
Scalability of Heterogeneous Computing 
 
 

Xian-He Sun, Yong Chen, Ming Wu 
Department of Computer Science 

Illinois Institute of Technology 
{sun, chenyon1, wuming}@iit.edu 

 
 

Abstract 
 

Scalability is a key factor of the design of 
distributed systems and parallel algorithms and 
machines. However, conventional scalabilities are 
designed for homogeneous parallel processing. There 
is no suitable and commonly accepted definition of 
scalability metric for heterogeneous systems. Isospeed 
scalability is a well-defined metric for homogeneous 
computing. This study extends the isospeed scalability 
metric to general heterogeneous computing systems.  
The proposed isospeed-efficiency metric is suitable for 
both homogeneous and heterogeneous computing. 
Through theoretical analysis, we derive methodologies 
of scalability measurement and prediction for 
heterogeneous systems. Experimental results verify the 
analytical results and confirm that the proposed 
isospeed-efficiency scalability works well in both 
homogeneous and heterogeneous environments. 
 
1. Introduction 
 

Scalability is an essential factor for performance 
evaluation and optimization of parallel and distributed 
systems. It has been used widely for describing how 
the system size and problem size will influence the 
performance of parallel computers and algorithms. It 
measures the ability of parallel architectures to support 
parallel processing at different machine ensemble sizes, 
and measures the inherent parallelism of parallel 
algorithms.  

Although scalability is important for parallel and 
distributed systems, most of current research is focused 
on homogeneous environments. As computing 
environments evolving, understanding scalability of 
heterogeneous environments becomes timely important 
and necessary. In this paper, we propose an isospeed-
efficiency method for general heterogeneous 
computing, based on the isospeed metric proposed in 
[10]. Analytical and experimental studies are 

conducted to confirm the correctness and effect of the 
newly proposed scalability metric. Results show that 
the isospeed-efficiency metric is practical and effective. 

The following of this paper is organized as follows: 
Section 2 reviews related work. Section 3 presents the 
proposed isospeed-efficiency scalability metric. The 
analytical results of the proposed scalability metric are 
provided in Section 4. Section 5 presents experimental 
results that match the analytical results well. Finally, 
we summarize our current work and discuss future 
work. 

 
2. Related work 

 
Several metrics are proposed to measure the 

scalability of algorithms and parallel 
machines[3][5][7][8][9][10], but most of these metrics are 
designed for homogeneous environments. They cannot 
readily be applied to heterogeneous environments. In 
[10], Sun and Rover proposed the isospeed scalability 
metric to describe the scalability of an algorithm-
machine combination in homogenous environments. 
An algorithm-machine combination is defined to be 
scalable if the achieved average unit speed of the 
algorithm on the given machine can remain constant 
with increasing number of processors, provided the 
problem size can be increased with the system size. By 
this definition, a scalability function can be defined as 

'
')',(

pW
Wppp =ψ  

where p and 'p are the initial and scaled number of 
processors of the system respectively, and W and 

'W are the initial and scaled work (problem size) 
respectively. The isospeed scalability works well in 
homogeneous environment and is well cited in 
scholarly publications, including several widely used 
textbooks [2][4][7].  

There is another well-known scalability metric, 
isoefficiency scalability[3]. The isoefficiency scalability 
is defined as the ability of parallel machine to keep the 



parallel efficiency constant when the system and 
problem size increases, where the parallel efficiency is 
defined as speedup over the number of processors. 
Speedup, in turn, is defined as the ratio of sequential 
execution time and parallel execution time. In 
theoretical analysis, the requirement of sequential 
execution time does not appear to be a problem. In 
practice, to measure the execution time of large 
applications on a single node is problematic, if not 
impossible. Scalability is to measure the ability of 
parallel systems at different system and problem sizes. 
It does not need to refer single-node sequential 
execution time of large scale computing. Isoefficiency 
scalability may have some difficulty to extend to 
general heterogeneous environments directly. 

