
B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS_4192, pp. 238 – 246, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Memory Optimizations for Improving
MPI Derived Datatype Performance

Surendra Byna1, Xian-He Sun1, Rajeev Thakur2, and William Gropp2

1 Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
{bynasur, sun}@iit.edu

2 Math. and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
{thakur, gropp}@mcs.anl.gov

Abstract. MPI derived datatypes allow users to describe noncontiguous memory
layout and communicate noncontiguous data with a single communication
function. This powerful feature enables an MPI implementation to optimize the
transfer of noncontiguous data. In practice, however, many implementations of
MPI derived datatypes perform poorly, which makes application developers
avoid using this feature. In this paper, we present a technique to automatically
select templates that are optimized for memory performance based on the access
pattern of derived datatypes. We implement this mechanism in the MPICH2
source code. The performance of our implementation is compared to well-written
manual packing/unpacking routines and original MPICH2 implementation. We
show that performance for various derived datatypes is significantly improved
and comparable to that of optimized manual routines.

Keywords: MPI, derived datatypes, MPI performance optimization.

1 Introduction

MPI derived datatypes [7] enable users to describe noncontiguous memory layouts
compactly and to use this compact representation in MPI communication functions.
Derived datatypes also enable an MPI implementation to optimize the transfer of
noncontiguous data. For example, if the underlying communication mechanism
supports noncontiguous data transfers, the MPI implementation can communicate the
data directly without packing it into a contiguous buffer. On the other hand, if packing
into a contiguous buffer is necessary, the MPI implementation can pack the data and
send it contiguously.

In practice, however, many MPI implementations perform poorly with derived
datatypes—to the extent that users often resort to packing the data manually into a
contiguous buffer and then calling MPI. Such usage clearly defeats the purpose of
having derived datatypes in the MPI Standard. Since noncontiguous communication
occurs commonly in many applications (for example, Fast Fourier transform, array
redistribution, and finite-element codes), improving the performance of derived
datatypes has significant value.

The performance of derived datatypes can be improved in several ways.
Researchers have used data structures that allow a stack-based approach to parsing a

 Automatic Memory Optimizations 239

datatype, rather than making recursive function calls, which are expensive [4], [11],
[12]. These works improved the performance of derived datatypes to the level of
performance with naïve manual implementations for packing noncontiguous data.
(We do better than that in this paper.) Wu et al. [13] improved the performance of
MPI derived datatypes by taking advantage of the features in InfiniBand to overlap
packing and unpacking a message with network communication.

The performance of derived datatypes can be improved further by using optimized
algorithms for packing and unpacking of data. Many implementations of derived
datatypes use loops in packing/unpacking noncontiguous data. Utilizing data locality
in these loops by applying loop optimizations, which a developer cannot easily do
without advanced knowledge of memory hierarchy design and optimizations, is
beneficial. This area is the focus of our study. These techniques are useful for MPI
implementations on various network channels and the performance gain is not limited
to fast networks. Our previous work [1] presents the scope of performance
improvement by using MPI’s profiling interface (PMPI). In this paper, we present
automatic selection of optimized packing/unpacking templates within the MPICH2
source code, based on data access patterns, data size, and memory architecture.
Ogawa et al. [9] used optimized templates in improving MPI performance for
instantiating partial-evaluation code selection in order to reduce software overhead.
We, in contrast, use templates to optimize memory performance.

The rest of this paper is organized as follows. In Section 2, we present the design
of our optimization mechanism. In Section 3, we describe the implementation details
in selecting optimized templates dynamically. In Section 4, we present our
experimental results, followed by conclusions in Section 5.

2 Optimization Mechanism

To choose optimized templates automatically, we developed a systematic approach.
Our method first retrieves the data access pattern of a derived datatype from user’s
definition and verifies whether performance improvement is possible with
optimizations for a derived datatype before applying them. If improvement is
possible, our optimization method uses an analytical model [2] to predict memory
access cost and to find optimization parameters with the lowest access cost. These
parameters are passed to templates to pack/unpack noncontiguous data.

Overall procedure of optimizing an MPI communication function using derived
datatypes has two steps. In the first step, we verify whether a datatype is optimizable
or not, and find optimization parameters. In the second step, MPI communication
function calls optimized templates automatically.

