HServer
s Stripe size on SServer

E. Data Reordering

Once the request grouping process is completed, the Data
Reorganizer reorders the data in each group into a separate

region. The final data placement for each region is carried out

by the Data Placer in the subsequent runs of the application. In

our current design, each region is implemented by a physical

file in the same file system, but with an optimized layout.

For each region, requests identified to be similar are located

together, ordered by their offsets within the original file. That

is, a later data block is moved to be adjacent to the first data

block it is similar to.

To locate data for an application, the Data Reorganizer
outputs a Data Reordering Table (DRT) to track the data

location relationships between the original file and the re-

ordered regions. Each entry in DRT includes five important

variables. O_file and O_offset are the file name and the

offset of the data in the original file, R_file and R_offset
are the file name and the offset of the data in the reordered

region. Length is the size of the data. DRT is updated each

time a data location has been changed. By maintaining DRT,

the Redirector can continuously track the most up-to-date

location of the data, which ensures data consistency between

the original files and the reordered regions. Once the reordered

regions and DRT are obtained, we choose the specific data

layout optimization for each region as the following subsection

describes.

F. Stripe Size Optimization via Cost Model

For each reordered region, MHA determines the optimized

stripe sizes for each server via an access cost model described

by the related parameters are listed in Table I. In this model,

the cost is defined as the I/O time of a file request in hybrid

PFS, and, h and s denote a specific data layout. For a read

request r, the access cost TR(r, h, s) with different layouts is

defined as follows.

TR(r, h, s) =max{pi × αh + si × (t+ βh),

pj × αsr + sj × (t+ βsr)|∀i ∈ H, j ∈ S}
(2)

where H and S are the sets of the HServers and the SServers,

and pi, pj , si, and sj denote the involved number of processes

on HServer i and SServer j and the accumulated sub-request

size on HServer i and SServer j, respectively. We can calculate

si, sj , pi, and pj on each server based on the request and

the layout information. Eq. 2 only displays the cost for read

requests; write cost TW (r, h, s) is similar except the startup

and unit data transfer time for SServers will change. This

model assumes all servers offer the same network bandwidth.

However, heterogeneous servers provide different I/O per-

formance. Furthermore, the SServers are assumed to offer

disparate read and write performance due to their inherent

storage characteristics. This model is inspired by our previous

work [8], but we extend it by considering I/O concurrency for

better cost estimation.

With the proposed model, MHA uses an iterative approach

(Algorithm 2) to find the optimized stripe sizes for each type

of servers on per-region basis. Starting from h equaling 0,

the loop iterates h in ‘step’ increments while h is less than

the upper bound Bh. The extreme configuration is where h
is 0, which means dispatching the data only on SServer is

allowed as long as this leads to enhanced performance. In

the second loop, s starts from a size larger than h to avoid

load imbalance among heterogeneous servers. For each pair

of stripe sizes, the loop iterates to calculate the total access

cost of all requests in that region. Note that the operation type

is considered here because SServers have disparate read/write

performance. Finally, the stripe pair <H, S> with smallest

region access cost (Reg cost) is selected.

Unlike the previous work [8], which uses the average

request size as the upper bounds for the potential stripe sizes,

this scheme uses an adaptive policy to determine the optimized

layout. If the maximal request size (rmax) is relatively small,

rmax is selected as the bounds. As such, it not only increases

the chance to find the optimal layout by traversing more

candidates, but also limits the search space. Otherwise, we

choose rmax/M and rmax/N as the bounds. This increases

the chance for all the servers to work together, which helps

improve the I/O performance for those large requests [8] and

avoids unnecessary searching. The ‘step’ value is 4KB, which

can be configured by the user. Generally finer ‘step’ values re-

sult in more precise stripe pairs, but with increased calculation

overhead. However, this overhead is usually acceptable as the

algorithm is refined and the calculations are simple arithmetic

operations that run off-line.