Isospeed scalability uses average unit speed as 
efficiency and does not refer to sequential execution 
time. It is practical. However, similar to isoefficiency 
scalability, it is based on the assumption that the 
underlying parallel machine is homogeneous. This 
assumption becomes too restricted for modern 
computing systems.  It is necessary to extend the 
isospeed scalability metric to general parallel 
computing environments. In this study, we combine the 
merits of both isospeed and isoefficiency scalability to 
propose the isospeed-efficiency scalability for 
heterogeneous computing. 

There are some recent attempts to generalized 
scalability metrics. Jogalekar and Woodside proposed a 
strategy-based scalability metric for general distributed 
systems[5]. The scalability is based on productivity 
which is defined as the value delivered by the system 
divided by its cost (money charge) per unit time. A 
system is scalable if productivity keeps pace with cost. 
Their scalability metric measures the worthiness of 
renting a service.  However, commercial charge varies 
from customer to customer, based on business 
considerations, and does not necessarily reflect the 
inherent scalability of the underlying computing 
system. Pastor and Bosque proposed a heterogeneous 
efficiency function to define the heterogeneous 
scalability[7]. Their work tries to extend the 
homogeneous isoefficiency scalability model to 
heterogeneous computing and, therefore, inherits the 
limitation of parallel speedup, requiring the 
measurement of solving large-scale problem on single 
node as we analyzed for homogeneous isoefficiency 
scalability. 

 
3. Isospeed-efficiency scalability 

 
3.1 The marked speed 

 

In order to fully describe the characteristic of a 
given algorithm-system combination in a 
heterogeneous environment, we need to describe all the 
computing features of the system. These features 
include the computing power, memory capacity and 
memory speed, network bandwidth, I/O speed and 
other features of the system. In engineering practice, 
however, we cannot get into all the details; otherwise, 
the scalability model will be too complex to use. We 
need to balance the simplicity and effectiveness. For 
this reason, we introduce a new concept, ‘marked 
speed’, to describe the combined computing power of a 
general distributed system. First, we give a definition 
of ‘marked speed of a computing node’. 

Definition 1 The marked speed of a computing 
node is a (benchmarked) sustained speed of that node. 

Marked speed can be calculated based on hardware 
peak performance, which in general is much higher 
than an actual delivered performance. In practice, we 
can use benchmarks to measure the “power” or marked 
speed of each node. Standard benchmarks can be 
selected for different applications, for instance Linpack 
or NPB for scientific computing or appropriate 
benchmark from the Perfect benchmarks suite. Once 
the marked speed of a computing node is measured, it 
should be used as a constant parameter. Let iC denote 
the marked speed of node i. In a heterogeneous 
environment, iC  may be different from each other due 
to the heterogeneity of the nodes. In homogeneous 
environment, all iC  are the same.  

Definition 2 The marked speed of a computing 
system is the sum of the marked speed of each node 
that composes the computing system. 

Let C  stand for the marked speed of a computing 

system. According to definition, we have ∑
=

=
p

i
iCC

1
 in 

a general parallel computing environment with p nodes.  
 

3.2 Definition of isospeed-efficiency scalability 
 

Let S denote the actual achieved speed, which is 
defined as work divided by execution time, of a 
computing system. Let W denote work and T denote 
execution time. So we have TWS /= . 

Marked speed describes the computational 
capability of a computing system, which is a constant 
for a study. The achieved speed of an application may 
not be the same as the benchmarked marked speed 
given by Definition 2, especially for 
distributed/parallel computing where the marked speed 
does not consider the communication cost. Achieved 
speed describes the actual computational performance 



when the system tries to solve users’ applications. It 
varies with the system and problem size. 

Definition 3 The speed-efficiency of a computing 
system is defined as the achieved speed divided by the 
marked speed of the computing system. 

The speed-efficiency reflects the performance gain 
of an algorithm-system combination. Let sE  denote 

the speed-efficiency. So we have 
TC
W

C
SEs == .  

Based on previous definitions and discussion, we 
propose the following isospeed-efficiency scalability 
for any algorithm-system combination on a general 
distributed computing system. 

