

The Memory-Bounded Speedup Model and Its Impacts in Computing

Xian-He Sun (孙贤和), Fellow, IEEE, and Xiaoyang Lu (鲁潇阳), Member, IEEE

Department of Computer Science, Illinois Institute of Technology, Chicago 60616, U.S.A.

E-mail: sun@iit.edu; xlu40@hawk.iit.edu

Received October 17, 2022; accepted December 1, 2022.

Abstract With the surge of big data applications and the worsening of the memory-wall problem, the memory system,

instead of the computing unit, becomes the commonly recognized major concern of computing. However, this “memory-

centric ” common understanding has a humble beginning. More than three decades ago, the memory-bounded speedup

model is the first model recognizing memory as the bound of computing and provided a general bound of speedup and a

computing-memory trade-off formulation. The memory-bounded model was well received even by then. It was immediate-

ly introduced in several advanced computer architecture and parallel computing textbooks in the 1990’s as a must-know

for scalable computing. These include Prof. Kai Hwang’s book “Scalable Parallel Computing” in which he introduced the

memory-bounded speedup model as the Sun-Ni’s Law, parallel with the Amdahl’s Law and the Gustafson’s Law. Through

the years, the impacts of this model have grown far beyond parallel processing and into the fundamental of computing. In

this article, we revisit the memory-bounded speedup model and discuss its progress and impacts in depth to make a unique

contribution to this special issue, to stimulate new solutions for big data applications, and to promote data-centric think-

ing and rethinking.

Keywords memory-bounded speedup, scalable computing, memory-wall, performance modeling and optimization, da-

ta-centric design

 1 Introduction

The rapid advancement in computing technology

has changed the lifestyle of human society. The wide

adaptation of mobile devices, wireless communica-

tions, and Internet of Things (IoT) has not only im-

proved the quality of life but also changed the land-

scape of computing. Traditionally, computers are de-

signed for computing, meaning crunching numbers. A

scientific simulation can run a program loop many

times before it converges, where computing power

means the power of number crunching. Internet appli-

cations, such as social networks, online search, and

other big data applications, are very different. They

require massive data movement, collection, and man-

agement but little number crunching. Based on the

infamous memory-wall problem[1], the memory sys-

tem is a weak point of computing systems. Big data

applications have put even more pressure on the al-

ready lagging memory system, making it the most

concerned performance bottleneck of computing at

the current time. Improving data access time is a gen-

erally agreed research issue facing the computing

community today. Intensive research has been done

through the years, from developing fast hardware

memory devices to optimizing existing memory sys-

tems, and from embedding processing in memory to

building totally different data-centric computer archi-

tecture. But the memory-wall problem remains un-

solved and is getting worse.

In [1], Wulf and McKee observed that the perfor-

mance gap between CPU and memory becomes larg-

er and larger, which is referred to as the memory-wall

problem. Before the memory-wall problem, in 1990

the memory-bounded model stated that memory is

the bound of computing when the problem size is

large[2, 3]. The memory-bounded model compounded

with the memory-wall problem, and then compound-

Review

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

This work is supported in part by the U.S. National Science Foundation under Grant Nos. CCF-2029014 and CCF-2008907.

Sun XH, Lu X. The memory-bounded speedup model and its impacts in computing. JOURNAL OF COMPUTER SCI-

ENCE AND TECHNOLOGY 38(1): 64−79 Jan. 2023. DOI: 10.1007/s11390-022-2911-1

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://github.com/HDFGroup/hermes
https://doi.org/10.1007/s11390-022-2911-1

ed with the surging of big data applications, it easily

makes the memory system the most concerned perfor-

mance bottleneck of a computing system. To make it

worse, the conventional computing system design

principles were developed in the 1960s and 1970s.

They are computing-centric and optimized for CPU

utilization and performance. To lift memory systems

as a primary performance concern may require a to-

tal rethinking of computer system designs, including

the rethinking of computer architecture and operat-

ing system designs. That is an uneasy task. In this

paper, we will review the concept of the memory-

bounded speedup model, study its relationship with

the memory-wall problem, investigate how it has been

used in practice to reduce memory access delays, un-

derstand its impacts, and explore new opportunities.

We hope this study can lead to a better understand-

ing of memory system performance and stimulate new

ideas and methodologies to address the memory-wall

problem.

The memory-bounded model is first introduced for

parallel computing, where more than one computing

element works together to solve one common prob-

lem. Today, parallel computing is prevalent. Even cell

phones have been equipped with multi-core proces-

sors for better performance. Parallel processing is a

must-know for anyone interested in computer sys-

tems. In this paper, we first review the three laws for

parallel processing, i.e., the Amdahl’s Law[4], the Gus-

tafson’ s Law[5], and the Sun-Ni’ s Law[2, 3], and then

discuss and investigate the impacts of the Sun-Ni’ s
Law①. The Amdahl’ s Law presents a limitation of

parallel processing. The Gustafson’ s Law introduces

the concept of scalable computing. The Sun-Ni’s Law

states that memory is a constraint of parallel comput-

ing. Revisiting the memory-bounded speedup model

and understanding its full potential will benefit com-

puting in general in the big data era.

The rest of this paper is organized as follows. In

Section 2, we introduce the background knowledge of

parallel computing, the Amdahl’s Law, and the scala-

ble computing concept. Section 3 introduces the mem-

ory-bounded speedup model and its relationship with

the fixed-size and fixed-time speedup model. The

study on memory system performance, optimization,

and redesign and rethinking are given in Sections 4, 5,

and 6, respectively. Finally, we conclude the paper in

Section 7.

 2 The Amdahl’s Law and Scalable

Computing

Ti

T1

Parallel processing is for performance gain. Perfor-

mance evaluation is essential for parallel processing.

Speedup is the most used performance metric for par-

allel processing, which is defined as sequential execu-

tion time over the parallel execution time of the pro-

gram. Let be the time required to complete the

workload in parallel on i processors, where is the

execution time on one processor. The speedup of a

parallel program with p identical processors is de-

fined as:

S =
T1

Tp

. (1)

Parallel processing has overhead, or degradations,

in a more formal term. There are four main degrada-

tions of parallel processing. They are uneven work-

load distribution (load imbalance), communication de-

lays, synchronization costs, and extra computation.

These degradations are applications dependent. They

could vary largely from application to application and

from computer system to computer system. It is very

important to understand and optimize parallel pro-

cessing for better performance.

 2.1 The Amdahl’s Law

Gene Amdahl is one of the most famous comput-

er architects in computing history[4]. He was the ar-

chitect of the IBM mainframe, the dominant comput-

er in the 1960s and 1970s. His architectural design

principle, also known as the Amdahl’s Law, which can

be summarized as follows[4]: ``The execution time of

any code always has two portions; portion 1 is not af-

fected by architecture enhancement, and portion 2 is

affected by the enhancement. Then, based on this as-

sumption, after the architecture enhancement, por-

tion 1 will be unchanged, and portion 2 will be im-

proved''. Therefore,

Execution timenew = Execution timeP1-old +
Execution timeP2-new.

Since the execution time of portion 1 will not be re-

duced, after the enhancement, it may become the per-

formance bottleneck, and enhancing portion 2 further

may not help the overall performance. The Amdahl’s
Law of the architectural design is a law that calls for

a balanced architectural design.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 65

①In this paper we will use the Sun-Ni’s Law and memory-bounded speedup interchangeably.

Applying the above Amdahl’s Law to parallel pro-

cessing, and assuming that portion 1 is the sequential

processing portion that cannot be parallelized, and

portion 2 is the parallel processing portion that can

be perfectly parallelized, we get the Amdahl’s Law for

parallel processing:

Execution timenew

= a× Execution timeold + (1− a)× Execution timeold
p

,

where a is the percent of sequential execution work-

load which cannot be parallelized and p is the num-

ber of processors for parallel processing. Recall that

the new is parallel processing time and the old is se-

quential processing time, we get:

Tp = a× T1 + (1− a)× T1

p
.

Substituting it into (1), we get:

S =
T1

Tp

=
1

a+
1− a

p

. (2)

10 10

(2) is known as the Amdahl’s Law (for parallel pro-

cessing)[4]. The Amdahl’s Law shows that the speedup

of (2) has an upper bound of 1/a. Assuming that the

sequential fraction is 10%, a very reasonable number,

no matter how many processors are used, the upper

bound of speedup is . The speedup of is under

the assumption that there is no other parallel process-

ing overhead except the sequential execution part. In

practice, with the consideration of parallel processing

overhead, the actual speedup will be even less. The

Amdahl’s Law gives a pessimistic upper bound of par-

allel processing. Due to the influence of the Amdahl’s
Law, for a long time, all the supercomputers only

have no more than eight computing nodes[6].