G. Data Placement and I/O Redirection

In the placing phase, the reordered regions will be dis-

patched on respective servers using the pairs of optimized

stripe sizes for the subsequent runs of the application. To

guide the data placement, such stripe pairs of all the regions

are stored into a global Region Stripe Table (RST), which

is managed by a Meta-Data Server (MDS). Upon receiving

a file request, a client first contacts the MDS to get the

file’s meta-data, then it interacts with servers directly. To

perform optimized data placement, the MDS looks up the RST

according to the request’s offset and length, and then returns

this information to the client. After that, the client writes the

1137

Algorithm 2 Region Stripe Size Determination (RSSD)

1: procedure RSSD(r[1, k], rmax)

2: step← 4KB, opt cost←∞
3: if Rmax < (M +N) ∗ 64KB then
4: Bh ← rmax, Bs ← rmax

5: else
6: Bh ← rmax/M , Bs ← rmax/N
7: end if
8: for h← 0;h ≤ Bh;h← h+ step do
9: for s← h+ step; s ≤ Bs; s← s+ step do

10: Reg cost← 0
11: for i← 1; i ≤ k; i← i+ 1 do
12: if op(ri) = read then
13: Ti ← TR(ri, h, s) � Call Eq. (2)

14: else
15: Ti ← TW (ri, h, s) � For writes

16: end if
17: Reg cost← Reg cost+ Ti

18: end for
19: if Reg cost < opt cost then
20: opt cost← Reg cost
21: H ← h, S ← s � The opt. layout

22: end if
23: end for
24: end for
25: end procedure

file data on the underling servers with the optimized stripe

sizes from the RST.

The I/O Redirector is responsible for redirecting user’s I/O

requests to the proper locations. Once receiving a file request,

the I/O Redirector will first determines the requested regions

based on the request offset and request size. Then it examines

the DRT with these parameters to find the target regions

containing the request. Finally, the read/write operations will

be forwarded to the target regions on the underlying HServers

or SServers.

IV. IMPLEMENTATION

We implement MHA within MPICH2 [19] on top of Or-

angeFS [1]. In the following, we discuss the primary chal-

lenges in the implementation.

A. Key Data Structures

The DRT table saves the data reordering information be-

tween original files and the reordered regions. As it is fre-

quently accessed by the Redirector and shared by multiple

processes, the effectiveness of the DRT is a significant chal-

lenge. Similar to the previous work [17], we use Berkeley
DB [29] to implement the DRT as a database file stored in

the same directory as the MPI program. The Berkeley DB is

configured as a hash table and each record is a key-value pair.

We encode the original data access information as the key and

use the value to contain the data locations in reordered regions.

The RST table is another key structure to record the optimized

stripe pairs for all the regions. We also use Berkeley DB to

implement this structure.

By leveraging the advantage of the light-weighted database,

the access contention and meta-data operations are performed

in an efficient way. To reduce the size of the in-memory

reordering table for efficient lookup, we use a list to maintain

frequently accessed reordering entries. Changes to the reorder-

ing entries in memory are synchronously written to the storage

in order to survive power failures.

B. I/O Redirection

We modify the MPI library so that the reordering ta-

ble DRT is loaded with MPI_Init() and unloaded with

MPI_Finalize(). To keep track of the location of each

original logical file region, DRT is stored in a file in the same

directory of the MPI program. The reordering table entries

are also hashed in memory for efficient table lookup. Changes

made to the reordering entries in memory are synchronously

written to the storage to survive power failures. We also

modify the MPI_File_read/write() (and other variants

of read/write), so that the user requests can be atomically

forwarded to the alternative file servers. In more detail, if the

requested regions are found in DRT, the logical file regions

will be translated to the target regions. Then, the following

read/write operations will be forwarded to the target regions

on underlying servers.

V. EVALUATION

A. Experimental Setup

We conduct experiments on a SUN Fire Linux cluster,

where each node was configured with two Opteron quad-

core processors, 8GB memory and a 250GB SATA-II disk.