Definition 4 Isospeed-efficiency Scalability An 
algorithm-system combination is scalable if the 
achieved speed-efficiency of the combination can 
remain constant with increasing system ensemble size, 
provided the problem size can be increased with the 
system size. 

In this isospeed-efficiency scalability definition, the 
computing system can be either a homogeneous or 
heterogeneous system. The method for increasing 
system size includes increasing nodes, increasing the 
number of processors in one or more nodes, or 
upgrading to more powerful nodes. The approach to 
increase problem size depends on the algorithm. 

 
3.3 Isospeed-efficiency scalability function 

 
For a scalable algorithm or application, its 

communication requirement should increase slower 
than its computation requirement. So we can increase 
the problem size to keep the speed-efficiency constant 
when the system size is increased. The increment of 
problem size depends on the underlying algorithm and 
computing system. This variation provides a 
quantitative measurement of scalability. 

Let C, W and T be the initial system size (we call a 
system with marked speed C as a system with system 
size C in the rest of this study), problem size and 
execution time. Let 'C  be the increased system size, 

'W  be the increased problem size, and 'T  be the new 
execution time for the scaled problem size. Then, we 
have the isospeed-efficiency condition: 

''
'

CT
W

TC
W

= , 

This condition is to constrain the new problem size 'W .  
We define the isospeed-efficiency scalability 

function as: 

'
')',(

CW
WCCC =ψ  

In the ideal situation, CWCW /''=  and 1)',( =CCψ . 
Generally, CWCW /''>  and 1)',( <CCψ .  

When we apply the isospeed-efficiency scalability to 
a homogeneous environment, because all Ci are equal, 
we have ipCC = , and iCpC ''= . Thus, the scalability 
function is 

'
'

'
')',(

pW
Wp

CW
WCCC ==ψ  

This shows that the original homogeneous isospeed 
scalability metric is a special case of isospeed-
efficiency scalability metric.  
 
3.4 Theoretical studies 

 
The following theoretical results are important for 

scalability study. 
Theorem 1: Let an algorithm has a balanced 

workload on each node and the sequential portion 
(which cannot be parallelized) of the algorithm is α , if 
we can find a problem size to keep the speed-efficiency 
constant when the system size is increased, then the 
system is scalable and the scalability is 

''
)',(

0

0

o

o

Tt
TtCC

+
+

=ψ  

where 0t  and '0t  are the execution time of the 
sequential portion, oT  and 'oT  are the communication 
overhead of system C  and 'C  separately.  

Proof: The parallel execution time can be divided 
into two parts, oc TTT += , where cT  is the 
computation time, and oT  is the total overhead spent 
on communication, synchronization and other 
overhead. If computing system C  is used to compute a 
problem with size W , and 'W  is the increased 
problem size to satisfy the isospeed-efficiency 
condition when the computing system is increased to 

'C , we have 

')''(
'

)( CTT
W

CTT
W

ococ +
=

+
 

Since the algorithm is evenly load balanced and the 
sequential portion of the algorithm is α , we have 

C
CWW i

i )1( α−=  

where Wi is the workload assigned on node i, so,  

00
)1( t

C
Wt

C
WT

i

i
c +

−
=+=

α  

where 
iC

Wt α
=0 , which represents the execution time 

of the sequential portion of algorithm 



hence,  

'')'
'

')1((

'

))1(( 00 CTt
C

W
W

CTt
C

W
W

oo ⎥⎦
⎤

⎢⎣
⎡ ++

−
=

⎥⎦
⎤

⎢⎣
⎡ ++

− αα
 

Thus, the increased problem size 'W  is 

W
TtC
TtCW

CTCt
TCtCW

o

o

o

o ⋅
+
+

=⋅
+
+

=
)(
)''(''''''

0

0

0

0  

Therefore, the computing system is scalable and the 
scalability is 

''
)(
)''('

'
'

')',(
0

0

0

0 o

o

o

o Tt
Tt

W
TtC
TtCC

WC
CW

WCCC
+
+

=
⋅

+
+

⋅
==ψ  ■ 

Theorem 1 not only provides a method to calculate 
the scalability of an algorithm-system combination, but 
also shows a meaningful and significant understanding 
for scalability. It reflects that the scalability is decided 
by both the sequential portion of the work and the 
communication overhead. When the problem size is 
increased to keep the speed-efficiency constant, the 
sequential portion of work might be increased because 
the problem size is increased, and the communication 
overhead is increased too because the system size is 
increased. So in practice, the scalability is likely to be 
smaller than 1. 

