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Abstract    With the surge of big data applications and the worsening of the memory-wall problem, the memory system,

instead of the computing unit, becomes the commonly recognized major concern of computing. However, this “memory-

centric ”  common understanding  has  a  humble  beginning.  More  than  three  decades  ago,  the  memory-bounded  speedup

model is the first model recognizing memory as the bound of computing and provided a general bound of speedup and a

computing-memory trade-off formulation. The memory-bounded model was well received even by then. It was immediate-

ly introduced in several advanced computer architecture and parallel computing textbooks in the 1990’s as a must-know

for scalable computing. These include Prof. Kai Hwang’s book “Scalable Parallel Computing” in which he introduced the

memory-bounded speedup model as the Sun-Ni’s Law, parallel with the Amdahl’s Law and the Gustafson’s Law. Through

the years, the impacts of this model have grown far beyond parallel processing and into the fundamental of computing. In

this article, we revisit the memory-bounded speedup model and discuss its progress and impacts in depth to make a unique

contribution to this special issue, to stimulate new solutions for big data applications, and to promote data-centric think-

ing and rethinking.

Keywords    memory-bounded speedup, scalable computing, memory-wall, performance modeling and optimization, da-

ta-centric design

 

 1    Introduction

The  rapid  advancement  in  computing  technology

has changed the lifestyle of human society. The wide

adaptation  of  mobile  devices,  wireless  communica-

tions,  and Internet of  Things (IoT) has not only im-

proved the quality of  life  but also changed the land-

scape of  computing.  Traditionally,  computers are de-

signed for computing, meaning crunching numbers. A

scientific  simulation  can  run  a  program  loop  many

times  before  it  converges,  where  computing  power

means the power of number crunching. Internet appli-

cations,  such  as  social  networks,  online  search,  and

other  big  data  applications,  are  very  different.  They

require massive data movement, collection, and man-

agement  but  little  number  crunching.  Based  on  the

infamous  memory-wall  problem[1],  the  memory  sys-

tem is  a  weak point  of  computing systems.  Big  data

applications  have  put  even  more  pressure  on  the  al-

ready  lagging  memory  system,  making  it  the  most

concerned  performance  bottleneck  of  computing  at

the current time. Improving data access time is a gen-

erally  agreed  research  issue  facing  the  computing

community  today.  Intensive  research  has  been  done

through  the  years,  from  developing  fast  hardware

memory  devices  to  optimizing  existing  memory  sys-

tems,  and  from  embedding  processing  in  memory  to

building totally different data-centric computer archi-

tecture.  But  the  memory-wall  problem  remains  un-

solved and is getting worse.

In [1], Wulf and McKee observed that the perfor-

mance gap between CPU and memory becomes larg-

er and larger, which is referred to as the memory-wall

problem.  Before  the  memory-wall  problem,  in  1990

the  memory-bounded  model  stated  that  memory  is

the  bound  of  computing  when  the  problem  size  is

large[2, 3].  The  memory-bounded  model  compounded

with the memory-wall  problem, and then compound-
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ed with the surging of big data applications, it easily

makes the memory system the most concerned perfor-

mance bottleneck of a computing system. To make it

worse,  the  conventional  computing  system  design

principles  were  developed  in  the  1960s  and  1970s.

They  are  computing-centric  and  optimized  for  CPU

utilization  and  performance.  To  lift  memory  systems

as  a  primary  performance  concern  may require  a  to-

tal  rethinking  of  computer  system  designs,  including

the  rethinking  of  computer  architecture  and  operat-

ing  system  designs.  That  is  an  uneasy  task.  In  this

paper,  we  will  review  the  concept  of  the  memory-

bounded  speedup  model,  study  its  relationship  with

the memory-wall problem, investigate how it has been

used in practice to reduce memory access delays, un-

derstand  its  impacts,  and  explore  new  opportunities.

We hope this study can lead to a better understand-

ing of memory system performance and stimulate new

ideas  and  methodologies  to  address  the  memory-wall

problem.

The memory-bounded model is first introduced for

parallel  computing,  where  more  than  one  computing

element  works  together  to  solve  one  common  prob-

lem. Today, parallel computing is prevalent. Even cell

phones  have  been  equipped  with  multi-core  proces-

sors  for  better  performance.  Parallel  processing  is  a

must-know  for  anyone  interested  in  computer  sys-

tems. In this paper, we first review the three laws for

parallel processing, i.e., the Amdahl’s Law[4], the Gus-

tafson’ s  Law[5],  and  the  Sun-Ni’ s  Law[2, 3],  and  then

discuss  and  investigate  the  impacts  of  the  Sun-Ni’ s
Law①.  The  Amdahl’ s  Law  presents  a  limitation  of

parallel  processing.  The  Gustafson’ s  Law  introduces

the concept of scalable computing. The Sun-Ni’s Law

states that memory is a constraint of parallel comput-

ing.  Revisiting  the  memory-bounded  speedup  model

and understanding its full  potential  will  benefit com-

puting in general in the big data era.

The  rest  of  this  paper  is  organized  as  follows.  In

Section 2, we introduce the background knowledge of

parallel computing, the Amdahl’s Law, and the scala-

ble computing concept. Section 3 introduces the mem-

ory-bounded speedup model and its relationship with

the  fixed-size  and  fixed-time  speedup  model.  The

study  on  memory  system  performance,  optimization,

and redesign and rethinking are given in Sections 4, 5,

and 6, respectively. Finally, we conclude the paper in

Section 7.

 2    The Amdahl’s Law and Scalable

Computing

Ti

T1

Parallel processing is for performance gain. Perfor-

mance  evaluation  is  essential  for  parallel  processing.

Speedup is the most used performance metric for par-

allel processing, which is defined as sequential execu-

tion time over the parallel execution time of the pro-

gram.  Let  be  the  time  required  to  complete  the

workload  in  parallel  on i processors,  where  is  the

execution  time  on  one  processor.  The  speedup  of  a

parallel  program  with p identical  processors  is  de-

fined as: 

S =
T1

Tp

. (1)

Parallel processing has overhead, or degradations,

in a more formal term. There are four main degrada-

tions  of  parallel  processing.  They  are  uneven  work-

load distribution (load imbalance), communication de-

lays,  synchronization  costs,  and  extra  computation.