In MPI programs, after defining a derived datatype, it has to be committed by
calling MPI_Type_commit. We modified the implementation of the
MPI_Type_commit function to verify whether optimization is possible. The
modified implementation first retrieves the data access pattern, which includes the
type of the user-defined datatype, old datatype, strides between consecutive memory
accesses, size of the data items, and depth of the derived datatype. If the old datatype
is another derived datatype (that is, when a derived datatype is nested),
MPI_Type_commit retrieves these values for that inner datatype as well. We use

240 S. Byna et al.

the datatype decoder functions of MPI-2, namely MPI_Type_get_envelope and
MPI_Type_get_contents to retrieve the pattern. The overhead of decoding
datatypes by using these functions is low.

In order to determine whether a datatype is optimizable or not, the modified
MPI_Type_commit function verifies a series of heuristics that cause cache misses.
It verifies whether the datatype is contiguous or noncontiguous, examines whether the
data size is more than cache size, and then calculates the factor of cache and TLB
reuse. The optimization method reverts back to the original implementation if it
determines that the performance cannot be improved at any of these verifications. We
use an optimization flag (is_optimizable) to keep track of the results of these
verifications. If the performance can be improved, MPI_Type_commit determines
the optimization parameters and sets the flag is_optimization to 1.

We developed optimized templates to pack/unpack noncontiguous data by using
various loop optimization methods. In our current implementation, these templates
use cache blocking [5], loop unrolling, array-padding optimizations, and software-
level prefetching [8].

Various parameters are required in using these optimizations. Examples of
optimization parameters are: block size for cache blocking, number of padding
elements for array padding, and prefetching distance for software-level prefetching. In
our approach, we first select these optimization parameters based on heuristics. To
determine if these parameters are optimal, we developed a simple, fast, and accurate
memory-access-cost prediction model [2]. This model verifies whether the memory
access cost is reduced with the selected parameters. A new set of optimization
parameters are selected if the cost is not optimized and the prediction model verifies
for lowered cost again.

Examples of optimization parameter selection are as follows. For cache-blocking
optimization, the block size is selected in a way that each block fits into the cache
memory and virtual-to-physical address mappings of that block fit in the TLB
(Translation Look-aside Buffer). For software prefetching, the number of loop
iterations needed to overlap a prefetching memory access is called the prefetching
distance [8]. Assuming memory access latency is l, and the work per loop iteration is
w, the prefetch distance is ceiling (l/w). The main loop that packs data is unrolled for
all the references that reuse cache lines that are prefetched. An epilogue loop is called
without prefetching to execute the last few iterations that do not fit in the main loop.
We use a special gcc function __builtin_prefetch to issue these prefetch
instructions. A special flag, –mcpu, has to be set to compile MPI source code.

In the second step, when the MPI_Send function is called to send the data, if the
is_optimization flag is 1, the MPI_Send calls optimized packing templates
using the optimization parameters. These templates are also used when the user calls
MPI_Pack or MPI_Unpack to pack or unpack noncontiguous data.

3 Performance Results

We used three sets of benchmarks to evaluate the performance of our optimized
implementations.

 Automatic Memory Optimizations 241

1. Simple derived datatypes: We chose fixed derived datatypes defined by the
SKaMPI benchmark [10]. They describe a memory layout consisting of a number
of units of a basic datatype. The number of units depends on the size of data, the
size of basic datatype, and strides. We used vector and indexed datatypes.

2. Nested derived datatypes: We use the nested derived datatypes described by Ross
et al. in [11]. These datatypes represent a collection of elements from a 3D array.
When a 3D array is stored in row-major order, accessing the YZ face and all the
YZ faces of the array in X direction is noncontiguous and has poor locality when
the size of the YZ face is more than the cache or TLB sizes. We tested a nested
datatype describing a 3D cube of YZ planes in the X direction with a vector of
vectors (vector of YZ planes in an array).

3. NAS benchmarks: Lu et al. [6] modified four NAS benchmarks to apply MPI
derived datatypes for noncontiguous data communication. Among these, LU, BT,
and SP have small data transfers and do not benefit from memory optimizations.
In the MG benchmark, the data transfers in the comm3 function are
noncontiguous and are implemented as packing-then-sent by a sender process and
receive-then-unpacking by a receiver. The datatypes described in the modified
code are nested datatypes that represent vectors of vectors. We also tested the
performance of the matrix transpose operation from the NAS parallel
benchmarks’ Fourier Transform (FT) program, using MPI derived datatypes. To
describe the transpose operation with a derived datatype, we use a datatype that is
a vector of vectors (vector of columns in an array).