Corollary 1: If an algorithm can be parallelized 
perfectly and has a balanced workload on each node, 
and if the communication overhead is constant for any 
problem size and system size, then the algorithm-
system combination is scalable and the scalability is 
perfect with a constant value 1. 

Proof: According to theorem 1, we have  

''
)',(

0

0

o

o

Tt
TtCC

+
+

=ψ  

In an ideal case, the algorithm can be parallelized 
perfectly, which means 0=α . Thus, 0'00 == tt . 

If the communication overhead is constant at any 
problem size and system size, we have 'oo TT = . 

Therefore, the scalability is 1.  ■ 
Corollary 1 shows the scalability of an ideal case. 

According to previous analysis of the isospeed-
efficiency scalability, the scalability of an ideal case is 
1. 

Corollary 2: If an algorithm can be parallelized 
perfectly and has a balanced workload on each node, 
and if we can find a problem size to keep the speed-
efficiency constant when the system size is increased, 
then the algorithm-system combination is scalable and 
the scalability is 

'
)',(

o

o

T
TCC =ψ  

Proof: Similar to the proof in Corollary 1, if the 
algorithm can be parallelized perfectly, we have 0=α  
and 0'00 == tt . According to theorem 1, the scalability 
is 

'''
)',(

0

0

o

o

o

o

T
T

Tt
TtCC =

+
+

=ψ  ■ 

Corollary 2 demonstrates that if an algorithm can be 
parallelized perfectly and has a balanced workload on 
each node, then the scalability will only be decided by 
the total overhead at different problem and system size. 

These theorems and corollaries show that if we are 
able to analyze the total overhead at system C  and 'C , 
and the sequential ratio of the algorithm, we can 
calculate and predict the scalability of system with size 

'C  based on the system with size C . We will show 
this method in experiments. 

 
3.5 Calculation of isospeed-efficiency scalability 

 
The isospeed-efficiency scalability can be obtained 

in many ways. The most straightforward one is to 
compute the scalability. This method is to measure the 
execution time at different system and problem sizes 
and calculate the scalability by using isospeed-
efficiency scalability definition. 

Another approach is to analyze and predict the 
scalability. This method is to analyze the 
computational part and communicational part of the 
algorithm and the communication latency of the 
machine, and then use derived theoretical results to 
calculate the scalability. This method can also be used 
to verify the computed scalability or predict the 
scalability.  

The following experiments will show how we can 
compute or predict the isospeed-efficiency scalability. 

 
4. Experimental results and analyses 

 
Experimental testing has been conducted to verify 

the correctness of the isospeed-efficiency and the 
associated analytical results and to show the isospeed-
efficiency is practically applicable.  

 
4.1 Algorithm and implementation 

 
Two classical algorithms, Gaussian Elimination 

algorithm and Matrix Multiplication algorithm, are 
selected for testing. Both of them are used widely in 
scientific computing. 

 
4.1.1 Gaussian Elimination (GE). GE algorithm 
solves dense linear equations bAx = , where A is a 



known matrix of size NN × , x is the required solution 
vector, and b is a known vector of size N.  The 
algorithm has two stages: 

(1) Gaussian elimination stage: the original system 
of equations is reduced to an upper triangular form 

yUx = , where U is a matrix of size NN ×  in which 
all elements below the diagonal are zeros and the 
diagonal elements have the value 1. The vector y is the 
modified version of vector b. 

(2) Back substitution stage: the new system of 
equations is solved to obtain the value of x. 

The parallel GE algorithm used in experiments is 
described as following. 