These degradations are applications dependent. They

could vary largely from application to application and

from computer system to computer system. It is very

important  to  understand  and  optimize  parallel  pro-

cessing for better performance.

 2.1    The Amdahl’s Law

Gene Amdahl is one of the most famous comput-

er  architects  in  computing  history[4].  He  was  the  ar-

chitect of the IBM mainframe, the dominant comput-

er  in  the  1960s  and  1970s.  His  architectural  design

principle, also known as the Amdahl’s Law, which can

be  summarized  as  follows[4]:  ``The  execution  time  of

any code always has two portions; portion 1 is not af-

fected by architecture enhancement, and portion 2 is

affected by the enhancement. Then, based on this as-

sumption,  after  the  architecture  enhancement,  por-

tion  1  will  be  unchanged,  and  portion  2  will  be  im-

proved''. Therefore, 

Execution timenew = Execution timeP1-old +
Execution timeP2-new.

Since  the execution time of  portion 1 will  not  be re-

duced, after the enhancement, it may become the per-

formance bottleneck, and enhancing portion 2 further

may not help the overall performance. The Amdahl’s
Law of the architectural design is a law that calls for

a balanced architectural design.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 65

①In this paper we will use the Sun-Ni’s Law and memory-bounded speedup interchangeably.



Applying the above Amdahl’s Law to parallel pro-

cessing, and assuming that portion 1 is the sequential

processing  portion  that  cannot  be  parallelized,  and

portion  2  is  the  parallel  processing  portion  that  can

be perfectly parallelized, we get the Amdahl’s Law for

parallel processing: 

Execution timenew

= a× Execution timeold + (1− a)× Execution timeold
p

,

where a is  the  percent  of  sequential  execution  work-

load  which  cannot  be  parallelized  and p is  the  num-

ber  of  processors  for  parallel  processing.  Recall  that

the new is parallel processing time and the old is se-

quential processing time, we get: 

Tp = a× T1 + (1− a)× T1

p
.

Substituting it into (1), we get: 

S =
T1

Tp

=
1

a+
1− a

p

. (2)

10 10

(2) is known as the Amdahl’s Law (for parallel pro-

cessing)[4]. The Amdahl’s Law shows that the speedup

of (2) has an upper bound of 1/a. Assuming that the

sequential fraction is 10%, a very reasonable number,

no  matter  how  many  processors  are  used,  the  upper

bound  of  speedup  is .  The  speedup  of  is  under

the assumption that there is no other parallel process-

ing overhead except the sequential execution part. In

practice, with the consideration of parallel processing

overhead,  the  actual  speedup  will  be  even  less.  The

Amdahl’s Law gives a pessimistic upper bound of par-

allel processing. Due to the influence of the Amdahl’s
Law,  for  a  long  time,  all  the  supercomputers  only

have no more than eight computing nodes[6].

 2.2    Scalable Computing and the Fixed-Time

Speedup

The  pessimistic  view  toward  parallel  computing

was changed when John Gustafson and his colleagues

published their bombshell results in 1988 in the SIAM

Journal  on  Scientific  and  Statistical  Computing,  in

which  they  achieved  more  than  one  thousand  speed-

ups  on  three  different  scientific  applications[5].  These

results  are  real  but  in  conflict  with  the  Amdahl’ s
Law. Their  experiments are conduced under a differ-

ent assumption of the Amdahl’s Law, which leads to

the  concept  of  scalable  computing.  The  argument  of

Gustafson  is  that  when  we  have  more  computing

power, it may not be necessary for us to solve a giv-

en  problem  faster;  instead,  we  may  like  to  solve  a

larger problem which otherwise cannot be solved in a

given time.  For instance,  for  weather forecasts,  if  we

have a more powerful  machine,  we may not want to

give the forecast early at 5 p.m. but like to add more

parameters  and  more  computations  into  the  weather

simulation  for  a  more  accurate  solution  within  the

same  time.  This  argument  applies  to  any  real-time

applications, such as missile control or tsunami warn-

ing  systems.  The  argument  that  the  problem  size

should  increase  with  computing  power  for  many  ap-

plications leads to the concept of scalable computing.

Since  Gustafson  used  fixed  execution  time  to  con-

strain  the  problem  size  scaling[5],  he  introduced  the

fixed-time speedup model.

W ′

SFT(W
′)

The fixed-time speedup model argues that the size

of  the  problem  should  scale  up  with  the  increase  in

computing power within a given time[5]. Let W be the

amount of original work, and  be the total amount

of scaled work. The fixed-time speedup  is de-

fined as: 

SFT(W
′) =

T1(W
′)

Tp(W ′)
. (3)

W ′

T1(W ) = Tp(W
′)

Assume that the time used for sequential process-

ing of original workload W is the same as the time re-

quired  for  parallel  processing  of  scaled  workload 

with p processors.  The  condition 

must be satisfied. Hence, (3) becomes: 

SFT(W
′) =

T1(W
′)

T1(W )
.

W1 Wp

1− a

W ′
1 =W1 = a×W

W ′
p = p×Wp = (1− a)× p×W

SFT(W
′)

Following the Amdahl’s Law, we assume the origi-

nal workload W only consists of two parts, a sequen-

tial  part  and  a  perfectly  parallel  part .  Recall

that a is  the sequential  portion of  the original  work-

load and ( ) is the parallel portion of the original

workload.  Let  us  also  assume  that  the  scale  of  the

workload is  on the parallel  processing part  only,  i.e.,

.  If  there are p processors available

then  they  can  do p times  more  work  than  a  single

processor  could  do.  Therefore,  the  parallel  work  of

scaled  workload  is: .

Without  considering  any  overhead,  the  fixed-time

speedup  becomes: 

SFT(W
′) =

a×W + (1− a)× p×W

W
= a+ (1− a)× p.

(4)

(4) is known as Gustafson’s scaled speedup[5]. Ba-

sed  on (4),  the  fixed-time speedup will  increase  with
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the number of  processors  without any inherent  theo-

retical upper bound. This simple formula is very pow-

erful. It shows the potential of parallel computing. It

got the attention of Wall Street. Wall Street Journal

reported Gustafson’s work and recognized that the fu-

ture of parallel computing is bright. All stocks in the

parallel  computing  industry  were  boosted.  The  scal-

able  computing  concept  has  changed  the  history  of

parallel computing and computing in general.