 2.2 Scalable Computing and the Fixed-Time

Speedup

The pessimistic view toward parallel computing

was changed when John Gustafson and his colleagues

published their bombshell results in 1988 in the SIAM

Journal on Scientific and Statistical Computing, in

which they achieved more than one thousand speed-

ups on three different scientific applications[5]. These

results are real but in conflict with the Amdahl’ s
Law. Their experiments are conduced under a differ-

ent assumption of the Amdahl’s Law, which leads to

the concept of scalable computing. The argument of

Gustafson is that when we have more computing

power, it may not be necessary for us to solve a giv-

en problem faster; instead, we may like to solve a

larger problem which otherwise cannot be solved in a

given time. For instance, for weather forecasts, if we

have a more powerful machine, we may not want to

give the forecast early at 5 p.m. but like to add more

parameters and more computations into the weather

simulation for a more accurate solution within the

same time. This argument applies to any real-time

applications, such as missile control or tsunami warn-

ing systems. The argument that the problem size

should increase with computing power for many ap-

plications leads to the concept of scalable computing.

Since Gustafson used fixed execution time to con-

strain the problem size scaling[5], he introduced the

fixed-time speedup model.

W ′

SFT(W
′)

The fixed-time speedup model argues that the size

of the problem should scale up with the increase in

computing power within a given time[5]. Let W be the

amount of original work, and be the total amount

of scaled work. The fixed-time speedup is de-

fined as:

SFT(W
′) =

T1(W
′)

Tp(W ′)
. (3)

W ′

T1(W) = Tp(W
′)

Assume that the time used for sequential process-

ing of original workload W is the same as the time re-

quired for parallel processing of scaled workload

with p processors. The condition

must be satisfied. Hence, (3) becomes:

SFT(W
′) =

T1(W
′)

T1(W)
.

W1 Wp

1− a

W ′
1 =W1 = a×W

W ′
p = p×Wp = (1− a)× p×W

SFT(W
′)

Following the Amdahl’s Law, we assume the origi-

nal workload W only consists of two parts, a sequen-

tial part and a perfectly parallel part . Recall

that a is the sequential portion of the original work-

load and () is the parallel portion of the original

workload. Let us also assume that the scale of the

workload is on the parallel processing part only, i.e.,

. If there are p processors available

then they can do p times more work than a single

processor could do. Therefore, the parallel work of

scaled workload is: .

Without considering any overhead, the fixed-time

speedup becomes:

SFT(W
′) =

a×W + (1− a)× p×W

W
= a+ (1− a)× p.

(4)

(4) is known as Gustafson’s scaled speedup[5]. Ba-

sed on (4), the fixed-time speedup will increase with

66 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

the number of processors without any inherent theo-

retical upper bound. This simple formula is very pow-

erful. It shows the potential of parallel computing. It

got the attention of Wall Street. Wall Street Journal

reported Gustafson’s work and recognized that the fu-

ture of parallel computing is bright. All stocks in the

parallel computing industry were boosted. The scal-

able computing concept has changed the history of

parallel computing and computing in general.

In the Amdahl’s Law, an execution workload does

not change with the improvement of computing pow-

er. Therefore, after the fixed-time speedup is intro-

duced, it is also known as fixed-size speedup. Many

people call fixed-size speedup Strong Scaling since it

only scales up the number of processors but not the

problem size, and call any scalable computing Weak

Scaling. In fact, the Amdahl’s Law shows Strong Scal-

ing does not scale if it has a sequential processing por-

tion, and the Gustafson’ s Law shows Weak Scaling

can scale up with no limitation under the speedup

measurement.

 3 Memory-Bounded Speedup: The Sun-Ni’s
Law

While (4) successfully puts the end of the Am-

dahl’s Law for scalable computing applications, as the

Amdahl’s Law, it does not consider the parallel pro-

cessing overheads. Therefore, how to achieve a good

speedup in engineering practice is still a dilemma fac-

ing the high-performance computing (HPC) communi-

ties. However, this time we call for the development

of engineering solutions to address these overheads in-

stead of hopelessly facing an inherent unsolvable per-

formance upper bound. In addition to these over-

heads, researchers quickly noticed another constraint

for scalable computing, the memory capacity[2, 3, 7].

When the problem size is larger than the memory sys-

tem can support, the performance will become ex-

tremely low, and there will be no parallel processing

gain.

In practice, memory is a costly resource and often

limits the increase of problem size. The memory-

bounded speedup model, also known as the Sun-Ni’s
Law[2, 3], is introduced, which considers memory as

the constraint of scalable computing rather than exe-

cution time. Like the fixed-time speedup, the memo-

ry-bounded speedup scales up the problem size. The

difference is that in memory-bounded speedup, memo-

ry capacity, rather than execution time, is the con-

straint of the problem size scaling. In memory-bound-

ed speedup, the scaled problem size (workload) that

can be solved within a parallel computing system is

limited by the amount of memory available on the

system.

 3.1 The Memory-Bounded Speedup

W ∗

SMB(W
∗)

Let be the total amount of scaled workload

under a memory capacity constraint. The memory-

bounded speedup is defined as:

SMB(W
∗) =

T1(W
∗)

Tp(W ∗)
.

Let g be a function to denote the relationship be-

tween memory requirement and workload. We have:

W = g(M),

and

M = g−1(W),

where W and M are the workload and the memory

capacity of a single processor, respectively.

W ∗

Assuming that the number of processors and their

associated memory are increased in pair, with p pro-

cessors, the total available memory capacity becomes

pM. Therefore, under the memory-bounded con-

straint, the scaled workload is determined by:

W ∗ = g(pM) = g(pg−1(W)).

W ∗

W ∗
1

W ∗
p

1− a

W1 =W ∗
1 a×W

Following the same assumption as the Amdahl’ s
Law and the Gustafson’ s Law, we assume only

contains two parts, a sequential part and a per-

fectly parallel part . Recall that a is the sequen-

tial portion of the workload and () is the paral-

lel portion of the workload. We assume the scale of

the workload is in the parallel part only, i.e.,

 = . With a similar reduction as the

fixed-time speedup, we get the memory-bounded

speedup:

SMB(W
∗) =

a×W + (1− a)× g(pM)

a×W +
(1− a)× g(pM)

p

. (5)

W ∗

Now, the question is how we find the memory-

scaling function g. In general, finding the function g is
application-dependent and is a state-of-the-art. Inter-

ested readers can read Section 5 for memory-bound

analysis methods and tools. However, since in prac-

tice most algorithms are with polynomial time com-

plexities, the memory-scaling function g between M
and often is a polynomial function or approximat-

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 67

g(x) = c× xb

ḡ

ḡ(x) = xb

g(pM) c× (pM)b pb × c×M b pb × g(M)

ḡ(p)× g(M)

ed as a polynomial function. For scale-up analysis, we

only need to consider the most significant term of the

polynomial expression. That is, we can consider g as a

power function , where c is a real con-

stant and b is a ration number. And is a pair func-

tion of g with coefficient of 1, . We have

 = = = =

. Therefore, (5) can be simplified as:

SMB(W
∗) =

a×W + (1− a)× ḡ(p)×W

a×W +
(1− a)× ḡ(p)×W

p

=
a+ (1− a)× ḡ(p)

a+
(1− a)× ḡ(p)

p

.

(6)

2k3 3k2

k × k

We use matrix multiplication as an example to il-

lustrate how to calculate the memory-bounded

speedup. In dense matrix multiplication, the multipli-

cation needs computation and memory, where

k is the dimension of the two source matrices.

Therefore,

g(M) = 2×
(√

M

3

)3

=
2

3
3

2

×M
3

2 ,

and

ḡ(p) = p
3

2 .

Following (6), the memory-bounded speedup for ma-

trix multiplication is:

SMB =
a+ (1− a)× p

3

2

a+ (1− a)× p
1

2

.

0.1 16For a = and p = , the memory-bounded spee-

dup is:

SMB =
0.1 + 0.9× 16

3

2

0.1 + 0.9× 16
1

2

≈ 15.595.

16 16Recall that the perfect speedup is with proces-

sors. Dense matrix-matrix multiply can achieve a very

high speedup based on memory-bounded speedup.

g(pM) =W

g(pM) = pW

The memory-bounded speedup has linked the

fixed-time and fixed-size speedup together. When

, the memory-bounded speedup model re-

solves to the Amdahl’s Law with a fixed problem size.