(1) Process 0 distributes the data of matrix A and 
vector b proportionally to other nodes according to 
their marked speeds by using row-based heterogeneous 
cyclic distribution[6] 

(2) All processes compute concurrently: 
(2.1) For (i = 0; i < N - 1; i++)  
(2.1.1) The process which owns the pivot row 

broadcasts the pivot row to all processes 
(2.1.2) For (j = i + 1; j < N; j++)  
(a) Each process judges if row j belongs to itself 

or not 
(b) If yes, then conducts Gaussian elimination 

on this row 
(2.2) Synchronize all processes due to data 

dependence 
(3) Process 0 collects temporary results from other 

processes and conducts the back substitution stage 
Through analyzing the algorithm, the workload of 

this algorithm is, 

3
6
13

2
1

3
2)( 23 +−−= NNNNW  

This polynomial is used to calculate the workload in 
our experiments.  

 
4.1.2 Matrix Multiplication (MM). MM algorithm 
calculates the product of two matrices, BAC ×= . For 
simplicity, we restrict matrix A and B to be square 

NN ×  matrices. [1] conducted a thorough research for 
matrix multiplication optimization on heterogeneous 
platform. It stated that the matrix multiplication 
optimization problem on heterogeneous platform is the 
problem to balance the workload with different speed 
resources and minimize the communication overhead. 
Unfortunately, this problem has been proved to be a 
NP-Complete problem. A polynomial heuristic 
algorithm called Optimal Column-based Tiling was 
thus proposed and proved to be a good solution for 
heterogeneous platforms in [1].  

Our experiments are designed to verify the proposed 
scalability metric. There is no intent to introduce new 

algorithms on heterogeneous platforms. We have 
implemented a simple row-based heuristic algorithm. 
Our algorithm adopts the HoHe strategy proposed in 
[6]. The HoHe strategy distributes homogeneous 
processes over different speed processors with each 
process running on a separate processor, while 
distribution of matrices over the processes is 
heterogeneous block cyclic pattern. In our algorithm, 
first, process 0 distributes matrix A by using a row-
based heterogeneous block distribution, which means A 
is distributed proportionally into other nodes according 
to these nodes’ marked speeds. Then process 0 
distributes matrix B to other nodes. After data 
distribution, each node computes part of the matrix 
multiplication on its own data. Finally, process 0 
collects all results from other processes. Since there is 
no communication during computation, communication 
only occurs in data distribution and collection. This 
algorithm is not a perfect algorithm, but this algorithm 
does balance the workload between different speed 
resources, since each node will work on CCN i /×  
rows of data and the workload of each node is 

CCN i /2 3 ×× . The total workload of our algorithm is 
32)( NNW ×= . The implementation of this algorithm 

follows HoHe strategy, which generates the same 
number of processes as the number of processors and 
distributes each process on a separate processor.  

 
4.2 Experimental platform 

 
The experimental platform is the Sunwulf cluster in 

the Scalable Computing Software (SCS) laboratory at 
Illinois Institute of Technology. Sunwulf is composed 
of one SunFire server node (sunwulf node), 64 
SunBlade compute nodes (hpc-1 to hpc-64) and 20 
SunFire V210 compute nodes (hpc-65 to hpc-84). The 
server node has four CPUs and 4GB memory. Each 
CPU is 480 MHz. The SunBlade compute node has 
one 500-MHz CPU and 128M memory. The SunFire 
V210 compute node has two 1GHz CPUs and 2GB 
memory. The network connecting all these nodes is 
100M Ethernet. The software platform includes SunOS 
5.8 and MPICH 1.2.5 release version. 

 
4.3 Measuring the marked speed 

 
In our experiments, we use NASA Parallel 

Benchmark to measure the marked speed. We run each 
benchmark, including LU, FT, BT, and etc., on each 
node and take the average speed on each node as its 
marked speed.  Table 1 gives the measured marked 
speed of the server node with one CPU, the SunBlade 



compute node and the SunFire V210 compute node. 
Once the marked speed of each node is measured, the 
marked speed of a whole computing system can be 
calculated according to Definition 2. For example, if 
we choose the following nodes to participate 
computation: Server node with 1 CPU, one SunBlade 
compute node and two SunFire compute nodes with 1 
CPU, the marked speed of this computing system is: 