In the Amdahl’s Law, an execution workload does

not change with the improvement of computing pow-

er.  Therefore,  after  the  fixed-time  speedup  is  intro-

duced,  it  is  also  known  as  fixed-size  speedup.  Many

people  call  fixed-size  speedup  Strong  Scaling  since  it

only  scales  up  the  number  of  processors  but  not  the

problem size,  and  call  any  scalable  computing  Weak

Scaling. In fact, the Amdahl’s Law shows Strong Scal-

ing does not scale if it has a sequential processing por-

tion,  and  the  Gustafson’ s  Law  shows  Weak  Scaling

can  scale  up  with no  limitation  under  the  speedup

measurement.

 3    Memory-Bounded Speedup: The Sun-Ni’s
Law

While (4) successfully  puts  the  end  of  the  Am-

dahl’s Law for scalable computing applications, as the

Amdahl’s  Law, it  does not consider the parallel  pro-

cessing  overheads.  Therefore,  how  to  achieve  a  good

speedup in engineering practice is still a dilemma fac-

ing the high-performance computing (HPC) communi-

ties.  However,  this  time  we  call  for  the  development

of engineering solutions to address these overheads in-

stead of hopelessly facing an inherent unsolvable per-

formance  upper  bound.  In  addition  to  these  over-

heads,  researchers  quickly  noticed  another  constraint

for  scalable  computing,  the  memory  capacity[2, 3, 7].

When the problem size is larger than the memory sys-

tem  can  support,  the  performance  will  become  ex-

tremely  low,  and there  will  be  no  parallel  processing

gain.

In practice, memory is a costly resource and often

limits  the  increase  of  problem  size.  The  memory-

bounded speedup model,  also  known as  the Sun-Ni’s
Law[2, 3], is  introduced,  which  considers  memory  as

the constraint of scalable computing rather than exe-

cution time.  Like  the  fixed-time speedup,  the  memo-

ry-bounded  speedup  scales  up  the  problem  size.  The

difference is that in memory-bounded speedup, memo-

ry  capacity,  rather  than  execution  time,  is  the  con-

straint of the problem size scaling. In memory-bound-

ed  speedup,  the  scaled  problem  size  (workload)  that

can  be  solved  within  a  parallel  computing  system  is

limited  by  the  amount  of  memory  available  on  the

system.

 3.1    The Memory-Bounded Speedup

W ∗

SMB(W
∗)

Let  be  the  total  amount  of  scaled  workload

under  a  memory  capacity  constraint.  The  memory-

bounded speedup  is defined as: 

SMB(W
∗) =

T1(W
∗)

Tp(W ∗)
.

Let g be a function to denote the relationship be-

tween memory requirement and workload. We have: 

W = g(M),

and 

M = g−1(W ),

where W and M are  the  workload  and  the  memory

capacity of a single processor, respectively.

W ∗

Assuming that the number of processors and their

associated memory are increased in pair,  with p pro-

cessors, the total available memory capacity becomes

pM.  Therefore,  under  the  memory-bounded  con-

straint, the scaled workload  is determined by: 

W ∗ = g(pM) = g(pg−1(W )).

W ∗

W ∗
1

W ∗
p

1− a

W1 =W ∗
1 a×W

Following  the  same  assumption  as  the  Amdahl’ s
Law  and  the  Gustafson’ s  Law,  we  assume  only

contains  two  parts,  a  sequential  part  and  a  per-

fectly  parallel  part .  Recall  that a is  the  sequen-

tial portion of the workload and ( ) is the paral-

lel  portion  of  the  workload.  We  assume  the  scale  of

the  workload  is  in  the  parallel  part  only,  i.e.,

 = .  With  a  similar  reduction  as  the

fixed-time  speedup,  we  get  the  memory-bounded

speedup: 

SMB(W
∗) =

a×W + (1− a)× g(pM)

a×W +
(1− a)× g(pM)

p

. (5)

W ∗

Now,  the  question  is  how  we  find  the  memory-

scaling function g. In general, finding the function g is
application-dependent and is a state-of-the-art. Inter-

ested  readers  can  read Section 5 for  memory-bound

analysis  methods  and  tools.  However,  since  in  prac-

tice  most  algorithms  are  with  polynomial  time  com-

plexities,  the  memory-scaling  function g between M
and  often is a polynomial function or approximat-
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g(x) = c× xb

ḡ

ḡ(x) = xb

g(pM) c× (pM)b pb × c×M b pb × g(M)

ḡ(p)× g(M)

ed as a polynomial function. For scale-up analysis, we

only need to consider the most significant term of the

polynomial expression. That is, we can consider g as a

power  function ,  where c is  a  real  con-

stant and b is a ration number. And  is a pair func-

tion  of g with  coefficient  of  1, .  We  have

 =  =  =  =

. Therefore, (5) can be simplified as: 

SMB(W
∗) =

a×W + (1− a)× ḡ(p)×W

a×W +
(1− a)× ḡ(p)×W

p

=
a+ (1− a)× ḡ(p)

a+
(1− a)× ḡ(p)

p

.

(6)

2k3 3k2

k × k

We use matrix multiplication as an example to il-

lustrate  how  to  calculate  the  memory-bounded

speedup. In dense matrix multiplication, the multipli-

cation needs  computation and  memory, where

k is  the  dimension  of  the  two  source  matrices.

Therefore, 

g(M) = 2×
(√

M

3

)3

=
2

3
3

2

×M
3

2 ,

and 

ḡ(p) = p
3

2 .

Following (6),  the  memory-bounded speedup for  ma-

trix multiplication is: 

SMB =
a+ (1− a)× p

3

2

a+ (1− a)× p
1

2

.

0.1 16For a =  and p = ,  the memory-bounded spee-

dup is: 

SMB =
0.1 + 0.9× 16

3

2

0.1 + 0.9× 16
1

2

≈ 15.595.

16 16Recall that the perfect speedup is  with  proces-

sors. Dense matrix-matrix multiply can achieve a very

high speedup based on memory-bounded speedup.

g(pM) =W

g(pM) = pW

The  memory-bounded  speedup  has  linked  the

fixed-time  and  fixed-size  speedup  together.  When

, the memory-bounded speedup model re-

solves to the Amdahl’s Law with a fixed problem size.