If , then the memory-bounded speedup

model is identical to the Gustafson’s Law with a fixed

execution time. In general, computational workload

g(pM)

> pW

g(pM) > pW

grows faster than the memory requirement; thus

, and the memory-bounded speedup model of-

fers a higher speedup than fixed-size and fixed-time

speedup. Since in general, the impact of

the sequential portion may decrease under the memo-

ry-bounded speedup, indicating that a higher speedup

would be possible with a larger system.

The memory-bounded speedup has become more

and more popular due to two reasons. First, the mem-

ory-bounded model sparked the memory-wall prob-

lem, and the memory-wall problem fused the impor-

tance of the memory-bound (see Subsection 4.1). Sec-

ond, the memory scale-up is easy to use and easier to

get better performance, and memory performance is

an important performance concern in engineering

practice.

 3.2 Memory and Computing Trade-Off

W = g(M)

The memory-bounded speedup model is the first

model to reveal that memory is a performance con-

straint of computing. Function provides a

quantifiable mathematical formulation for the trade-

off between memory and computing requirement. In

fact, the memory-scaling function g(M) reflects not

only the memory requirement but also the data reuse

rate of the underlying algorithm②.

From the algorithm design perspective, due to the

memory-wall problem, we need to reduce the memo-

ry requirement and increase the data reuse rate.

These two goals often conflict with each other and

need to be balanced. The function g unifies these two

concerns together and provides a unified way for bal-

anced design optimization.

From the architectural perspective, M is the mem-

ory requirement, and W is the corresponding compu-

tation requirement. Faster computation requires

faster memory; otherwise, its computing power will be

wasted while waiting for data. This is transferred in-

to how much architecture effort/resource should be

used for computing and how much should be for

memory. For computer micro-architecture, an imme-

diate design decision is how much the die area should

be used for computing and how much should be used

for cache[8]. Cache technology is widely used to miti-

gate the speed gap between the processor and the

main memory. Before 1989 there was no Intel proces-

68 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

②Loosely speaking, g(pM) = pW means each data is used exactly once, and g(pM) > pW means some data are used more than
once (reused).

sor with on-chip cache③. By 2010, as shown in Fig.1,

more than 80% of the die area of a chip is used for

caching and data, based on [9].

 4 Performance Fundamental

The memory-bounded speedup model was intro-

duced in 1990[2, 3]. Over the years, it has made im-

pacts in different aspects of computing, far beyond

scalable computing. In this section, we highlight some

of its impacts on the performance evaluation of mem-

ory systems and scalable computing. In the next two

sections, we will discuss its impacts on memory sys-

tem optimization and data-centric rethinking, respec-

tively.

 4.1 The Relation Between Memory-Bound

and Memory-Wall

p = 1

Since sequential computing is a special case of

parallel computing with , the concept of memo-

ry bound can be extended to sequential computing as

well. Four years after the memory-bounded concept

was introduced, and the memory-wall problem was

formally introduced in 1994[1]. It notices that the per-

formance gap between CPU and memory becomes

larger and larger and, therefore, CPU performance is

bounded by memory performance and the bound is

worsening every year. It calls for effort and solutions

to improve memory system performance④.

In order to bridge the performance gap between

processor and memory, memory hierarchy with cache

is introduced to hide the long delay of off-chip main

memory accesses. The smaller, faster, and more ex-

pensive cache is closer to the processor. This design

aims to provide a memory system that, in ideal, costs

almost as the memory devices and the performance is

almost as the cache. Memory hierarchy mitigates the

memory-wall effect. But, could a memory hierarchy

solve the memory-wall problem and memory-bound

constraint, not just mitigates it? To answer this ques-

tion, let us first ask: can we build a large memory sys-

tem to solve the memory-bound constraint? The an-

swer is no. Based on the memory-wall problem, the

gap between computing and memory becomes larger

and larger, and we cannot be bounded by the memo-

ry performance. Otherwise, can we build a large cache

to remove the memory-bound constraint? The an-

swer is also no. Cache has to be fast enough to match

the performance of CPU. It needs to find the data

quickly, hopefully in the first shot, and has no time to

calculate the location of the data. In practice, that

means it must be small in size. Since L1 must be

small, we need multiple levels of cache to match the

difference when the gap between CPU and memory is

large. Memory-bound says computing performance is

bounded by the memory performance and capacity.

The memory-wall problem says the performance gap

between CPU and memory becomes larger and larger.

Memory hierarchy mitigates the memory-wall prob-

lem but makes performance optimization more com-

plex. During the years, theoretical results have been

proposed for layered performance matching[11], and

software tools has been developed to measure memo-

ry-bound automatically[12].

Fig.2[13] shows the memory latency of the Intel

Xeon E5-2670 (Sandy Bridge) and Intel Xeon X5670

(Westmere). With the introduction of the memory hi-

erarchy, the memory latency function shows a four-

step ladder pattern. Each step corresponds to the L1

cache, L2 cache, L3 cache, and main memory, respec-

tively. The larger level is further away from the pro-

cess and has greater access latency. It shows that the

memory-bound constraint and memory-wall problem

is a global memory system performance issue, which is

more complicated to be understood and optimized in

a hierarchical memory system.

Random

8%
Routers

3%

Processors

3%

Memory

86%

Fig.1. Silicon area distribution of modern chips.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 69

③https://www.wikiwand.com/en/I486, Oct. 2022.
④Currently, on average, the DRAM memory performance is still about 400 times slower than that of a processing unit[10].

 4.2 The Generalized Speedup

W ∗

Based on the memory-bounded model, large paral-

lel computers have larger memories, and single-proces-

sor computers have smaller memories. How to run a

scaled workload on a single processor is a prob-

lem in practice. This leads us to rethink the defini-

tion of speedup.

The traditional definition of speedup is the ratio

of sequential execution time to parallel execution

time[2–5]. However, speedup should be the speed up of

parallel processing. That is parallel speed over sequen-

tial speedup. The traditional definition is correct un-

der the traditional assumption that the problem size

is fixed. With a fixed problem size, time reduction is

the same as speed up. With this understanding, Sun

and Gustafson[14] introduced a new definition of

speedup, the generalized speedup:

Generalized Speedup =
parallel execution speed

sequential execution speed
,

where speed is defined as the amount of work divided

by the execution time. The key point of generalized

speedup is that the parallel speed is the speed of solv-

ing a scaled-up problem size under the time con-

straint or memory constraint, and the sequential sin-

gle node speed is the speed of solving the original

work size. Therefore, the memory constraint will not

influence the sequential computing performance⑤.

When the execution time is fixed, the generalized

speedup becomes work increases, as shown in Fig.3.

Memory Size (byte)

Main Memory
24 GB DDR3-1333

Main Memory
32 GB DDR3-1600

L3 Cache 20 MB

L3 Cache 12 MB
L2 Cache 256 KB

L
a
te

n
c
y
 (

n
a
n
o
se

c
o
n
d
)

L1 Cache (D) 32 KB

Sandy Bridge

Westmere

102

101

100

102 103 104 105 106 107 108 109

Fig.2. Memory latency variation of Westmere and Sandy Bridge[13].





 

Memory-Bounded Speedup

Fixed Operation Cost

and Memory-Bounded

Fixed Operation

Cost and Fixed Time

 

  

  

  

  

 

 Memory-Bounded

Fixed Operation

Cost
or

Fixed Time

Fixed Size

Fig.3. Generalized speedup and its relations with speedup models.

70 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑤In this paper, we have used the term processor and node loosely and interchangeably. In the parallel computer architecture, a
node commonly refers to a processor/memory pair. The memory-bounded speedup model is a perfect match for node-based parallel
computers.

Therefore, the fixed-time speedup is also called sizeup.

When the operation cost is fixed for all kinds of work

or when the problem size is fixed, the generalized

speedup is the same as the traditional speedup. Fig.3

summarizes the relationship between the generalized

speedup, sizeup, traditional speedup, and memory-

bounded speedup[14].