Except for the NAS MG benchmark, we obtained the performance results of all
other benchmarks with an MPI_Send/Recv ping-pong operation. In this operation,
a process sends a noncontiguous message that is described by the MPI derived
datatypes, and a destination process receives it contiguously. The destination process
then sends back the data with the same derived datatype and is received at the first
process contiguously. The time is measured at the first process and halved to find the
communication cost for one complete data transfer. We ran 20 iterations of each
program and calculated the minimum time. We present the performance as transfer
rate (MB/s) to normalize the results. The size of the message used in the ping-pong
operation is divided by the measured time to find the rate. For the NAS MG
benchmark, we compare the execution time of the benchmark.

We compare the performance results for three implementations: manually packing
data and sending it (no derived datatypes), MPICH2 version 1.0.3 (unoptimized), and
our optimized implementation of the MPICH2 code. The manually implemented pack
and unpack codes are written to represent the way a good programmer would write
them. Ross et al. [11] showed that the implementation of derived datatypes in
MPICH2 outperform those implemented in LAM/MPI. Therefore, we directly
compare our results with MPICH2. We compile all manual codes and MPI
installations with gcc version 3.2.3 with the flags -O6.

To test the portability of our optimized implementations, we ran these experiments
on two different clusters: a 350-node Linux cluster (jazz) at Argonne National
Laboratory and an 84-node Sun cluster (sunwulf) at Illinois Institute of Technology.
The nodes of jazz have a 2.4 GHz Pentium-4 processor with 1 GB of memory. These
processors have 512 KB of built-in L2 cache, with a 64 byte cache line and 8-way

242 S. Byna et al.

associative, a TLB of 128 entries, and a page size of 4 KB. The network interconnect
of this cluster is Fast Ethernet. Each node of the sunwulf cluster is a Sun Blade-100
workstation with one 500MHz UltraSparc-IIe CPU. The L1 cache is 16 KB, with a
16-byte cache line size. The L2 cache has a capacity of 8 MB and its line size is 64
bytes. It has a TLB of 48 entries with 4 KB page size. The network interconnect of
sunwulf is Gigabit Ethernet.

Figure 1 shows the performance (rate of sending/receiving data in MB/s) of
programs using messages formed by vector and indexed datatypes on the jazz
cluster. Figure 2 shows the performance of the same programs on the sunwulf
cluster. On both clusters, when the message size is larger than cache size, the
performance of the original MPICH2 implementation degrades sharply compared to
the manual implementation for both vector and indexed datatypes. With the
optimized implementation, this performance is in the same level as that of optimized
manual codes. These figures also show that the overhead of optimized
implementations is low.

Fig. 1. Bandwidth measurements for vector (left) and indexed (right) datatype on jazz

Fig. 2. Bandwidth measurements for vector (left) and indexed (right) on sunwulf

Figure 3 shows the performance of programs communicating messages formed
using nested derived datatypes representing a 3D-cube on the jazz cluster and Figure 4
shows that on the sunwulf cluster. On both clusters, the original MPICH2 performs

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

128K 256K 512K 1M 2M 4M 8M 16M 32M 64M

Message size

R
at

e
 (M

B
/s

)

Manual MPICH2 Optimized MPICH2

0.000

0.500

1.000

1.500

2.000

2.500

3.000

256K 512K 1M 2M 4M 8M 16M

Message size

R
a

te
 (M

B
/s

)

Manual MPICH2 Optimized MPICH2

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

512K 1M 2M 4M 8M 16M

Message size

R
at

e
 (M

B
/s

)

Manual MPICH2 Optimized MPICH2

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

256K 512K 1M 2M 4M 8M 16M

Message size

R
at

e
(M

B
/s

)

Manual MPICH2 Optimized MPICH2

 Automatic Memory Optimizations 243

similar to manual and optimized implementations for smaller data sizes. As the
message size (size of 3D cube) becomes larger compared to the L2 cache size, the
performance degrades for MPICH2, whereas the optimized implementation maintains
superior performance similar to that of the optimized manual program.