If ,  then  the  memory-bounded  speedup

model is identical to the Gustafson’s Law with a fixed

execution  time.  In  general,  computational  workload

g(pM)

> pW

g(pM) > pW

grows faster than the memory requirement; thus 

,  and  the  memory-bounded  speedup  model  of-

fers  a  higher  speedup  than  fixed-size  and  fixed-time

speedup. Since  in general, the impact of

the sequential portion may decrease under the memo-

ry-bounded speedup, indicating that a higher speedup

would be possible with a larger system.

The  memory-bounded  speedup  has  become  more

and more popular due to two reasons. First, the mem-

ory-bounded  model  sparked  the  memory-wall  prob-

lem,  and  the  memory-wall  problem fused  the  impor-

tance of the memory-bound (see Subsection 4.1). Sec-

ond, the memory scale-up is easy to use and easier to

get  better  performance,  and  memory  performance  is

an  important  performance  concern  in  engineering

practice.

 3.2    Memory and Computing Trade-Off

W = g(M)

The  memory-bounded  speedup  model  is  the  first

model  to  reveal  that  memory  is  a  performance  con-

straint of computing. Function  provides a

quantifiable  mathematical  formulation  for  the  trade-

off  between  memory  and  computing  requirement.  In

fact,  the  memory-scaling  function g(M)  reflects  not

only the memory requirement but also the data reuse

rate of the underlying algorithm②.

From the algorithm design perspective, due to the

memory-wall  problem,  we need to  reduce  the  memo-

ry  requirement  and  increase  the  data  reuse  rate.

These  two  goals  often  conflict  with  each  other  and

need to be balanced. The function g unifies these two

concerns together and provides a unified way for bal-

anced design optimization.

From the architectural perspective, M is the mem-

ory requirement, and W is the corresponding compu-

tation  requirement.  Faster  computation  requires

faster memory; otherwise, its computing power will be

wasted while waiting for data. This is transferred in-

to  how  much  architecture  effort/resource  should  be

used  for  computing  and  how  much  should  be  for

memory.  For  computer  micro-architecture,  an  imme-

diate design decision is how much the die area should

be used for computing and how much should be used

for cache[8]. Cache technology is  widely used to miti-

gate  the  speed  gap  between  the  processor  and  the

main memory. Before 1989 there was no Intel proces-
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sor with on-chip cache③. By 2010, as shown in Fig.1,

more  than  80% of  the  die  area  of  a  chip  is  used  for

caching and data, based on [9].

 4    Performance Fundamental

The  memory-bounded  speedup  model  was  intro-

duced  in  1990[2, 3].  Over  the  years,  it  has  made  im-

pacts  in  different  aspects  of  computing,  far  beyond

scalable computing. In this section, we highlight some

of its impacts on the performance evaluation of mem-

ory systems and scalable computing. In the next two

sections,  we  will  discuss  its  impacts  on  memory  sys-

tem optimization and data-centric rethinking, respec-

tively.

 4.1    The  Relation  Between  Memory-Bound

and Memory-Wall

p = 1

Since  sequential  computing  is  a  special  case  of

parallel  computing with ,  the concept of  memo-

ry bound can be extended to sequential computing as

well.  Four  years  after  the  memory-bounded  concept

was  introduced,  and  the  memory-wall  problem  was

formally introduced in 1994[1]. It notices that the per-

formance  gap  between  CPU  and  memory  becomes

larger and larger and, therefore,  CPU performance is

bounded  by  memory  performance  and  the  bound  is

worsening every year. It calls for effort and solutions

to improve memory system performance④.

In  order  to  bridge  the  performance  gap  between

processor and memory, memory hierarchy with cache

is  introduced to  hide the long delay of  off-chip main

memory  accesses.  The  smaller,  faster,  and  more  ex-

pensive  cache  is  closer  to  the  processor.  This  design

aims to provide a memory system that, in ideal, costs

almost as the memory devices and the performance is

almost as the cache. Memory hierarchy mitigates the

memory-wall  effect.  But,  could  a  memory  hierarchy

solve  the  memory-wall  problem  and  memory-bound

constraint, not just mitigates it? To answer this ques-

tion, let us first ask: can we build a large memory sys-

tem to  solve  the  memory-bound constraint?  The  an-

swer  is  no.  Based  on  the  memory-wall  problem,  the

gap  between  computing  and  memory  becomes  larger

and larger, and we cannot be bounded by the memo-

ry performance. Otherwise, can we build a large cache

to  remove  the  memory-bound  constraint?  The  an-

swer is also no. Cache has to be fast enough to match

the  performance  of  CPU.  It  needs  to  find  the  data

quickly, hopefully in the first shot, and has no time to

calculate  the  location  of  the  data.  In  practice,  that

means  it  must  be  small  in  size.  Since  L1  must  be

small,  we need multiple  levels  of  cache to match the

difference when the gap between CPU and memory is

large.  Memory-bound  says  computing  performance  is

bounded  by  the  memory  performance  and  capacity.

The  memory-wall  problem says  the  performance  gap

between CPU and memory becomes larger and larger.

Memory  hierarchy  mitigates  the  memory-wall  prob-

lem  but  makes  performance  optimization  more  com-

plex.  During  the  years,  theoretical  results  have  been

proposed  for  layered  performance  matching[11],  and

software tools has been developed to measure memo-

ry-bound automatically[12].

Fig.2[13] shows  the  memory  latency  of  the  Intel

Xeon E5-2670 (Sandy Bridge)  and Intel  Xeon X5670

(Westmere). With the introduction of the memory hi-

erarchy,  the  memory  latency  function  shows  a  four-

step ladder pattern. Each step corresponds to the L1

cache, L2 cache, L3 cache, and main memory, respec-

tively. The larger level is further away from the pro-

cess and has greater access latency. It shows that the

memory-bound  constraint  and  memory-wall  problem

is a global memory system performance issue, which is

more complicated to be understood and optimized in

a hierarchical memory system.
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Fig.1.  Silicon area distribution of modern chips.
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③https://www.wikiwand.com/en/I486, Oct. 2022.
④Currently, on average, the DRAM memory performance is still about 400 times slower than that of a processing unit[10].