 4.3 Scalability

Scalability is the ability to maintain parallel pro-

cessing gain when both the problem size and the sys-

tem size increase. Parallel efficiency is defined as par-

allel speedup divided by p, where p is the number of

parallel processors used for parallel processing[15]. The

definition of parallel efficiency is straightforward since

p is the ideal and perfect parallel performance gain

with p processors. A natural way to measure scalabili-

ty is to measure the ability to maintain parallel effi-

ciency. Kumar et al.[15, 16] introduced the concept of

isoefficiency. Isoefficiency measures how much work

must be increased on a larger machine in order for the

efficiency to remain constant.

p′

Isoefficiency is a correct approach. However, its

underlying speedup is still the traditional speedup and

may have the memory-bounded issue. In practice,

measuring the sequential execution time of large ap-

plications on a single node is either impossible due to

memory limitation or very slow if virtual memory is

supported. For scalable computing, the speedup

should use the generalized speedup, and the isoeffi-

ciency should be the isoefficiency of the generalized

speedup[17]. Maintaining the efficiency of the general-

ized speedup, in the meantime, is equal to maintain-

ing the average speed per computing node. With the

above observation of the generalized speedup, Sun

and Rover[18] proposed isospeed as a measurement of

scalability. Based on [18], an algorithm-machine com-

bination is scalable if its achieved average unit speed

can remain constant with the increasing number of

processors, provided the problem size is increased pro-

portionally. The average unit speed is the achieved

speed divided by the number of processors. By defini-

tion, the scalability function from system size p to

system size can be defined as:

ψ(p, p′) =
W/p

W ′/p′
=
p′ ×W

p×W ′
,

W ′

p′ p′ > p

where W is the initial workload executed when p pro-

cessors are employed, and is the scaled workload

executed when () processors are employed to

W ′

W ′ = p′×W

p
ψ(p, p′) = 1

W ′

p′
> W

p
ψ(p, p′) < 1

maintain the average unit speed. The workload is

determined by the isospeed constraint. In the ideal

situation, and . In general,

 and . An isospeed function closer

to 1 implies that the parallel system is highly scal-

able.

Scalability has many applications. One applica-

tion is to find the best range of an algorithm and to

find the performance crossing point of two different

algorithms[19, 20]. Range comparison compares the per-

formance of programs over a range of ensembles and

problem sizes based on scalability and crossing-point

analysis. It plays a crucial role in scalable computing.

Fig.4 demonstrates a performance range comparison

of the PDD (Paralled Diagonal Dominant) and paral-

lelized Thomas algorithm when the communication

speed varies[20]. From Fig.4, we can see that crossing

points exist and vary with data access/communica-

tion bandwidth.

0.00
0

0

2

8

P
ro

b
le

m
 S

iz
e

5

10

15

Time
(s)

0.25 0.50 0.75

Communication Speed (s/Mb)

1.00

Fig.4. Performance crossing due to scalability[20].

 4.4 Scalable Computing for Multi-Core

Architecture

Parallel processing can be carried out at different

levels. In order to overcome the limitations, including

the power consumption limitations, of uni-core archi-

tectures, multi-core architectures have been devel-

oped. Multi-core architectures integrate multiple pro-

cessing units (cores) onto one chip, thereby increas-

ing the computing capacity via parallel processing

while consuming less power. As microprocessor archi-

tectures enter the multi-core era, the scalability issue

is also carried into the multi-core architecture design.

At the 40 years of the Amdahl’ s Law, Hill and

Marty[21] analyzed multi-core scalability under the

Amdahl’s Law and pessimistically argued that the fu-

ture of scalable multi-core processors is dim. Sun et
al.[7, 22] analyzed multi-core scalability under fixed-

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 71

Wp

Wc

time and memory-bounded conditions. Assuming the

multi-core systems under study are symmetric, and

task W has two portions: data processing work, ,

and data access (movement) work, . Based on the

Gustafson’ s Law, the fixed-time speedup for multi-

core architectures is:

SFT(W
′
) = (1− f

′
) + p× f

′
,

W ′
p = p×Wp f

′
where and is defined as:

f
′
=

Wp

Wc +Wp

. (7)

Wc(7) shows if remains unchanged when the core

number and workload increase, then the multi-core

fixed-time speedup can increase linearly. The memo-

ry-bounded speedup model for multi-core architec-

tures is also introduced in [7, 22], which has a better

speedup than that of fixed-time speedup. Multi-core is

scalable for scalable computing.

Please notice that here the claim of multi-core is

scalable is under the assumption that data access de-

lay is unchanged when the core number and the prob-

lem size increase. This assumption is not a theoreti-

cal bound but is hard to achieve in engineering prac-

tice. In other words, multi-core is memory-con-

strained. Multi-core architectures have put more pres-

sure on the already lag-behind memory systems.

 5 Performance Optimization

In this section, we discuss the impacts of the

memory bound principle from the angles of algorithm

design, performance tool development, memory data

access optimization, and I/O data access optimiza-

tion, respectively, in each subsection.

 5.1 Memory-Bounded Algorithms and

Analysis

Over the years, more and more researchers in the

computing community have accepted the memory-

bounded concept and applied it in their study. A new

branch of algorithm analysis, called memory-bound

functions, was developed in the 2000s[23, 24]. In formal

(sequential) algorithm analysis, the challenge of the

memory-bounded analysis is no longer the scalability,

but the applications with unpredictable data require-

ments. The argument is that if we know the memory

need, we can provide an appropriate memory (in the-

ory). The difficulty is that we do not know the need.

Therefore, the theoretical arithmetic memory analy-

sis is focused on a memory-bound function whose exe-

cution time could be dominated by memory accesses

since they have unpredictable data requirements. The

(general) memory-bound functions have been proven

to be very effective in preventing the proliferation of

junk email by introducing an artificial cost in the

form of expensive memory accesses[23, 24]. By using

memory-bound functions, the email sender is asked to

pay the cost of the memory access latency imposed by

the memory-bound functions before the email is sent.

In addition to the new branch of theoretical “com-

plexity” analysis of unpredictable memory require-

ments, the memory-bounded and memory-constraint

analysis have been widely used in algorithm designs

for predictable memory requirements as well, in areas

such as graph search, dynamic programming, and dis-

tributed optimization, to list a few.

O(bd)

The A* algorithm[25] is a commonly-used path

search and graph traversal algorithm. One major

practical drawback is that it requires an explosion of

memory usage and a long execution time, as it stores

all generated nodes in memory. Several algorith-

ms[26–29] are proposed to improve the A* algorithm for

this purpose. Among them, the IDA* algorithm[26, 27]

combines the ideas of the A* algorithm and the itera-

tive deepening depth-first search algorithm. The key

feature of the IDA* algorithm is that it does not keep

track of every visited node, which saves significantly

on memory consumption. At each iteration, IDA*

performs a depth-first search, cutting off a branch if

its total cost exceeds a given threshold. A threshold is

set as the estimate of the cost of the initial state. If

no solution is found, the threshold is increased, and

the search is repeated until a solution is found. At

each iteration, the threshold used for the next itera-

tion is the minimum cost of all values exceeded the

current threshold. IDA* has a better memory usage

than A*. More specifically, IDA* has a polynomial

space complexity, O(bd), where b is the maximum

branching factor and d is the maximum depth of the

tree. Whereas the space complexity of A* is exponen-

tial and is .

Researchers in artificial intelligence and opera-

tions research have been studying decision making un-

der uncertainty. Seuken and Zilberstein introduced

the Memory-Bounded Dynamic Programming (MB-

DP) algorithm[30] to identify a small set of policies

that are actually useful for optimal or near-optimal

behavior and to avoid keeping too many policies in

memory. Furthermore, an improved version of MB-

72 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

DP[31] is proposed to improve the scalability of MB-

DP further by reducing the complexity with respect

to the number of observations.

With the development of big data and artificial

intelligence, distributed optimization has become es-

sential for solving large-scale problems. In order to re-

duce the memory requirements, a number of dis-

tributed optimization algorithms[32–36] have been pro-

posed that seek a trade-off between the quality of the

solutions and the memory consumption. Among them,

MB-DPOP[36] iteratively performs memory-bounded

utility propagation to use a customizable amount of

memory and to guarantee performance.

Memory-bounded analysis and memory-bounded

principle have been widely embedded into algorithm

design today. We have just discussed a few represent-

ing examples here.

 5.2 Performance Analysis Tools

Memory-bounded analysis tools are important for

practitioners, especially for software developers who

do not have the knowledge or expertise to analyze the

underlying algorithms of a given software system. In

many situations, software performance tools play an

important role in optimization.

π

β

The Roofline model[37, 38] is a performance analy-

sis model to calculate the performance bound for a

given computation on a specific target architecture.

The standard Roofline model (as illustrated in Fig.5)

considers machine peak performance , machine peak

bandwidth , and arithmetic intensity I of the appli-

cation to analyze the performance bound in GFLOPS.

Arithmetic Intensity (FLOPS/byte)

P
e
rf

o
rm

a
n
c
e
 (

G
F
L
O

P
S
)

Memory-Bound Compute-Bound

 
 



Fig.5. An example of the standard Roofline model[37, 38].