07.11445.36229.2088.20 =×++ (Mflops) 
Table 1 Marked speed of Sunwulf nodes (Mflops) 

Node Server Node 
(1 CPU) SunBlade SunFire V210

(1 CPU) 
Marked Speed 20.88 20.29 36.45 
 
4.4 Experimental results and analyses 
 
4.4.1 GE experimental results. Experiments have 
been conducted to analyze the proposed scalability 
metric for GE algorithm with different system 
configurations. We start with two nodes of Sunwulf, 
one SunBlade node and one server node. In this case, 
server node uses two CPUs. From Table 1, we can 
calculate the marked speed of this environment. 

05.6229.20220.882 =+×=C (Mflops) 
Table 2 shows the workload, execution time, 

achieved speed and speed-efficiency of GE at different 
matrix sizes on two nodes. The speed-efficiency is 
calculated according to Definition 4. 

Table 2 Experimental results on two nodes 
Rank 

N 
Workload 

W 
Execution 

Time T 
Achieved 

Speed 
Speed-

efficiency
100 661353 260.770 2.536 0.041 
200 5312703 473.786 11.213 0.181 
300 17954053 925.242 19.405 0.313 
400 42585403 1587.725 26.822 0.432 
500 83206753 2657.918 31.305 0.505 

Based on the experimental results, we show the 
relationship between speed-efficiency and matrix size 
in Fig. 1. Since the function between speed-efficiency 
and matrix size is polynomial, we use a polynomial 
trend line to approach the sample results. From the 
polynomial trend line, we can read the approximate 
value of speed-efficiency at any matrix size or read the 
approximate required matrix size to obtain a specified 
speed-efficiency. For example, if we want to obtain a 
speed-efficiency of 0.3, the required matrix size should 
be around 310. We measured the speed-efficiency 
when matrix size is 310 and the result is 0.312, which 
is shown with a light gray dot in Fig. 1. This verifies 
the method that we can read the required matrix size 
for a specified speed-efficiency from trend line works.  

Speed-efficiency on Two Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600N

S
pe

ed
-e

ffi
ci

en
cy

 
Fig. 1 Speed-efficiency on two nodes 

Now, we increase the system size to four nodes and 
the configuration of four nodes has also changed. The 
new computing system is composed of hpc-40, hpc-41, 
hpc-42 and server node with two CPUs. Similar to the 
analysis in the case of two nodes, we calculate the 
workload and marked speed, then calculate the speed-
efficiency. In this case, the marked speed is C4 = 
102.63Mflops. The required matrix size to obtain a 0.3 
speed-efficiency is around 480.  

Based on these results, we use the first method in 
Section 3.5 to calculate the scalability when system 
size increases from two nodes to four nodes. We select 
the speed-efficiency at 0.3. The required matrix size 
will be around 310 in the case of two nodes and 480 in 
the case of four nodes. According to the scalability 
function definition, we have 

445.0
)'(
)(),(

2

4
42 =

⋅
⋅

=
NWC
NWCCCψ  

Similar to the previous analysis, we obtain the 
results of the case of 8 nodes, 16 nodes and 32 nodes. 
In each case, one node is server node and the rest 
nodes are SunBlade compute nodes. We select speed-
efficiency at 0.3 and read the required matrix size from 
all those figures. The result is shown in Table 3. 

Table 3 Required rank to obtain 0.3 speed-
efficiency 

System 
Configuration

Rank 
N 

Workload 
W 

Marked 
Speed(Mflops

) 
2 Nodes, 2C 310 1819093 62.05 
4 Nodes, 4C 480 11682713 102.63 
8 Nodes, 8C 1000 6.66E+08 183.79 

16 Nodes, 16C 1700 3.27E+09 346.11 
32 Nodes, 32C 3200 2.18E+10 670.75 

The measured scalability of GE algorithm on 
Sunwulf is shown in following table. 