 4.2    The Generalized Speedup

W ∗

Based on the memory-bounded model, large paral-

lel computers have larger memories, and single-proces-

sor  computers  have  smaller  memories.  How to  run  a

scaled  workload  on  a  single  processor  is  a  prob-

lem  in  practice.  This  leads  us  to  rethink  the  defini-

tion of speedup.

The  traditional  definition  of  speedup  is  the  ratio

of  sequential  execution  time  to  parallel  execution

time[2–5]. However, speedup should be the speed up of

parallel processing. That is parallel speed over sequen-

tial  speedup. The traditional definition is  correct un-

der  the  traditional  assumption  that  the  problem size

is fixed. With a fixed problem size, time reduction is

the  same as  speed up.  With this  understanding,  Sun

and  Gustafson[14] introduced  a  new  definition  of

speedup, the generalized speedup: 

Generalized Speedup =
parallel execution speed

sequential execution speed
,

where speed is defined as the amount of work divided

by  the  execution  time.  The  key  point  of  generalized

speedup is that the parallel speed is the speed of solv-

ing  a  scaled-up  problem  size  under  the  time  con-

straint or memory constraint, and the sequential sin-

gle  node  speed  is  the  speed  of  solving  the  original

work size.  Therefore,  the memory constraint  will  not

influence the sequential computing performance⑤.

When the execution time is fixed, the generalized

speedup  becomes  work  increases,  as  shown  in Fig.3.
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Fig.2.  Memory latency variation of Westmere and Sandy Bridge[13].
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Fig.3.  Generalized speedup and its relations with speedup models.
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⑤In this paper, we have used the term processor and node loosely and interchangeably. In the parallel computer architecture, a
node commonly refers to a processor/memory pair. The memory-bounded speedup model is a perfect match for node-based parallel
computers.



Therefore, the fixed-time speedup is also called sizeup.

When the operation cost is fixed for all kinds of work

or  when  the  problem  size  is  fixed,  the  generalized

speedup is the same as the traditional speedup. Fig.3

summarizes  the  relationship  between  the  generalized

speedup,  sizeup,  traditional  speedup,  and  memory-

bounded speedup[14].

 4.3    Scalability

Scalability is  the ability to maintain parallel  pro-

cessing gain when both the problem size and the sys-

tem size increase. Parallel efficiency is defined as par-

allel speedup divided by p,  where p is the number of

parallel processors used for parallel processing[15]. The

definition of parallel efficiency is straightforward since

p is  the  ideal  and  perfect  parallel  performance  gain

with p processors. A natural way to measure scalabili-

ty is  to measure the ability to maintain parallel  effi-

ciency.  Kumar et  al.[15, 16] introduced  the  concept  of

isoefficiency.  Isoefficiency  measures  how  much  work

must be increased on a larger machine in order for the

efficiency to remain constant.

p′

Isoefficiency  is  a  correct  approach.  However,  its

underlying speedup is still the traditional speedup and

may  have  the  memory-bounded  issue.  In  practice,

measuring  the  sequential  execution  time  of  large  ap-

plications on a single node is either impossible due to

memory  limitation  or  very  slow if  virtual  memory  is

supported.  For  scalable  computing,  the  speedup

should  use  the  generalized  speedup,  and  the  isoeffi-

ciency  should  be  the  isoefficiency  of  the  generalized

speedup[17].  Maintaining the efficiency of  the general-

ized speedup, in the meantime, is  equal  to maintain-

ing the average speed per computing node. With the

above  observation  of  the  generalized  speedup,  Sun

and Rover[18] proposed isospeed as  a  measurement of

scalability. Based on [18], an algorithm-machine com-

bination is scalable if its achieved average unit speed

can  remain  constant  with  the  increasing  number  of

processors, provided the problem size is increased pro-

portionally.  The  average  unit  speed  is  the  achieved

speed divided by the number of processors. By defini-

tion,  the  scalability  function  from  system  size p to

system size  can be defined as: 

ψ(p, p′) =
W/p

W ′/p′
=
p′ ×W

p×W ′
,

W ′

p′ p′ > p

where W is the initial workload executed when p pro-

cessors  are  employed,  and  is  the  scaled  workload

executed when  ( ) processors are employed to

W ′

W ′ = p′×W

p
ψ(p, p′) = 1

W ′

p′
> W

p
ψ(p, p′) < 1

maintain the average unit speed. The workload  is

determined  by  the  isospeed  constraint.  In  the  ideal

situation,  and .  In  general,

 and .  An  isospeed  function  closer

to  1  implies  that  the  parallel  system  is  highly  scal-

able.

Scalability  has  many  applications.  One  applica-

tion is to find the best range of an algorithm and to

find  the  performance  crossing  point  of  two  different

algorithms[19, 20]. Range comparison compares the per-

formance of  programs over a range of  ensembles and

problem sizes  based  on  scalability  and  crossing-point

analysis. It plays a crucial role in scalable computing.

Fig.4 demonstrates  a  performance  range  comparison

of the PDD (Paralled Diagonal Dominant) and paral-

lelized  Thomas  algorithm  when  the  communication

speed varies[20].  From Fig.4,  we can see that crossing

points  exist  and  vary  with  data  access/communica-

tion bandwidth.
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Fig.4.  Performance crossing due to scalability[20].

 4.4    Scalable Computing for Multi-Core

Architecture

Parallel processing can be carried out at different

levels. In order to overcome the limitations, including

the power consumption limitations, of uni-core archi-

tectures,  multi-core  architectures  have  been  devel-

oped. Multi-core architectures integrate multiple pro-

cessing  units  (cores)  onto  one  chip,  thereby  increas-

ing  the  computing  capacity  via  parallel  processing

while consuming less power. As microprocessor archi-

tectures enter the multi-core era, the scalability issue

is also carried into the multi-core architecture design.