However, estimating the machine characteristics

required by Roofline analysis is time-consuming and

difficult. Even if machine characteristics can be esti-

mated, these are theoretical maximums that do not

necessarily reflect the actual software system perfor-

mance. In order to solve this problem, the Empirical

Roofline Tool (ERT)[12] is developed to determine ar-

chitecture characteristics and application kernels to

populate the Roofline model automatically. With the

help of ERT, software developers can measure perfor-

mance bound in practice, which provides them with

guidance on optimizing their code for maximum per-

formance, such as what types of parallelism are re-

quired and what compiler(s) to use.

 5.3 Modeling and Optimization of Memory

Systems

As pointed out in Subsection 4.1, the memory hi-

erarchy is adopted in modern computer systems to

mitigate the memory wall problem. In addition to

memory hierarchy, techniques that utilize data con-

currency and memory parallelism are also widely used

in modern processors and memory systems to reduce

memory access latency[39–41]. A large amount of data

concurrency exists in each layer of the memory hierar-

chy[42–45]. For better using this concurrency, data ac-

cess concurrency needs to be considered in memory

system modeling and optimization to utilize the exist-

ing memory concurrency.

C-AMAT (Concurrent-AMAT)[44] is a memory ac-

cess performance model that extends AMAT (aver-

age memory access time)[10] to quantitatively mea-

sure the combined impact of memory access locality

and concurrency with the consideration of all data ac-

cess overlapping. C-AMAT is defined as the average

memory access time with the consideration of concur-

rent hit and miss accesses. It can be calculated as the

number of memory active cycles divided by the num-

ber of memory accesses:

C-AMAT =
ω

α
,

ω

α

where represents the total number of cycles execut-

ed in which there is at least one outstanding memory

reference, and represents the total number of mem-

ory accesses.

Similar to AMAT, the C-AMAT model can be

calculated at each level of the memory hierarchy and

is recursive[41]. The C-AMAT model provides a new

perspective for cache optimization: data access con-

currency is as important as data locality. The princi-

ple of optimizing a memory system is not locality, lo-

cality, and locality, as some articles promoted. It is a

balanced design of data locality and concurrency. C-

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 73

AMAT has already found its applications in tradition-

al system optimizations, such as data replacement[40,

46] and prefetching schemes[39], and in new architec-

ture designs, such as PIM[47] and GPU[48].

λ li−1

ν

Memory hierarchy systems call for global perfor-

mance analysis and global performance optimization

of the overall performance of a memory hierarchy sys-

tem. Based on C-AMAT, an optimization method

named LPM (layered performance matching) is pre-

sented in [11]. The rationale of LPM is to reduce the

overall data access latency through the matching of

the data request rate and the data supply rate at

each layer of a memory hierarchy, with a balanced

consideration of data locality, data concurrency, and

overlapping of data accesses. Let LPMR(l) be the lay-

ered performance matching ratio at memory level l.
Let (l) be the request rate from the upper layer ,

and let (l) be the supply rate at level l. The layered

performance matching ratio is the ratio of the re-

quest rate and the supply rate between any two mem-

ory layers:

LPMR(l) =
λ(l)

ν(l)
.

Fig.6 shows a memory hierarchy with a three-level

cache and main memory. Each level receives access

requests from the upper level and responds with its

own data or the data grabbed from the lower level.

Based on the data access delay tolerance of the

user, LPM can calculate the required matching ratio

at each layer of the underlying memory hierarchy[11].

LPM transfers the global performance optimization

problem of a memory hierarchy to several relatively

simple local optimizations at different layers of the

memory hierarchy. It has real potential to reduce da-

ta access delay, as shown in the next subsection.

 5.4 Deep Memory and Storage Hierarchy

To address the memory-wall problem, the memo-

ry system has been undergoing extensive changes,

adopting new technologies and adding more layers to

the memory hierarchy, as shown in Fig.7. With the

adoption of new technologies, such as NVRAM (non-

volatile random access memory) and SSD, and adding

new layers between memory and storage, the bound-

ary of memory and storage becomes blurry. Storage

becomes a part of the memory system to handle the

CPU

L1 Cache

L2 Cache

Last-Level Cache (LLC)

Main Memory

(1): Request Rate from Computing Components
(1): Supply Rate of L1

(2): Request Rate from L1
(2): Supply Rate of L2

(3): Request Rate from L2
(3): Supply Rate of LLC

(4): Request Rate from LLC
(4): Supply Rate of Main Memory R

ed
u
ce

d
 M

em
o
ry

 A
cc

es
se

s

Fig.6. The layered performance matching.

Multi-Issue
Multi-Threading

Multi-Core

Speculative Execution

Runahead Execution

Pipelined Cache

Non-Blocking Cache

Data Prefetching

Write Buffer

Pipeline
Non-Blocking
Prefetching

Write Buffer

Parallel File
Systems

Out-of-Order Execution

Multi-Level Cache

Multi-Banked Cache

Multi-Channel

Multi-Rank

Multi-Bank

CPU

Processor
Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory (DRAM)

Persistent Memory (NVRAM)

Flash-Based SSD

HDD

Archival Storage (Tapes, ⋯)

Fig.7. Deep memory and storage hierarchy.

74 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

ever enlarged applications. This leads to the term:

Deep Memory and Storage Hierarchy (DMSH)[49, 50].

Storage devices are hundreds and thousands of

times slower than memory devices, making them the

weakest point of DMSH[51–53]. The good news is that

the LPM methodology has bundled it into the global

DMSH performance. On the other hand, because stor-

age devices are so slow, we can develop software solu-

tions to improve their performance. The LPM

methodology has linked the storage performance with

the global DMSH performance[11]. Based on the LPM

principle, a new, heterogeneous-aware, multi-tiered,

dynamic, and distributed I/O buffering system,

named Hermes[53, 54], is developed. We use the term

multi-tiers here, because under Hermes different mem-

ory/storage devices can be accessed concurrently in

hierarchical or horizontal fashion. Hermes enables,

manages, supervises, and, in some sense, extends I/O

buffering to integrate into the DMSH fully. Hermes

provides novel data placement policies to utilize all

memory and storage technologies efficiently. Addi-

tionally, Hermes adopts several novel techniques to

perform memory, metadata, and communication man-

agement in multi-tiered buffering systems. Perfor-

mance evaluations show Hermes dramatically speeds

up I/O, exceeding the performance of state-of-the-art

buffering platforms by more than 2x. The first ver-

sion of Hermes has been released under the HDF5 li-

brary by the HDF group as an open source⑥.

 6 Data-Centric Thinking and Data-Centric

Design

Big data applications have increased data velocity,

veracity, volume, and variety[55]. These four V charac-

teristics have put unprecedented pressure on memory

and storage systems. Even worse, from a computing

point of view, the pressure of big data applications is

not only from the four Vs but also from that they

have totally changed the way of computing. For ex-

ample, let us find the best travel path from city A to

city B. From the traditional computational thinking,

we first find all the roads from A to B, make a graph

based on the road-map, and then run the shortest-

path algorithm on the road-map to find the shortest

path from A to B. From the data-centric thinking,

however, the problem will be solved total differently.

To find the best path from A to B from a data-cen-

tric approach, we first record which path people used

most and then use it as the best one. If we use the

GoogleMap App, GoogleMap even can provide the es-

timated travel time of each path based on the recent

travels of other GoogleMap users. We can see that in

the data-centric solution, there is almost no comput-

ing but data gathering and processing. While compu-

tational thinking focuses on formulating a problem to

make it computationally solvable, data-centric think-

ing is for gathering and exploiting data to provide in-

sights[56]. This paradigm changing requires a rethink-

ing of computer architecture and computer systems.

Currently, there are no clear solutions for this

paradigm challenge, but improving data access and

processing ability certainly is part of the major con-

cern.

Intensive research has been conducted to address

the four V issues, and many point solutions exist. GPU

is a successful solution for graphic applications[57]. The

MapReduce data structure and MapReduce file sys-

tems are successful solutions for information retri-

eval[58]. AI chips are designed to address the data pro-

cessing needs of deep learning[59], and ASIC and FP-

GA methodologies are used to address different data

processing needs of different applica-tions[60, 61]. PIM

(Processing in Memory), NDP (Near-memory Data

Processing), and ISP (In-Storage Processing) architec-

tures are proposed to process data in memory, near

memory, and in storage, respectively, to reduce data

access time[62– 64]. From a system point of view, the

LPM methodology and the Sluice Gate theory are

proposed to reduce the data access delay as small as

possible[11, 65]. The list is long and more can be listed,

but the above are good enough to conclude our obser-

vations. These solutions are useful, but they are de-

signed for given applications and only work under cer-

tain conditions and environments. They can mitigate

the memory-wall problem but cannot solve it. Memo-

ry-bound remains. There is a call to rethink the fun-

damental computer system design to address the com-

puting paradigm change[56]. However, after 60 years of

rapid development, computer systems have become so

complex that any fundamental change in computer

architecture or operating system will be a hard task.