Table 4 Measured scalability of GE on Sunwulf 
),( 42 CCψ ),( 84 CCψ ),( 168 CCψ  ),( 3216 CCψ

0.445 0.198 0.383 0.290 
 



4.4.2 MM experimental results. Another experiment 
we have conducted to analyze the proposed scalability 
metric is MM algorithm. We have tested the MM 
algorithm on 2, 4, 8, 16 and 32 nodes of Sunwulf 
cluster. In each case, half nodes are SunBlade compute 
nodes and the other half nodes are SunFire V210 nodes 
except one node is server node. For example, in the 
case of 8 nodes, the computing system is composed of 
one server node, three SunBlade compute nodes and 
four SunFire V210 compute nodes. The marked speed 
of the computing system in each case is different with 
previous experiment due to different system 
configuration. For instance, in the case of 8 nodes, the 
marked speed is:  

55.22745.36429.20388.20'8 =×+×+=C (Mflops) 
The experiment is similar to the previous 

experiment. The details are omitted here. The speed-
efficiency of MM algorithm at different system 
configurations is given in Fig. 2. 

Speed-efficiency of Matrix Multiplication Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500
N

Sp
ee

d-
ef

fic
ie

nc
y

2 Nodes
4 Nodes
8 Nodes
16 Nodes
32 Nodes
Poly. (2 Nodes)
Poly. (4 Nodes)
Poly. (8 Nodes)
Poly. (16 Nodes)
Poly. (32 Nodes)

 
Fig. 2 Speed-efficiency of MM on Sunwulf 

Similarly to the analysis in the GE experiment, we 
use the first method in Section 3.5 to calculate the 
scalability when system size changes. If the given 
speed-efficiency is 0.2, we read the required matrix 
size at different system configurations from Fig. 2. 
Then, we calculate the isospeed-efficiency scalability 
for the MM algorithm on Sunwulf as following. 

Table 5 Scalability of MM on Sunwulf 
)','( 42 CCψ  )','( 84 CCψ  )','( 168 CCψ  )','( 3216 CCψ

0.539 0.416 0.443 0.470 
 
4.4.3 Comparison of two experimental results. The 
above two experiments are actually two different 
algorithm-system combinations. Although both of them 
are conducted on a series of different system 
configurations of the Sunwulf cluster, the machine 
parameters, such as machine latency, are the same. By 
using the proposed isospeed-efficiency scalability 
metric, we are able to quantify the scalability of these 
two different combinations. 

Compared with the scalability of GE-Sunwulf 
combination given in Table 6, we find the scalability of 

MM-Sunwulf combination is higher. This indicates 
that the MM-Sunwulf combination is more scalable 
than the GE-Sunwulf combination. The GE algorithm 
has a sequential portion and has more communications 
than that of the MM algorithm. Its scalability should be 
smaller than the scalability of the latter. Our 
experiment verifies this fact and presents actual 
quantified scalability advantage of the MM algorithm 
on Sunwulf cluster. 

 
4.5 Scalability prediction 

 
As we proved in Section 3, if we are able to analyze 

the sequential ratio and measure the communication 
latency of the machine, we can predict the scalability. 
We use the GE-Sunwulf combination to illustrate how 
scalability can be predicted. 

According to the parallel GE algorithm in Section 
4.1.1, the sequential ratio of this algorithm is 

)/1( NO=α . When N is large enough, we treat 0≈α . 
The total communication overhead is 

)2()()1(2 barrierbroadcastrecvsendbroadcasto TTNTTpTT +××++×−×+=  
where p is the number of processes. We have measured 
the parameters in the above equation on Sunwulf, 

)(23.012.0 mspTboradcast ×+≈  
)()(0.0000308.0 msNTT recvsend ×+≈=  

)(39.0 mspTbarrier ×≈  
The computation time can be written as 

p
tNWT c

c
×

=
)(  

where tc is the time of one unit computation, we have 
measured )(101.3 5 mstc

−×≈ . Based on these analyses 

and parameters, according to Corollary 2, we predict 
the scalability is '/)',( oo TTCC =ψ , where N is 
constrained by the isospeed-efficiency condition.  