All nodes are equipped with Gigabit Ethernet interconnection,

and eight nodes are equipped with additional PCI-E X4 100GB

SSD. The operating system is Ubuntu 13.04, the MPI library

is MPICH2-1.4.1p1, and the parallel file system is OrangeFS

2.8.6. By default, we employ six nodes as HServers, two as

SServers, and the other eight nodes as computing nodes. The

file is striped over the file servers in a round-robin fashion.

We compare MHA with three other schemes: the default

layout (DEF), the application-aware layout (AAL) [10], and

the heterogeneity-aware region-level layout (HARL) [8]. For

DEF, the data are placed on servers with the default stripe

size of 64KB. For AAL, it distributes file data on servers

with varied-sized stripes by considering application’s access

patterns, but it ignores server heterogeneity. HARL takes

both access pattern and server heterogeneity into account but

without data grouping and migration.

We first evaluate MHA with two micro-benchmarks (i.e.,

IOR and HPIO) and one macro-benchmark BTIO, and then

show the efficiency of MHA using three real application traces

(i.e., LANL, LU, and Cholesky).

1138

��

����

����

����

����

��� �����	
 �����	
�	��

��
�

��
��
��
��
��
��
��
��
���
��
��

�������� �!���"��

#$% ��& '��& �'�

(a) Read

��

����

����

����

����

��� �����	
 �����	
�	��

��
�

��
��
��
��
��
��
��
��
���
��
��

�������� �!���"��

#$% ��& '��& �'�

(b) Write

Fig. 7: Bandwidths of IOR with mixed request sizes. “x+y”

denotes the mixed request sizes are xKB and yKB.

��

����

��

����

��

����

��

��	

� �

� ��

�
��
�
��
��
��
���
�
��
��
�

��
��

��
��

��
��

�
�!

(a) Read

��

����

��

����

��

����

��

��	

� �

� ��

�
��
�
��
��
��
���
�
��
��
�

��
��

��
��

��
��

�
�!

(b) Write

Fig. 8: I/O time of each server under different data layout

schemes. S0-5 are HServers and S6-7 are SServers.

B. Micro-Benchmark Results

IOR Benchmark: IOR is a parallel file system benchmark

developed at Lawrence Livermore National Laboratory [30].

It provides three APIs: MPI-IO, POSIX, and HDF5, we only

use MPI-IO in the tests. During these tests, IOR by default

runs with 16 processes, each performing I/O operations on a

shared file with request size of 64KB.

Fig. 7 shows the I/O performance of IOR with mixed

request size configurations. We modify IOR to run it with

various request sizes to simulate heterogeneous patterns. The

process number is fixed to 32 and each process issues random

requests at multiple sizes to access a 16GB file. The label

“128+256” means the mixed request sizes are 128KB and

256KB. Other labels have the similar meanings. We observe

that MHA and HARL are always better than DEF and AAL

because they are heterogeneity-aware in terms of application

and server while DEF and AAL are not. For I/O requests

with a single size of 16KB, MHA is comparable to HARL,

because it degrades to HARL for uniform access patterns.

However, MHA outperforms DEF, AAL, and HARL for all

mixed access cases. By using migratory heterogeneity-aware

data layout optimization, MHA improves read performance

from 63.4% to 88.1%, and write performance from 96.2% to

128.1% respectively, in comparison with DEF. Compared with

HARL, MHA improves read performance up to 14.5%, and

write performance up to 15.6%. As the request size increases,

IOR’s bandwidth becomes higher because the increasingly

amortized disk seek time reduces the penalty of unbalanced

disk accesses on heterogeneous servers.

To give a detailed explanation for MHA’s performance

improvement, Fig. 8 plots the I/O time of each server when the

request sizes are mixed by 128KB and 256KB. The result is

��

����

����

����

����

� ���� ��������

��
��
��
��
��
�	
�

��
��
��
��

	�
��

�������������������

#$% ��& '�(&
'�

(a) Read

��

����

����

����

����

� ���� ��������

��
��
��
��
��
�	
�

��
��
��
��

	�
��

�������������������

#$% ��& '�(&
'�

(b) Write

Fig. 9: Bandwidths of IOR with mixed process numbers. “a+b”
refers to the mixed process numbers are a and b.