With a deep memory-storage hierarchy, the I/O sys-

tem is part of the enlarged memory system. In the fol-

lowing, we introduce a data-centric system design for

I/O systems.

Following the data-centric thinking, a new, dis-

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 75

⑥https://github.com/HDFGroup/hermes, Dec. 2022.

tributed, scalable, and adaptive I/O system, LABI-

OS[66], is developed to address the divergence in stor-

age architectures and reduce conflicting requirements.

In compute-centric systems, a program conducts com-

puting and fetches data when computing needs them.

In data-centric systems, computing is with the data

and can be carried out where the data is. LABIOS

follows the data-centric thinking, where each section

of data is labeled, and a label is a tuple of an opera-

tion and a pointer to the data. Therefore, the com-

puting is paired with the data and can be carried out

where the data is. The idea behind LABIOS is very

similar to that behind Amazon warehouses. I/O re-

quests are collected and optimized based on their la-

bels, and the operations are carried out by worker

pools at data warehouses. The workflow of LABIOS is

shown in Fig.8. LABIOS provides storage flexibility,

versatility, and agility due to labels and its decou-

pled data-centric architecture. With all its merits,

putting LABIOS in use requires the update of operat-

ing systems and file systems. This will be a long and

challenging process. The first operating system study

to support the LABIOS system appeared in Nov. 2022

at the SC2022 conference[67].

api::init()

Label Queue
Label

Dispatcher

Instruction

Data Worker Pool

Worker
#1

Worker
#2

Worker
#

Warehouse

api::fwrite()

api::fread()

api::get()

api::put()

L
IB

C
li
e
n
t

api::labio_read()

api::labio_wirte()

Worker Worker Worker

Worker Worker Worker

Worker Worker Worker

Fig.8. A logical overview of data operation under label.

 7 Conclusions

Professor Kai Hwang is a prominent scholar whose

textbooks have influenced several generations of com-

puter scientists and practitioners. In more than one of

his books[68, 69], he has introduced the memory-bound-

ed speedup model and named it the Sun-Ni’s Law. In

this study, we reviewed the memory-bounded princi-

ple, its history, and its impacts, and discussed its role

and potential in the big data era. Prof. Hwang’s text-

books have made a lasting influence, and the memo-

ry-bounded model has made its impacts on comput-

ing. We think this is the best way to honor Prof.

Hwang’s life long achievement and is the best way to

make our addition to this special issue.

The memory-bounded speedup model takes into

account the effect of memory on performance by re-

lating memory requirement to computational require-

ment. It reveals the memory constraint in perfor-

mance, and it sparks the memory-wall problem. The

memory-bounded concept has changed how algo-

rithms and software are designed. Moreover, more

memory optimization designs and performance mod-

els have been developed to mitigate the performance

gap between computing and memory systems.

We hope this study will provide a better under-

standing of the memory-bounded model and its impli-

cations, which will help us better understand and gain

new insights into memory system performance to pro-

mote data-centric thinking and to pave the way for

developing next-generation memory systems and opti-

mization tools.

References

 Wulf W A, McKee S A. Hitting the memory wall: Impli-

cations of the obvious. ACM SIGARCH Computer Archi-

tecture News, 1995, 23(1): 20-24. DOI: 10.1145/216585.

216588.

[1]

 Sun X H, Ni L M. Scalable problems and memory-bound-

ed speedup. Journal of Parallel and Distributed Comput-

ing, 1993, 19(1): 27-37. DOI: 10.1006/jpdc.1993.1087.

[2]

76 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1006/jpdc.1993.1087

 Sun X H, Ni L M. Another view on parallel speedup. In

Proc. the 1990 ACM/IEEE Conference on Supercomput-

ing, Nov. 1990, pp.324–333. DOI: 10.1109/SUPERC.1990.

130037.

[3]

 Amdahl G M. Validity of the single processor approach to

achieving large scale computing capabilities. In Proc. the

Spring Joint Computer Conference, Apr. 1967,

pp.483–485. DOI: 10.1145/1465482.1465560.

[4]

 Gustafson J L. Reevaluating Amdahl’s law. Communica-

tions of the ACM, 1988, 31(5): 532-533. DOI: 10.1145/

42411.42415.

[5]

 Bashe C J, Johnson L R, Palmer J H, Pugh E W. IBM’s

Early Computers. MIT Press, 1986.

[6]

 Sun X H, Chen Y. Reevaluating Amdahl’s law in the mul-

ticore era. Journal of Parallel and Distributed Computing,

2010, 70(2): 183-188. DOI: 10.1016/j.jpdc.2009.05.002.

[7]

 Pan C Y, Naeemi A. System-level optimization and

benchmarking of graphene PN junction logic system based

on empirical CPI model. In Proc. the IEEE International

Conference on IC Design & Technology, Jun. 2012. DOI:

10.1109/ICICDT.2012.6232850.

[8]

 Kogge P M. Hardware Evolution Trends of Extreme Scale

Computing. Technical Reprt, University of Notre Dame,

South Bend, 2011.

[9]

 Hennessy J L, Patterson D A. Computer Architecture: A

Quantitative Approach (6th edition). Elsevier, 2017.

[10]

 Liu Y H, Sun X H. LPM: A systematic methodology for

concurrent data access pattern optimization from a

matching perspective. IEEE Trans. Parallel and Dis-

tributed Systems, 2019, 30(11): 2478-2493. DOI: 10.1109/

TPDS.2019.2912573.

[11]

 Lo Y J, Williams S, Straalen B V, Ligocki T J, Cordery

M J, Wright N J, Hall M W, Oliker L. Roofline model

toolkit: A practical tool for architectural and program

analysis. In Proc. the 5th International Workshop on Per-

formance Modeling, Benchmarking and Simulation of

High Performance Computer Systems, Nov. 2014,

pp.129–148. DOI: 10.1007/978-3-319-17248-4_7.

[12]

 Saini S, Chang J, Jin H Q. Performance evaluation of the

Intel sandy bridge based NASA Pleiades using scientific

and engineering applications. In Proc. the 4th Interna-

tional Workshop on Performance Modeling, Benchmark-

ing and Simulation of High Performance Computer Sys-

tems, Nov. 2013, pp.25–51. DOI: 10.1007/978-3-319-

10214-6_2.

[13]

 Sun X H, Gustafson J L. Toward a better parallel perfor-

mance metric. Parallel Computing, 1991, 17(10/11): 1093-

1109. DOI: 10.1016/S0167-8191(05)80028-6.

[14]

 Kumar V, Singh V. Scalability of parallel algorithms for

the all-pairs shortest-path problem. Journal of Parallel

and Distributed Computing, 1991, 13(2): 124-138. DOI:

10.1016/0743-7315(91)90083-L.

[15]

 Kumar V, Grama A, Gupta A, Karypis G. Introduction

to Parallel Computing: Design and Analysis of Algo-

rithms. Benjamin-Cummings, 1994.

[16]

 Sun X H, Chen Y, Wu M. Scalability of heterogeneous

computing. In Proc. the International Conference on Par-

allel Processing (ICPP’05), Jun. 2005, pp.557–564. DOI:

10.1109/ICPP.2005.69.

[17]

 Sun X H, Rover D T. Scalability of parallel algorithm-ma-

chine combinations. IEEE Trans. Parallel and Distribut-

ed Systems, 1994, 5(6): 599-613. DOI: 10.1109/71.285606.

[18]

 Sun X H, Pantano M, Fahringer T. Integrated range com-

parison for data-parallel compilation systems. IEEE

Trans. Parallel and Distributed Systems, 1999, 10(5): 448-

458. DOI: 10.1109/71.770134.

[19]

 Sun X H. Scalability versus execution time in scalable

systems. Journal of Parallel and Distributed Computing,

2002, 62(2): 173-192. DOI: 10.1006/jpdc.2001.1773.

[20]

 Hill M D, Marty M R. Amdahl’s law in the multicore era.

Computer, 2008, 41(7): 33-38. DOI: 10.1109/MC.2008.209.

[21]

 Sun X H, Chen Y, Byna S. Scalable computing in the

multicore era. In Proc. the 2008 International Sympo-

sium on Parallel Architectures, Algorithms and Program-

ming, Sept. 2008.