At  the  40  years  of  the  Amdahl’ s  Law,  Hill  and

Marty[21] analyzed  multi-core  scalability  under  the

Amdahl’s Law and pessimistically argued that the fu-

ture  of  scalable  multi-core  processors  is  dim.  Sun et
al.[7, 22] analyzed  multi-core  scalability  under  fixed-
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Wp

Wc

time  and  memory-bounded  conditions.  Assuming  the

multi-core  systems  under  study  are  symmetric,  and

task W has  two  portions:  data  processing  work, ,

and data access (movement) work, . Based on the

Gustafson’ s  Law,  the  fixed-time  speedup  for  multi-

core architectures is: 

SFT(W
′
) = (1− f

′
) + p× f

′
,

W ′
p = p×Wp f

′
where  and  is defined as:
 

f
′
=

Wp

Wc +Wp

. (7)

Wc(7) shows if  remains unchanged when the core

number  and  workload  increase,  then  the  multi-core

fixed-time  speedup  can  increase  linearly.  The  memo-

ry-bounded  speedup  model  for  multi-core  architec-

tures is also introduced in [7, 22], which has a better

speedup than that of fixed-time speedup. Multi-core is

scalable for scalable computing.

Please  notice  that  here  the  claim of  multi-core  is

scalable is under the assumption that data access de-

lay is unchanged when the core number and the prob-

lem  size  increase.  This  assumption  is  not  a  theoreti-

cal bound but is hard to achieve in engineering prac-

tice.  In  other  words,  multi-core  is  memory-con-

strained. Multi-core architectures have put more pres-

sure on the already lag-behind memory systems.

 5    Performance Optimization

In  this  section,  we  discuss  the  impacts  of  the

memory bound principle from the angles of algorithm

design,  performance  tool  development,  memory  data

access  optimization,  and  I/O  data  access  optimiza-

tion, respectively, in each subsection.

 5.1    Memory-Bounded Algorithms and

Analysis

Over the years, more and more researchers in the

computing  community  have  accepted  the  memory-

bounded concept and applied it in their study. A new

branch  of  algorithm  analysis,  called  memory-bound

functions, was developed in the 2000s[23, 24]. In formal

(sequential)  algorithm  analysis,  the  challenge  of  the

memory-bounded analysis is no longer the scalability,

but the applications with unpredictable data require-

ments. The argument is that if we know the memory

need, we can provide an appropriate memory (in the-

ory). The difficulty is that we do not know the need.

Therefore,  the  theoretical  arithmetic  memory  analy-

sis is focused on a memory-bound function whose exe-

cution  time could  be  dominated  by  memory  accesses

since they have unpredictable data requirements. The

(general)  memory-bound  functions  have  been  proven

to be very effective in preventing the proliferation of

junk  email  by  introducing  an  artificial  cost  in  the

form  of  expensive  memory  accesses[23, 24].  By  using

memory-bound functions, the email sender is asked to

pay the cost of the memory access latency imposed by

the memory-bound functions before the email is sent.

In addition to the new branch of theoretical “com-

plexity”  analysis  of  unpredictable  memory  require-

ments,  the  memory-bounded  and  memory-constraint

analysis  have  been  widely  used  in  algorithm  designs

for predictable memory requirements as well, in areas

such as graph search, dynamic programming, and dis-

tributed optimization, to list a few.

O(bd)

The  A*  algorithm[25] is  a  commonly-used  path

search  and  graph  traversal  algorithm.  One  major

practical drawback is that it requires an explosion of

memory usage and a long execution time, as it stores

all  generated  nodes  in  memory.  Several  algorith-

ms[26–29] are proposed to improve the A* algorithm for

this  purpose.  Among them, the IDA* algorithm[26, 27]

combines the ideas of the A* algorithm and the itera-

tive  deepening  depth-first  search  algorithm.  The  key

feature of the IDA* algorithm is that it does not keep

track  of  every  visited  node,  which  saves  significantly

on  memory  consumption.  At  each  iteration,  IDA*

performs a  depth-first  search,  cutting  off  a  branch if

its total cost exceeds a given threshold. A threshold is

set  as  the  estimate  of  the  cost  of  the  initial  state.  If

no  solution  is  found,  the  threshold  is  increased,  and

the  search  is  repeated  until  a  solution  is  found.  At

each  iteration,  the  threshold  used  for  the  next  itera-

tion  is  the  minimum  cost  of  all  values  exceeded  the

current  threshold.  IDA*  has  a  better  memory  usage

than  A*.  More  specifically,  IDA*  has  a  polynomial

space  complexity, O(bd),  where b is  the  maximum

branching factor and d is the maximum depth of the

tree. Whereas the space complexity of A* is exponen-

tial and is .

Researchers  in  artificial  intelligence  and  opera-

tions research have been studying decision making un-

der  uncertainty.  Seuken  and  Zilberstein  introduced

the  Memory-Bounded  Dynamic  Programming  (MB-

DP)  algorithm[30] to  identify  a  small  set  of  policies

that  are  actually  useful  for  optimal  or  near-optimal

behavior  and  to  avoid  keeping  too  many  policies  in

memory.  Furthermore,  an  improved  version  of  MB-
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DP[31] is  proposed  to  improve  the  scalability  of  MB-

DP  further  by  reducing  the  complexity  with  respect

to the number of observations.

With  the  development  of  big  data  and  artificial

intelligence,  distributed  optimization  has  become  es-

sential for solving large-scale problems. In order to re-

duce  the  memory  requirements,  a  number  of  dis-

tributed optimization algorithms[32–36] have been pro-

posed that seek a trade-off between the quality of the

solutions and the memory consumption. Among them,

MB-DPOP[36] iteratively  performs  memory-bounded

utility  propagation  to  use  a  customizable  amount  of

memory and to guarantee performance.

Memory-bounded  analysis  and  memory-bounded

principle  have  been  widely  embedded  into  algorithm

design today. We have just discussed a few represent-

ing examples here.

 5.2    Performance Analysis Tools

Memory-bounded analysis  tools  are important for

practitioners,  especially  for  software  developers  who

do not have the knowledge or expertise to analyze the

underlying  algorithms of  a  given software  system.  In

many  situations,  software  performance  tools  play  an

important role in optimization.

π

β

The  Roofline  model[37, 38] is  a  performance  analy-

sis  model  to  calculate  the  performance  bound  for  a

given  computation  on  a  specific  target  architecture.

The standard Roofline model (as illustrated in Fig.5)

considers machine peak performance , machine peak

bandwidth , and arithmetic intensity I of the appli-

cation to analyze the performance bound in GFLOPS.
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Fig.5.  An example of the standard Roofline model[37, 38].