��

����

����

����

����

����

����

����� 	��	� �����
�
��

�
��

�
��
��
��
��
��
���
��
��

�
��
�������

���

�
�� �

(a) Read

��

�!��

����

�"��

�	��

����

����

����� 	��	� �����

�
��

�
��

�
��
��
��
��
��
���
��
��

�
��
�������

���

�
�� �

(b) Write

Fig. 10: Bandwidths of IOR with various server ratios. “xh:ys”

denotes the system has x HServers and y SServers.

normalized to the minimum of all servers under the MHA

layout. We observe that the I/O loads are largely skewed

across the servers under DEF and AAL. This is because these

two schemes ignore the performance disparity between the

HServers and the SServers. In contrast, HARL and MHA have

nearly even loads because they assign variable sized stripes on

the heterogeneous servers to achieve load balance. However,

MHA has less I/O times on servers. The reason is that it uses

more appropriate stripe sizes to further reduce I/O waiting

times among the heterogeneous servers.

Fig. 9 shows the I/O bandwidths of IOR with mixed

numbers of processes. The request size is fixed to 256KB,

and IOR is modified to issue requests with different process

configurations. For example, a configuration of “8+32” means

IOR sends requests at different parts of the file with 8 and 32

processes respectively. MHA shows comparable performance

to HARL when IOR runs with a single process number of 8,

because it degrades to HARL for uniform requests. However,

for mixed process numbers, MHA improves I/O performance

over the three other layout schemes. Compared to DEF, the I/O

bandwidth is increased up to 148.5% and write improvements

are up to 137.3%. In terms of AAL, MHA improves read

performance up to 55.6%, and write performance up to 90.5%.

In contrast to HARL, the read performance achieves a 17.6%

and 25.4% improvement, and write achieves a 11.0% and

12.1% improvement. As the number of processes increases, the

I/O bandwidth gets lower because each server needs to serve

more processes’ requests and the contention among processes

becomes more severe. However the performance degradation

of MHA is not as substantial as those of other schemes. The

reason is that MHA makes each server handle more even

requests. This indicates that MHA a high scalability in terms

1139

��

�!��

����

�"��

!� �� ��

��
��
	�

�
	�
�

�
��

��
��
���

�
��

����	���������	��	�

��� �� !�" �!�

(a) Read

�#

�$##

��##

��##

$� �� ��

��
��
	�

�
	�
�

�
��

��
��
���

�
��

����	���������	��	�

��� �� !�" �!�

(b) Write

Fig. 11: Bandwidths of HPIO with various process numbers.

of the number of processes.

Fig. 10 depicts the I/O performance of IOR with various

server ratios. The process number is fixed to 32, and the

mixed request sizes are 128KB and 256KB. MHA improves

I/O performance for both data reads and writes: read per-

formance increases from 39.3% to 81.6%, while write per-

formance improves from 33.2% to 114.1% in comparison

with DEF. Compared to AAL and HARL, MHA achieves an

improvement up to 13.6% for reads and 20.8% for writes. In

the experiments, read and write performance improve as the

number of SServers increases. This is because the requests can

be distributed on more SServers, which have high-performance

I/O performance. We also note that, with larger number of

SServers, the performance improvement of MHA over HARL

is more significant. This is because MHA can better utilize

the high-performance SServers by applying a migratory data

layout scheme.

HPIO Benchmark: HPIO is a program designed by North-

western University and Sandia National Laboratories to sys-

tematically evaluate parallel I/O system performance [31]. This

benchmark includes three parameters: region count, region

spacing, and region size. We modify HPIO to issue mixed

request sizes (region sizes) to generate heterogeneous I/O

patterns. In our experiment, the region count is 4096, the

region space is 0, the region sizes are 16KB, 32KB, and 64KB,

and we vary the number of processes from 16 to 64.