[22]

 Dwork C, Goldberg A, Naor M. On memory-bound func-

tions for fighting spam. In Proc. the 23rd Annual Interna-

tional Cryptology Conference, Aug. 2003, pp.426–444.

DOI: 10.1007/978-3-540-45146-4_25.

[23]

 Abadi M, Burrows M, Manasse M, Wobber T. Moderate-

ly hard, memory-bound functions. ACM Trans. Internet

Technology, 2005, 5(2): 299-327. DOI: 10.1145/1064340.

1064341.

[24]

 Hart P E, Nilsson N J, Raphael B. A formal basis for the

heuristic determination of minimum cost paths. IEEE

Trans. Systems Science and Cybernetics, 1968, 4(2): 100-

107. DOI: 10.1109/TSSC.1968.300136.

[25]

 Korf R E. Depth-first iterative-deepening: An optimal ad-

missible tree search. Artificial Intelligence, 1985, 27(1):

97-109. DOI: 10.1016/0004-3702(85)90084-0.

[26]

 Korf R E, Reid M, Edelkamp S. Time complexity of itera-

tive-deepening-A*. Artificial Intelligence, 2001, 129(1/2):

199-218. DOI: 10.1016/S0004-3702(01)00094-7.

[27]

 Russell S. Efficient memory-bounded search methods. In

Proc. the 10th European Conference on Artificial intelli-

gence, Aug. 1992.

[28]

 Lovinger J, Zhang X Q. Enhanced simplified memory-

bounded a star (SMA*+). In Proc. the 3rd Global Confer-

ence on Artificial Intelligence, Oct. 2017, pp.202–212.

DOI: 10.29007/v7zc.

[29]

 Seuken S, Zilberstein S. Memory-bounded dynamic pro-

gramming for DEC-POMDPs. In Proc. the 20th Interna-

tional Joint Conference on Artifical Intelligence, Jan.

2007, pp.2009–2015.

[30]

 Seuken S, Zilberstein S. Improved memory-bounded dy-

namic programming for decentralized pomdps. arXiv:

1206.5295, 2012. https://arxiv.org/abs/1206.5295, Dec.

2022.

[31]

 Chen Z Y, Zhang W X, Deng Y C, Chen D D, Li Q.

RMB-DPOP: Refining MB-DPOP by reducing redun-

[32]

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 77

https://doi.org/10.1109/SUPERC.1990.130037
https://doi.org/10.1109/SUPERC.1990.130037
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1016/j.jpdc.2009.05.002
https://doi.org/1109/ICICDT.2012.6232850
https://doi.org/10.1109/TPDS.2019.2912573
https://doi.org/10.1109/TPDS.2019.2912573
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1016/S0167-8191(05)80028-6
https://doi.org/10.1016/0743-7315(91)90083-L
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/71.285606
https://doi.org/10.1109/71.770134
https://doi.org/10.1006/jpdc.2001.1773
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1145/1064340.1064341
https://doi.org/10.1145/1064340.1064341
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/S0004-3702(01)00094-7
https://doi.org/10.29007/v7zc
https://arxiv.org/abs/1206.5295, Dec. 2022
https://arxiv.org/abs/1206.5295, Dec. 2022

dant inferences. arXiv: 2002.10641, 2020. https://doi.org/

10.48550/arXiv.2002.10641, Dec. 2022.

 Brito I, Meseguer P. Improving DPOP with function fil-

tering. In Proc. the 9th International Conference on Au-

tonomous Agents and Multiagent Systems: Volume 1,

May 2010, pp.141–148.

[33]

 Petcu A, Faltings B. ODPOP: An algorithm for open/dis-

tributed constraint optimization. In Proc. the 21st Na-

tional Conference on Artificial Intelligence, Jul. 2006,

pp.703–708.

[34]

 Petcu A, Faltings B. A hybrid of inference and local

search for distributed combinatorial optimization. In

Proc. the IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT’07), Nov. 2007,

pp.342–348. DOI: 10.1109/IAT.2007.12.

[35]

 Petcu A, Faltings B. MB-DPOP: A new memory-bound-

ed algorithm for distributed optimization. In Proc. the

20th International Joint Conference on Artifical Intelli-

gence, Jan. 2007, pp.1452–1457.

[36]

 Williams S W. Auto-tuning performance on multicore

computers [Ph.D. Thesis]. University of California, Berke-

ley, 2008.

[37]

 Williams S, Waterman A, Patterson D. Roofline: An in-

sightful visual performance model for multicore architec-

tures. Communications of the ACM, 2009, 52(4): 65-76.

DOI: 10.1145/1498765.1498785.

[38]

 Lu X Y, Wang R J, Sun X H. APAC: An accurate and

adaptive prefetch framework with concurrent memory ac-

cess analysis. In Proc. the 38th IEEE International Con-

ference on Computer Design (ICCD), Oct. 2020,

pp.222–229. DOI: 10.1109/ICCD50377.2020.00048.

[39]

 Lu X Y, Wang R J, Sun X H. Premier: A concurrency-

aware pseudo-partitioning framework for shared last-level

cache. In Proc. the 39th IEEE International Conference

on Computer Design (ICCD), Oct. 2021, pp.391–394.

DOI: 10.1109/ICCD53106.2021.00068.

[40]

 Liu J, Espina P, Sun X H. A study on modeling and opti-

mization of memory systems. Journal of Computer Sci-

ence and Technology, 2021, 36(1): 71-89. DOI: 10.1007/

s11390-021-0771-8.

[41]

 Glew A. MLP yes! ILP no. In Proc. ASPLOS Wild and

Crazy Idea Session, Oct. 1998.

[42]

 Qureshi M K, Lynch D N, Mutlu O, Patt Y N. A case for

MLP-aware cache replacement. In Proc. the 33rd Interna-

tional Symposium on Computer Architecture (ISCA’06),

Jun. 2006, pp.167–178. DOI: 10.1109/ISCA.2006.5.

[43]

 Sun X H, Wang D W. Concurrent average memory ac-

cess time. Computer, 2014, 47(5): 74-80. DOI: 10.1109/

MC.2013.227.

[44]

 Najafi H, Lu X, Liu J, Sun X H. A generalized model for

modern hierarchical memory system. In Proc. Winter

Simulation Conference (WSC), Dec. 2022.

[45]

 Lu X, Wang R, Sun X H. CARE: A concurrency-aware

enhanced lightweight cache management framework. In

Proc. the 29th IEEE International Symposium on High-

[46]

Performance Computer Architecture (HPCA), Feb.

25–Mar. 1, 2023.

 Yan L, Zhang M Z, Wang R J, Chen X M, Zou X Q, Lu

X Y, Han Y H, Sun X H. CoPIM: A concurrency-aware

PIM workload offloading architecture for graph applica-

tions. In Proc. IEEE/ACM International Symposium on

Low Power Electronics and Design (ISLPED), Jul. 2021.

DOI: 10.1109/ISLPED52811.2021.9502483.

[47]

 Zhang N, Jiang C T, Sun X H, Song S L. Evaluating

GPGPU memory performance through the C-AMAT

model. In Proc. the Workshop on Memory Centric Pro-

gramming for HPC, Nov. 2017, pp.35–39. DOI: 10.1145/

3145617.3158214.

[48]

 Kannan S, Gavrilovska A, Schwan K, Milojicic D, Tal-

war V. Using active NVRAM for I/O staging. In Proc.

the 2nd International Workshop on Petascal Data Analyt-

ics: Challenges and Opportunities, Nov. 2011, pp.15–22.

DOI: 10.1145/2110205.2110209.

[49]

 Caulfield A M, Grupp L M, Swanson S. Gordon: Using

flash memory to build fast, power-efficient clusters for da-

ta-intensive applications. ACM SIGPLAN Notices, 2009,

44(3): 217-228. DOI: 10.1145/1508284.1508270.

[50]

 Reed D A, Dongarra J. Exascale computing and big data.

Communications of the ACM, 2015, 58(7): 56-68. DOI:

10.1145/2699414.

[51]

 Shalf J, Dosanjh S, Morrison J. Exascale computing tech-

nology challenges. In Proc. the 9th International Confer-

ence on High Performance Computing for Computational

Science, Jun. 2010. DOI: 10.1007/978-3-642-19328-6_1.

[52]

 Kougkas A, Devarajan H, Sun X H. Hermes: A heteroge-

neous-aware multi-tiered distributed I/O buffering sys-

tem. In Proc. the 27th International Symposium on High-

Performance Parallel and Distributed Computing, Jun.

2018, pp.219–230. DOI: 10.1145/3208040.3208059.