 

However,  estimating  the  machine  characteristics

required  by  Roofline  analysis  is  time-consuming  and

difficult.  Even  if  machine  characteristics  can  be  esti-

mated,  these  are  theoretical  maximums  that  do  not

necessarily  reflect  the  actual  software  system  perfor-

mance.  In order to solve this  problem, the Empirical

Roofline Tool (ERT)[12] is developed to determine ar-

chitecture  characteristics  and  application  kernels  to

populate the Roofline model automatically.  With the

help of ERT, software developers can measure perfor-

mance  bound  in  practice,  which  provides  them  with

guidance on optimizing their  code for  maximum per-

formance,  such  as  what  types  of  parallelism  are  re-

quired and what compiler(s) to use.

 5.3    Modeling  and  Optimization  of  Memory

Systems

As pointed out in Subsection 4.1, the memory hi-

erarchy  is  adopted  in  modern  computer  systems  to

mitigate  the  memory  wall  problem.  In  addition  to

memory  hierarchy,  techniques  that  utilize  data  con-

currency and memory parallelism are also widely used

in modern processors  and memory systems to reduce

memory access  latency[39–41].  A large  amount of  data

concurrency exists in each layer of the memory hierar-

chy[42–45].  For better using this concurrency, data ac-

cess  concurrency  needs  to  be  considered  in  memory

system modeling and optimization to utilize the exist-

ing memory concurrency.

C-AMAT (Concurrent-AMAT)[44] is a memory ac-

cess  performance  model  that  extends  AMAT  (aver-

age  memory  access  time)[10] to  quantitatively  mea-

sure  the  combined  impact  of  memory  access  locality

and concurrency with the consideration of all data ac-

cess  overlapping.  C-AMAT is  defined  as  the  average

memory access time with the consideration of concur-

rent hit and miss accesses. It can be calculated as the

number of memory active cycles divided by the num-

ber of memory accesses: 

C-AMAT =
ω

α
,

ω

α

where  represents the total number of cycles execut-

ed in which there is at least one outstanding memory

reference, and  represents the total number of mem-

ory accesses.

Similar  to  AMAT,  the  C-AMAT  model  can  be

calculated at each level of the memory hierarchy and

is  recursive[41].  The  C-AMAT  model  provides  a  new

perspective  for  cache  optimization:  data  access  con-

currency is as important as data locality. The princi-

ple of optimizing a memory system is not locality, lo-

cality, and locality, as some articles promoted. It is a

balanced design  of  data  locality  and concurrency.  C-
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AMAT has already found its applications in tradition-

al  system optimizations,  such  as  data  replacement[40,

46] and  prefetching  schemes[39],  and  in  new  architec-

ture designs, such as PIM[47] and GPU[48].

λ li−1

ν

Memory  hierarchy  systems  call  for  global  perfor-

mance  analysis  and  global  performance  optimization

of the overall performance of a memory hierarchy sys-

tem.  Based  on  C-AMAT,  an  optimization  method

named  LPM  (layered  performance  matching)  is  pre-

sented in [11]. The rationale of LPM is to reduce the

overall  data  access  latency  through  the  matching  of

the  data  request  rate  and  the  data  supply  rate  at

each  layer  of  a  memory  hierarchy,  with  a  balanced

consideration  of  data  locality,  data  concurrency,  and

overlapping of data accesses. Let LPMR(l) be the lay-

ered  performance  matching  ratio  at  memory  level l.
Let (l) be the request rate from the upper layer ,

and let (l) be the supply rate at level l. The layered

performance  matching  ratio  is  the  ratio  of  the  re-

quest rate and the supply rate between any two mem-

ory layers: 

LPMR(l) =
λ(l)

ν(l)
.

Fig.6 shows  a  memory  hierarchy  with  a  three-level

cache  and  main  memory.  Each  level  receives  access

requests  from  the  upper  level  and  responds  with  its

own data or the data grabbed from the lower level.

Based  on  the  data  access  delay  tolerance  of  the

user,  LPM can calculate  the  required  matching  ratio

at each layer of  the underlying memory hierarchy[11].

LPM  transfers  the  global  performance  optimization

problem  of  a  memory  hierarchy  to  several  relatively

simple  local  optimizations  at  different  layers  of  the

memory hierarchy. It has real potential to reduce da-

ta access delay, as shown in the next subsection.

 5.4    Deep Memory and Storage Hierarchy

To address the memory-wall  problem, the memo-

ry  system  has  been  undergoing  extensive  changes,

adopting new technologies and adding more layers to

the  memory  hierarchy,  as  shown  in Fig.7.  With  the

adoption of new technologies, such as NVRAM (non-

volatile random access memory) and SSD, and adding

new layers between memory and storage,  the bound-

ary  of  memory  and  storage  becomes  blurry.  Storage

becomes a  part  of  the  memory system to handle  the
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Fig.6.  The layered performance matching.
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Fig.7.  Deep memory and storage hierarchy.
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ever  enlarged  applications.  This  leads  to  the  term:

Deep Memory and Storage Hierarchy (DMSH)[49, 50].

Storage  devices  are  hundreds  and  thousands  of

times slower than memory devices,  making them the

weakest point of DMSH[51–53].  The good news is  that

the LPM methodology has bundled it into the global

DMSH performance. On the other hand, because stor-

age devices are so slow, we can develop software solu-

tions  to  improve  their  performance.  The  LPM

methodology has linked the storage performance with

the global DMSH performance[11]. Based on the LPM

principle,  a  new,  heterogeneous-aware,  multi-tiered,

dynamic,  and  distributed  I/O  buffering  system,

named  Hermes[53, 54],  is  developed.  We  use  the  term

multi-tiers here, because under Hermes different mem-

ory/storage  devices  can  be  accessed  concurrently  in

hierarchical  or  horizontal  fashion.  Hermes  enables,

manages, supervises, and, in some sense, extends I/O

buffering  to  integrate  into  the  DMSH  fully.  Hermes

provides  novel  data  placement  policies  to  utilize  all

memory  and  storage  technologies  efficiently.  Addi-

tionally,  Hermes  adopts  several  novel  techniques  to

perform memory, metadata, and communication man-

agement  in  multi-tiered  buffering  systems.  Perfor-

mance  evaluations  show  Hermes  dramatically  speeds

up I/O, exceeding the performance of state-of-the-art

buffering  platforms  by  more  than  2x.  The  first  ver-

sion of Hermes has been released under the HDF5 li-

brary by the HDF group as an open source⑥.