Fig. 11 shows the I/O bandwidth of HPIO. We can see

that MHA have obvious performance advantages over the

other three layout schemes. In contrast to the best of the

three counterparts (HARL), MHA can still increase the I/O

bandwidth up to 49.3%, 31.8%, and 45.4% respectively for

various numbers of processes. It means that MHA is effective

with respect to HPIO benchmark. We also note that, as the

number of processes increases, the system performance degra-

dation ratio gets more obvious compared that in the IOR test.

This is because for small I/O requests disk seek time derived

from multi-process contention rather than load imbalance are

the major factor that impacts I/O system efficiency. However,

MHA is always better than DEF, AAL, and HARL.

C. Macro-Benchmark Results

BTIO represents a typical scientific application with inter-

leaved intensive computation and read/write I/O phases [25].

We consider the Class B and C workloads with simple subtype

in the experiments. To emulate the heterogeneous access

�#

���

����

����

����

����

����

� �� ��

�	
	

�	
�

��
��
��
��
��

�
���
��
��

�����
�����
�������

#$% ��& '�(& �'�

(a) BTIO

��

�$��

����

����

��
��
��
��
��
�	
�

��
��
�

���
	�
��

��� ��� ���� ���

(b) LANL

Fig. 12: Performance of BTIO and LANL applications.

pattern situation, we modify BTIO to access a new file with

the total size of 1.69GB+6.8GB. Furthermore, each process

issues file requests at the sizes of those in Class B and C in

an interleaved fashion. We use 9, 16, and 25 processes since

BTIO requires a square number of processes. The output file

is striped across six HServers and two SServers.

Fig. 12a plots the aggregate I/O bandwidths of BTIO

benchmark. Compared with the original I/O system (DEF),

MHA achieves 48.6%, 54.3%, and 64.7% improvement with 9,

16, 25 processes, respectively. In contrast to AAL and HARL,

MHA also demonstrates performance advantages.

D. Trace-Driven Results

LANL Application: We first evaluate MHA with a real

application’s I/O trace from LANL [20]. This application has

mixed access patterns that can show the adaptivity of our

scheme. During the execution of the application, the processes

issue requests in a non-uniform way at different locations of a

shared file. More specifically, each process issues three types

of requests iteratively. The detailed data access patterns of each

process are illustrated in Fig. 3. We replay the data accesses of

the application according to the I/O trace. In the experiment,

we employ eight nodes as computing nodes, six nodes as

HServers, and two as SServers. Fig. 12b shows that MHA

obtains 89.7%, 51.2%, and 15.6% performance improvement

over DEF, AAL, and HARL respectively. The results indicate

that MHA is effective for applications with complicated I/O

access patterns.

LU Decomposition: We replay the data accesses of the

application according to the I/O trace [21]. This application

computes the dense LU decomposition of an out-of-core

matrix [12]. It uses synchronous reads/writes to performs I/O

operations, and is driven by an 8192*8192 double precision

matrix with a slab size of 64 columns. The dataset is stored in

8 files, one per process. During the run of the application, each

process of the parallel program issues read and write requests.

The write request size is fixed to 524544 bytes. However, the

read request size ranges from 6272 bytes to 524544 bytes. In

the experiment, we employ eight nodes as computing nodes,

six nodes as HServers, and two as SServers. Fig. 13a shows

that MHA obtains 56.2%, 8.1%, and 14.2% performance

improvement over DEF, AAL, and HARL respectively. The

results indicate that MHA is effective for the LU application.

Sparse Cholesky: This application computes Cholesky

decomposition for sparse, symmetric positive definite matrices

1140

��

����

����

����
��
��
��
��
��
�	
�

��
��
�

���
	�
��

��� ��� ���� ���

(a) LU

��

����

����

����

��
��
��
��
��
�	
�

��
��
�

���
	�
��

��� ��� ���� ���

(b) Cholesky

Fig. 13: Performance of LU and Cholesky applications.