[53]

 Kougkas A, Devarajan H, Sun X H. I/O acceleration via

multi-tiered data buffering and prefetching. Journal of

Computer Science and Technology, 2020, 35(1): 92-120.

DOI: 10.1007/s11390-020-9781-1.

[54]

 Tissenbaum M, Sheldon J, Abelson H. From computa-

tional thinking to computational action. Communications

of the ACM, 2019, 62(3): 34-36. DOI: 10.1145/3265747.

[55]

 Liu Y H, Sun X H, Wang Y, Bao Y G. HCDA: From

computational thinking to a generalized thinking

paradigm. Communications of the ACM, 2021, 64(5): 66-

75. DOI: 10.1145/3418291.

[56]

 Owens J D, Houston M, Luebke D, Green S, Stone J E,

Phillips J C. GPU computing. Proceedings of the IEEE,

2008, 96(5): 879-899. DOI: 10.1109/JPROC.2008.917757.

[57]

 Dean J, Ghemawat S. MapReduce: Simplified data pro-

cessing on large clusters. Communications of the ACM,

2008, 51(1): 107-113. DOI: 10.1145/1327452.1327492.

[58]

 Momose H, Kaneko T, Asai T. Systems and circuits for

AI chips and their trends. Japanese Journal of Applied

Physics, 2020, 59(5): 050502. DOI: 10.35848/1347-4065/

ab839f.

[59]

78 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://doi.org/10.48550/arXiv.2002
https://doi.org/10.48550/arXiv.2002
https://doi.org/10.1109/IAT.2007.12
https://doi.org/1145/1498765.1498785
https://doi.org/10.1109/ICCD50377.2020.00048
https://doi.org/10.1109/ICCD53106.2021.00068
https://doi.org/10.1007/s11390-021-0771-8
https://doi.org/10.1007/s11390-021-0771-8
https://doi.org/10.1109/ISCA.2006.5
https://doi.org/10.1109/MC.2013.227
https://doi.org/10.1109/MC.2013.227
https://doi.org/10.1109/ISLPED52811.2021.9502483
https://doi.org/10.1145/3145617.3158214
https://doi.org/10.1145/3145617.3158214
https://doi.org/10.1145/2110205.2110209
https://doi.org/10.1145/1508284.1508270
https://doi.org/10.1145/2699414
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1145/3208040.3208059
https://doi.org/10.1007/s11390-020-9781-1
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3418291
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.35848/1347-4065/ab839f
https://doi.org/10.35848/1347-4065/ab839f

 Singh G, Alser M, Cali D S, Diamantopoulos D, Gómez-

Luna J, Corporaal H, Mutlu O. FPGA-based near-memo-

ry acceleration of modern data-intensive applications.

IEEE Micro, 2021, 41(4): 39-48. DOI: 10.1109/MM.2021.

3088396.

[60]

 Choi Y K, Santillana C, Shen Y J, Darwiche A, Cong J.

FPGA acceleration of probabilistic sentential decision dia-

grams with high-level synthesis. ACM Trans. Reconfig-

urable Technology and Systems, 2022. DOI: 10.1145/

3561514.

[61]

 Ghose S, Boroumand A, Kim J S, Gómez-Luna J, Mutlu

O. Processing-in-memory: A workload-driven perspective.

IBM Journal of Research and Development, 2019, 63(6):

Article No. 3. DOI: 10.1147/JRD.2019.2934048.

[62]

 Ghiasi N M, Park J, Mustafa H, Kim J, Olgun A, Goll-

witzer A, Cali D S, Firtina C, Mao H Y, Alserr N A,

Ausavarungnirun R, Vijaykumar N, Alser M, Mutlu O.

GenStore: A high-performance in-storage processing sys-

tem for genome sequence analysis. In Proc. the 27th ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems, Feb.

2022, pp.635–654. DOI: 10.1145/3503222.3507702.

[63]

 Mutlu O. Intelligent architectures for intelligent comput-

ing systems. In Proc. the 2021 Design, Automation &

Test in Europe Conference & Exhibition (DATE), Feb.

2021, pp.318–323. DOI: 10.23919/DATE51398.2021.9474

073.

[64]

 Sun X H, Liu Y H. Utilizing concurrency: A new theory

for memory wall. In Proc. the 29th International Work-

shop on Languages and Compilers for Parallel Comput-

ing, Sept. 2016, pp.18–23. DOI: 10.1007/978-3-319-52709-

3_2.

[65]

 Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS:

A distributed label-based I/O system. In Proc. the 28th

International Symposium on High-Performance Parallel

and Distributed Computing, Jun. 2019, pp.13–24. DOI:

10.1145/3307681.3325405.

[66]

 Logan L, Garcia J C, Lofstead J, Sun X H, Kougkas A.

LabStor: A modular and extensible platform for develop-

ing high-performance, customized I/O stacks in userspace.

In Proc. the ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and

Analysis (SC’22), Nov. 2022, pp.309–323.

[67]

 Hwang K, Xu Z W. Scalable Parallel Computing: Tech-

nology, Architecture, Programming. McGraw-Hill, 1998.

[68]

 Hwang K. Advanced Computer Architecture: Parallelism,

Scalability, Programmability. McGraw-Hill, 1993.

[69]

Xian-He Sun is a University Distin-

guished Professor and the Ron

Hochsprung Endowed Chair of the De-

partment of Computer Science at the

Illinois Institute of Technology (Illi-

nois Tech), Chicago. Before joining

Illinois Tech, he worked at DoE Ames

National Laboratory, at ICASE, NASA Langley Re-

search Center, at Louisiana State University, Baton

Rouge, and was an ASEE Fellow at Navy Research Lab-

oratories. Dr. Sun is an IEEE Fellow and is known for

his memory-bounded speedup model, also called Sun-

Ni's Law, for scalable computing. His research interests

include high-performance computing, memory and I/O

systems, and performance evaluation and optimization.

He has over 300 publications, six patents in these areas,

and is currently leading multiple federal-funded large

software development projects in HPC I/O systems. Dr.

Sun is the Editor-in-Chief of IEEE Transactions on Par-

allel and Distributed Systems, and a former chair of the

Computer Science Department at Illinois Tech, Chicago.

He received the Golden Core Award from IEEE CS So-

ciety in 2017, the Overseas Outstanding Contributions

Award from CCF in 2018, the ACM Karsten Schwan

Best Paper Award from ACM HPDC in 2019, the Ron

Hocksprung Endowed Chairship from Illinois Tech in

2020, the First Prize Best Paper Award from

ACM/IEEE CCGrid in 2021, and the CSE Distin-

guished Alumni Award from the Michigan State Univer-

sity in 2022. More information about Dr. Sun can be

found at his website: www.cs.iit.edu/~sunl.

Xiaoyang Lu is a Ph.D. candidate

at Illinois Institute of Technology (Illi-

nois Tech), Chicago, in the Depart-

ment of Computer Science, advised by

Dr. Xian-He Sun. He holds his B.E.

degree in electronic science and tech-

nology from Zhejiang University,

Hangzhou, in 2015, and his M.S. degree in computer en-

gineering from New York University, New York, in

2017. His research focuses on computer architecture,

memory performance modeling, memory performance

optimizations, and ML-assisted computer architectures.

He is currently a member of the Scalable Computing

Software (SCS) Laboratory at Illinois Tech.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 79

https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1145/<linebreak/>3561514
https://doi.org/10.1145/<linebreak/>3561514
https://doi.org/10.1147/JRD.2019.2934048
https://doi.org/10.1145/3503222.3507702
https://doi.org/10.23919/DATE51398.2021.9474073
https://doi.org/10.23919/DATE51398.2021.9474073
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1145/3307681.3325405

	1 Introduction
	2 The Amdahl’s Law and ScalableComputing
	2.1 The Amdahl’s Law
	2.2 Scalable Computing and the Fixed-Time Speedup

	3 Memory-Bounded Speedup: The Sun-Ni’s Law
	3.1 The Memory-Bounded Speedup
	3.2 Memory and Computing Trade-Off

	4 Performance Fundamental
	4.1 The Relation Between Memory-Bound and Memory-Wall
	4.2 The Generalized Speedup
	4.3 Scalability
	4.4 Scalable Computing for Multi-Core Architecture

	5 Performance Optimization
	5.1 Memory-Bounded Algorithms and Analysis
	5.2 Performance Analysis Tools
	5.3 Modeling and Optimization of Memory Systems
	5.4 Deep Memory and Storage Hierarchy

	6 Data-Centric Thinking and Data-Centric Design
	7 Conclusions
	References