 6    Data-Centric  Thinking  and  Data-Centric

Design

Big data applications have increased data velocity,

veracity, volume, and variety[55]. These four V charac-

teristics have put unprecedented pressure on memory

and  storage  systems.  Even  worse,  from  a  computing

point of view, the pressure of big data applications is

not  only  from  the  four  Vs  but  also  from  that  they

have  totally  changed  the  way  of  computing.  For  ex-

ample, let us find the best travel path from city A to

city B.  From the traditional  computational  thinking,

we first find all the roads from A to B, make a graph

based  on  the  road-map,  and  then  run  the  shortest-

path algorithm on the  road-map to  find the  shortest

path  from A to B.  From  the  data-centric  thinking,

however, the problem will  be solved total differently.

To find the best path from A to B from a data-cen-

tric approach, we first record which path people used

most  and  then  use  it  as  the  best  one.  If  we  use  the

GoogleMap App, GoogleMap even can provide the es-

timated travel time of each path based on the recent

travels of other GoogleMap users. We can see that in

the data-centric  solution,  there is  almost no comput-

ing but data gathering and processing. While compu-

tational thinking focuses on formulating a problem to

make it  computationally solvable,  data-centric  think-

ing is for gathering and exploiting data to provide in-

sights[56].  This  paradigm changing requires  a rethink-

ing  of  computer  architecture  and  computer  systems.

Currently,  there  are  no  clear  solutions  for  this

paradigm  challenge,  but  improving  data  access  and

processing  ability  certainly  is  part  of  the  major  con-

cern.

Intensive  research  has  been  conducted  to  address

the four V issues, and many point solutions exist. GPU

is a successful solution for graphic applications[57]. The

MapReduce  data  structure  and  MapReduce  file  sys-

tems  are  successful  solutions  for  information  retri-

eval[58]. AI chips are designed to address the data pro-

cessing needs of  deep learning[59],  and ASIC and FP-

GA methodologies  are  used to  address  different  data

processing  needs  of  different  applica-tions[60, 61].  PIM

(Processing  in  Memory),  NDP  (Near-memory  Data

Processing), and ISP (In-Storage Processing) architec-

tures  are  proposed  to  process  data  in  memory,  near

memory,  and in  storage,  respectively,  to  reduce  data

access  time[62– 64].  From  a  system  point  of  view,  the

LPM  methodology  and  the  Sluice  Gate  theory  are

proposed to reduce the data access delay as small  as

possible[11, 65]. The list is long and more can be listed,

but the above are good enough to conclude our obser-

vations.  These  solutions  are  useful,  but  they  are  de-

signed for given applications and only work under cer-

tain conditions and environments. They can mitigate

the memory-wall problem but cannot solve it. Memo-

ry-bound remains. There is a call to rethink the fun-

damental computer system design to address the com-

puting paradigm change[56]. However, after 60 years of

rapid development, computer systems have become so

complex  that  any  fundamental  change  in  computer

architecture or operating system will  be a hard task.

With a deep memory-storage hierarchy,  the I/O sys-

tem is part of the enlarged memory system. In the fol-

lowing, we introduce a data-centric system design for

I/O systems.

Following  the  data-centric  thinking,  a  new,  dis-
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tributed,  scalable,  and  adaptive  I/O  system,  LABI-

OS[66], is developed to address the divergence in stor-

age architectures and reduce conflicting requirements.

In compute-centric systems, a program conducts com-

puting and fetches data when computing needs them.

In  data-centric  systems,  computing  is  with  the  data

and  can  be  carried  out  where  the  data  is.  LABIOS

follows  the  data-centric  thinking,  where  each  section

of data is labeled, and a label is a tuple of an opera-

tion  and  a  pointer  to  the  data.  Therefore,  the  com-

puting is paired with the data and can be carried out

where  the  data  is.  The  idea  behind  LABIOS  is  very

similar  to  that  behind  Amazon  warehouses.  I/O  re-

quests are collected and optimized based on their  la-

bels,  and  the  operations  are  carried  out  by  worker

pools at data warehouses. The workflow of LABIOS is

shown  in Fig.8.  LABIOS  provides  storage  flexibility,

versatility,  and  agility  due  to  labels  and  its  decou-

pled  data-centric  architecture.  With  all  its  merits,

putting LABIOS in use requires the update of operat-

ing systems and file systems. This will be a long and

challenging process.  The first operating system study

to support the LABIOS system appeared in Nov. 2022

at the SC2022 conference[67].
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Fig.8.  A logical overview of data operation under label.

 

 7    Conclusions

Professor Kai Hwang is a prominent scholar whose

textbooks have influenced several generations of com-

puter scientists and practitioners. In more than one of

his books[68, 69], he has introduced the memory-bound-

ed speedup model and named it the Sun-Ni’s Law. In

this  study,  we  reviewed  the  memory-bounded  princi-

ple, its history, and its impacts, and discussed its role

and potential in the big data era. Prof. Hwang’s text-

books have made a lasting influence,  and the memo-

ry-bounded  model  has  made  its  impacts  on  comput-

ing.  We  think  this  is  the  best  way  to  honor  Prof.

Hwang’s life long achievement and is the best way to

make our addition to this special issue.

The  memory-bounded  speedup  model  takes  into

account  the  effect  of  memory  on  performance  by  re-

lating memory requirement to computational require-

ment.  It  reveals  the  memory  constraint  in  perfor-

mance,  and it  sparks  the  memory-wall  problem.  The

memory-bounded  concept  has  changed  how  algo-

rithms  and  software  are  designed.  Moreover,  more

memory  optimization  designs  and  performance  mod-

els  have  been developed to  mitigate  the  performance

gap between computing and memory systems.

We  hope  this  study  will  provide  a  better  under-

standing of the memory-bounded model and its impli-

cations, which will help us better understand and gain

new insights into memory system performance to pro-

mote  data-centric  thinking  and  to  pave  the  way  for

developing next-generation memory systems and opti-

mization tools.
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