[12]. It stores the matrix as panels rather than blocks and

conducts synchronous I/O accesses. During the execution of

the application, each process sends varied-sized I/O requests

at different parts of the file. The read request size ranges

from 2 bytes to 4206976 bytes, and write size ranges from

131556 bytes to 4206976 bytes. We replay the data accesses

of this application according to the I/O trace [22], by sim-

ulating the same application scenario: 8 clients, and same

I/O requests for each client. We employ the same server

configuration as the previous LU tests. The dataset was stored

in 8 files, each for one process. Fig. 13b shows that MHA

obtains 78.4%, 58.6%, and 29.6% performance improvement

over DEF, AAL, and HARL respectively. We note the I/O

bandwidths of Cholesky are smaller than those of LANL and

LU though it has the largest request size. This is because the

request size of Cholesky varies more considerably and only

has a small number of large requests in terms of the two

others. However, MHA still brings performance improvements

over the other layout schemes. The results indicate that the

proposed migratory heterogeneity-aware layout is an effective

optimization approach for applications with heterogeneous

requests.

E. Overhead Analysis

1) Performance Overhead: In the “tracing phase”, the

collector incurs overhead during the application’s first run. As

shown in previous work [27], the on-line profiling overhead

is low (2-6% based on our measurement). In the following

two phases, since the data reorganizer and layout determinator

are carried out off-line and only once, the CPU and memory

overhead is also acceptable for most HPC computing systems.

In the “redirection phase”, the redirector needs to determine

where to send the requests. It incurs additional overhead in file

open and file read/write operations. To show the introduced

redirection overhead, we run IOR with mixed request sizes of

4KB and 64KB. We intentionally do not make data reordering

so that I/O requests are redirect to the original I/O system. The

number of process is set to 8, 32, and 128. Fig. 14 shows that

with various processes the redirection overhead is acceptable.

2) Meta-data Space Overhead: To maintain data consis-

tency, MHA stores the data reordering information in the DRT

in the same parallel file system, incurring additional storage

space. The system has a maximal space overhead when all the

requests are of 4KB. Assuming that the available storage space

is S GB and that each entry in the DRT in our implementation

��

����

����

����

�	��

� �� ���

��
��
��
�	

�
���
��
�

�

�������	����	��

�

���
���

Fig. 14: MHA performance overhead.

occupies 6 ∗ 4 B, the maximal number of records in the

DRT then is S/4 ∗ 106. Therefore, the maximal meta-data

space overhead is 0.6% of the replica space, an acceptable

requirement for a storage cluster.

VI. RELATED WORK

Modern PFSs often support three layout policies: 1-DH, 1-

DV, and 2-D [13], each being suitable for a certain type of

access patterns. For more complex requests, sophisticated op-

timization methods are developed, such as data partition [23]

and data replication [17], [32]. Facing data query workloads,

PARLO deploys multiple data layout optimizations to speed

up I/O performance [33]. Tantisiriroj et al. [34] use HDFS-

specific layout rearrangement to enhance PVFS performance.

PLFS [35] redirects parallel write requests to a set of reorga-

nized log-formatted files. Although PLFS reorders file requests

like our work, it does not further optimize the data layout of

the reordered files. The most related work is using adaptive

file stripe sizes to boost I/O performance [10], [14]. However,

all these studies are designed for homogeneous HDD-based

I/O systems. In contrast, this work aims to improve the data

layout of a heterogeneous I/O system.

Due to attractive features, SSDs are widely deployed into

parallel I/O systems, either as a cache tier or as a storage

tier. Unlike these single-sever layout optimizations, our study

focuses on the multi-server data layout in a parallel I/O system.

S4D-Cache [4] investigates the data placement in a HDD-

based parallel file system with a temporary cache on a small

number of SSD servers. CARL [36] uses both HDD servers

and SSD servers as persistent storage, and it places file regions

with high access costs only on SSD servers. However, this may

compromise I/O performance because I/O parallelism on all

servers may not be fully utilized. Our current work, MHA,

can do this because of its adaptive data distribution.