Based on the case of two nodes, our prediction 
result for the required N to keep constant speed-
efficiency at 0.3 is as following, 

Table 6 Predicted required rank 
Nodes 4 8 16 32 

N (predicition) 492 928 1683 3226
Thus, the predicted scalability is 
Table 7 Predicted scalability of GE on Sunwulf 

),( 42 CCψ ),( 84 CCψ ),( 168 CCψ  ),( 3216 CCψ
0.413 0.267 0.316 0.275 
We can see that the predicted scalability is close to 

our measured scalability, which also verifies the 
isospeed-efficiency scalability metric works well. 

 



5. Conclusion and future work 
 
In this study, we propose an isospeed-efficiency 

scalability metric for general distributed environment. 
The proposed metric contains the homogenous 
isospeed scalability[10] as a special case. We first 
introduce a new concept of marked speed to describe 
the computational capability of computing systems. 
Based on the marked speed concept, we present the 
isospeed-efficiency scalability for heterogeneous 
computing. We then analyze the new scalability metric 
in theory and derive useful formulas for calculating 
and predicting this scalability. We have conducted 
experiments to verify these formulae in a 
heterogeneous computing environment. These results 
match the analytical results well and show that the 
proposed isospeed-efficiency scalability metric is 
appropriate for a general scalable computing 
environment, homogeneous or heterogeneous, tightly 
coupled or widely distributed.  

Marked speed is a simple but effective metric to 
reflect the computational capability of general 
distributed systems. In future, we plan to extend the 
single parameter marked speed to multi-parameter 
marked performance that has several parameters to 
describe the full capability of a computing system, to 
provide users more options for their needs. 

We have demonstrated that the scalability can be 
predicted based on derived formulas. We plan to 
explore the possibility of extending the prediction of 
scalability into system support so that the scalability 
can be predicted automatically or semi-automatically. 

 
6. Acknowledgements 

This research was supported in part by national 
science foundation under NSF grant SCI-0504291, 
CNS-0406328, ACI-0305355, EIA-0224377, and ANI-
0123930. 

 
7. References 
 
[1] O. Beaumont, V. Boudet, F. Rastello and Y. Robert, 

“Matrix Multiplication on Heterogeneous Platforms”, IEEE 

Trans. Parallel Distributed Systems, Vol. 12, No. 10, 

pp.1033-1051, 2001. 

[2] D. Culler, J. Singh and A. Gupta, Parallel Computer 

Architecture: A Hardware/Software Approach, Morgan 

Kaufmann Publishers, 1999. 

[3] V. Kumar, A. Grama, A. Gupta and G. Karypis, 

Introduction to Parallel Computing: Design and Analysis of 

Parallel Algorithms, 1994. 

[4] K. Hwang and Z. Xu, Scalable Parallel Computing, 

McGraw–Hill, 1998. 

[5] P.P. Jogalekar and C.M. Woodside, “Evaluating the 

Scalability of Distributed Systems”, IEEE Trans. on Parallel 

and Distributed Systems, Vol. 11, No. 6, pp.589-603, 2000. 

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous 

Distribution of Computations While Solving Linear Algebra 

Problems on Networks of Heterogeneous Computers”, 

Journal of Parallel and Distributed Computing, Vol. 61, No. 

4, pp.520-535, 2001. 

[7] L. Pastor and J.L. Bosque, “An Efficiency and Scalability 

Model for Heterogeneous Clusters”. IEEE International 

Conference on Cluster Computing, pp.427-434, 2001. 

[8] X.H. Sun, “Scalability versus Execution Time in Scalable 

Systems”, Journal of Parallel and Distributed Computing, 

Vol. 62, No. 2, pp.173–192, 2002. 

[9] X.H. Sun and L.M. Ni, “Scalable Problems and Memory-

Bounded Speedup”, Journal of Parallel and Distributed 

Computing, Vol. 19, pp.27-37, 1993. 

[10] X.H. Sun and D. Rover, “Scalability of Parallel 

Algorithm–Machine Combinations”, IEEE Trans. Parallel 

Distributed Systems, Vol. 5, pp.599–613, 1994. 

 

 