In a hybrid PFS that treats SSD servers as ordinary storage

devices, PADP [16] and PSA [15] employ variable-sized file

stripe to improve I/O performance. Similarly, HAS [5] selects a

best-fitting data layout from three typical candidates to reduce

I/O access costs. These three approaches target heterogeneous

servers and homogeneous access patterns, however MHA tar-

gets for both heterogeneous servers and heterogeneous access

patterns. Perhaps the closest related work is our previous work

on HARL [8]. While HARL addresses the same problem

as MHA, it is limited to optimize data layout based on the

1141

original data order in a parallel file. In contrast, MHA targets

data layout optimization via data grouping and data reordering.

VII. CONCLUSIONS

In this study, we have proposed MHA, a migratory

heterogeneity-aware data layout scheme to improve the perfor-

mance of hybrid parallel I/O system. MHA first migrates file

data with similar access patterns together, and then optimizes

the appropriate stripe sizes for heterogeneous servers based

on their respective performance. We have implemented MHA

under MPI-IO library on top of OrangeFS file system. Experi-

mental results show that compared to existing approaches, the

pre-processed data reordering and the adaptive file stripe sizes

can significantly improve I/O system performance.

As future work, we plan to evaluate MHA in a much

larger cluster, which is not currently available to us. We also

intend to develop dynamic approaches to further improve the

performance of those applications with unpredictable patterns.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for

their valuable comments and suggestions. This work was

supported by the National Science Foundation of China under

Grant No. 61572377 and 61672513.

REFERENCES

[1] “Orange File System,” http://www.orangefs.org/.
[2] S. Microsystems, “Lustre File System: High-performance Storage Ar-

chitecture and Scalable Cluster File System,” Tech. Rep. Lustre File
System White Paper, 2007.

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk File System for Large
Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, 2002, pp. 231–244.

[4] S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart Selective SSD Cache
for Parallel I/O Systems,” in Proceedings of the International Conference
on Distributed Computing Systems, 2014, pp. 514 – 523.

[5] S. He, X.-H. Sun, and A. Haider, “HAS: Heterogeneity-Aware Selective
Data Layout Scheme for Parallel File Systems on Hybrid Servers,”
in Proceedings of 29th IEEE International Parallel and Distributed
Processing Symposium, 2015, pp. 613–622.

[6] A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Using Flash Memory
to Build Fast, Power-efficient Clusters for Data-intensive Applications,”
in Proceedings of the Fourteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2009.

[7] M. Zhu, G. Li, L. Ruan, K. Xie, and L. Xiao, “HySF: A Striped File
Assignment Strategy for Parallel File System with Hybrid Storage,” in
Proceedings of the IEEE International Conference on Embedded and
Ubiquitous Computing, 2013, pp. 511–517.

[8] S. He, X.-H. Sun, Y. Wang, A. Kougkas, and A. Haider, “A
Heterogeneity-Aware Region-Level Data Layout Scheme for Hybrid Par-
allel File Systems,” in Proceedings of the 44th International Conference
on Parallel Processing, 2015.

[9] P. H. Carns, I. Walter B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A
Parallel Virtual File System for Linux Clusters,” in Proceedings of the
4th Annual Linux Showcase and Conference, 2000, pp. 317–327.

[10] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A Segment-Level
Adaptive Data Layout Scheme for Improved Load Balance in Parallel
File Systems,” in Proceedings of the 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2011, pp. 414–423.

[11] H. Tang, S. Byna, S. Harenberg, X. Zou, W. Zhang, K. Wu, B. Dong,
O. Rubel, K. Bouchard, S. Klasky, and N. F. Samatova, “Usage pattern-
driven dynamic data layout reorganization,” in Proceedings of the
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 16-19 May 2016 2016, pp. 356–365.

[12] M. Uysal, A. Acharya, and J. Saltz, “Requirements of I/O Systems for
Parallel Machines: An Application-Driven Study,” College Park, MD,
USA, Tech. Rep., 1997.

[13] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent
Application-Specific Data Layout Scheme for Parallel File Systems,” in
Proceedings of the 20th International Symposium on High Performance
Distributed Computing, 2011, pp. 37–48.

[14] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A Server-Level
Adaptive Data Layout Strategy for Parallel File Systems,” in Proceedings
of the IEEE 26th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum, 2012, pp. 2095–2103.

[15] S. He, Y. Liu, and X.-H. Sun, “A Performance and Space-Aware Data
Layout Scheme for Hybrid Parallel File Systems,” in Proceedings of the
Data Intensive Scalable Computing Systems Workshop, 2014, pp. 41–48.

[16] S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data
placement in hybrid parallel file systems,” in Proceedings of the 14th
International Conference on Algorithms and Architectures for Parallel
Processing, 2014, pp. 563–576.

[17] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-Direct and
Layout-Aware Replication Scheme for Parallel I/O Systems,” in Pro-
ceedings of 27th IEEE International Parallel and Distributed Processing
Symposium, 2013, pp. 345–356.

[18] S. He, Y. Wang, and X.-H. Sun, “Boosting Parallel File System
Performance via Heterogeneity-Aware Selective Data Layout,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 9, pp.
2492–2505, 2016.

[19] A. N. Lab, “MPICH2 : A High Performance and
Widely Portable Implementation of MPI.” [Online]. Available:
http://www.mcs.anl.gov/research/project-detail.php?id=2

[20] “Application I/O Traces: Anonymous LANL App2,”
http://institutes.lanl.gov/plfs/maps/, 2014.

[21] “LU Decomposition,” 2018. [Online]. Available:
http://www.cs.umd.edu/projects/hpsl/mambo/lu.html

[22] “Sparse Cholesky Factorization,” 2018. [Online]. Available:
http://www.cs.umd.edu/projects/hpsl/mambo/cholesky.html

[23] Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings
of the 17th Annual International Conference on Supercomputing, 2003,
pp. 252–260.

[24] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
Identification of Application I/O Signatures from Noisy Server-Side
Traces,” in Proceedings of the 12th USENIX conference on File and
Storage Technologies, 2014, pp. 213–228.

[25] “The NAS parallel benchmarks,” www.nas.nasa.gov/publications/npb.html,
2014.

[26] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
Prefetching Using MPI File Caching and I/O Signatures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2008, pp. 1–12.

[27] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 196–203.

[28] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[29] M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley DB,” in Proceed-
ings of the USENIX Annual Technical Conference, 1999, pp. 183–191.

[30] “Interleaved Or Random (IOR) Benchmarks.” [Online]. Available:
http://sourceforge.net/projects/ior-sio/

[31] A. Ching, A. Choudhary, W.-k. Liao, L. Ward, and N. Pundit, “Evalu-
ating I/O Characteristics and Methods for Storing Structured Scientific
Data,” in Proceedings of the 20th International Parallel and Distributed
Processing Symposium, 2006.

[32] J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Sam-
atova, “RADAR: Runtime Asymmetric Data-Access Driven Scientific
Data Replication,” in Proceedings of the International Supercomputing
Conference. Springer, 2014, pp. 296–313.

[33] Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky, X. Ma,
and N. F. Samatova, “PARLO: PArallel Run-time Layout Optimization
for Scientific Data Explorations with Heterogeneous Access Patterns,” in
Proceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 2013.

[34] W. Tantisiriroj, S. Patil, G. Gibson, S. Seung Woo, S. J. Lang, and
R. B. Ross, “On the Duality of Data-Intensive File System Design:
Reconciling HDFS and PVFS,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–12.

[35] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: A Checkpoint Filesystem for Parallel
Applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–12.

[36] S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware
Region-Level Data Placement Scheme for Hybrid Parallel I/O Systems,”
in Proceedings of the IEEE International Conference on Cluster Com-
puting, 2013, pp. 1 – 8.

1142