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

8*8*8 16*16*16 32*32*32 64*64*64 128*128*128 256*256*256

Matrix dimensions

R
a

te
 (

M
B

/s
)

Manual MPICH2 Optimized MPICH2

Fig. 3. Bandwidth measurements for the 3D-cube experiment on jazz

0.000

10.000

20.000

30.000

40.000

50.000

60.000

8*8*8 16*16*16 32*32*32 64*64*64 128*128*128

Matrix dimension

R
at

e
(M

B
/s

)

Manual MPICH2 Optimized MPICH2

Fig. 4. Bandwidth measurements for the 3D-cube experiment on sunwulf

Figures 5 and 6 show the performance of the NAS MG benchmark on jazz and
sunwulf clusters, respectively. We measured the execution time of the MG benchmark
by using 4, 8 and 16 processors with B and C class workloads. The execution time
with MPICH2 is higher than that of the original MG benchmark implementation
(manual). With optimized MPICH2, the execution time is up to 8% (on average 6%)
lower than that of manual implementation, and up to 25% (on average 13%) lower
than that of unmodified MPICH2 on the jazz cluster. On the sunwulf cluster, for 8 and
16 processors, the execution time is up to 12% (on average 7.3%) less than that of the
manual implementation. Here, manual implementation is the original NAS MG
benchmark, which is not optimized for cache blocking and prefetching. Our optimized
MPI derived datatype implementation benefits from using cache blocking in the
nested datatypes in the MG benchmark.

Figures 7 and 8 show the performance (rate in MB/s) of the matrix transpose
subroutine of NAS FT benchmark on jazz and sunwulf clusters, respectively. When

244 S. Byna et al.

the message size is larger than the L2 cache size, the rate degrades severely for
unmodified MPICH2 because of the large number of cache misses caused by poor
data locality. The optimized MPICH2 implementation benefits from using cache
blocking in this program. The performance gain is in the range of 50–60% on jazz
cluster and 50–114% on the sunwulf cluster.

0

50

100

150

200

250

300

350

4/B 4/C 8/B 8/C 16/B 16/C

NPROCS/CLASS

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Manual MPICH2 Optimized MPICH2

Fig. 5. Execution time of the NAS MG benchmark on jazz (left) and on sunwulf (right)

0

500

1000

1500

2000

2500

3000

3500

4/B 4/C 8/B 8/C 16/B 16/C

NPROCS/CLASS

E
xe

cu
tio

n
 ti

m
e

(s
e

c)

Manual MPICH2 Optimized MPICH2

Fig. 6. Execution time of the NAS MG benchmark on sunwulf

0.000

2.000

4.000

6.000

8.000

10.000

12.000

32*32
(8KB)

64*64
(32KB)

128*128
(128KB)

256*256
(512KB)

512*512
(2MB)

1024*1024
(8MB)

2048*2048
(32MB)

Matrix size

R
a

te
 (

M
B

/s
)

Manual MPICH2 Optimized MPICH2

Fig. 7. Bandwidth measurements for matrix transpose experiment on jazz

 Automatic Memory Optimizations 245

0.000

10.000

20.000

30.000

40.000

50.000

60.000

32*32
(8KB)

64*64
(32KB)

128*128
(128KB)

256*256
(512KB)

512*512
(2MB)

1024*1024
(8MB)

2048*2048
(32MB)

Matrix size

R
at

e
 (M

B
/s

)

Manual MPICH2 Optimized MPICH2

Fig. 8. Bandwidth measurements for matrix transpose experiment on sunwulf

4 Conclusions and Future Work

In this paper, we presented a technique to optimize the performance of MPI derived
datatypes. Poor data access performance in dealing with noncontiguous data has been
a major performance bottleneck of in packing and unpacking of MPI derived
datatypes. Many optimization methods are available in the literature to optimize the
data-access performance. However, predicting the optimization parameters with low
overhead and automatically applying these optimization strategies is a challenging
research issue. We developed models for predicting memory-access cost [2] that can
help in dynamically applying optimizations. By combining optimization methods with
a memory access model, we have introduced in this paper an approach to optimize
memory performance automatically. The optimized implementation of MPI derived
datatypes chooses packing templates that are optimized for advanced hierarchical
memory systems of modern machines. These templates are parameterized with
various architecture-specific parameters (for example, block size and TLB size),
which are determined separately for different systems. By using these optimized
templates, we obtained significantly higher performance than the existing MPICH2
implementation and manual packing/unpacking by the user. This result is significant
because it will improve the performance of MPI_Pack/Unpack and MPI
communication functions in many applications that use MPI derived datatypes in
performing noncontiguous communication. We have shown that our optimized
implementations are applicable on multiple architectures (Intel and Sun).

The optimizations described in this paper are not yet incorporated into the
MPICH2 release, but we plan to do so. We are also looking at other applications of
automatically selecting optimization parameters using the analytical prediction model.
For example, in scientific applications, major portion of their run time is spent in
executing loops. Using optimized templates can improve the performance of those
loops. We are also working on incorporating prefetching strategies within PVFS [3] to
improve the performance of data movement.

Acknowledgments. This work was supported in part by the National Science
Foundation under NSF grants CNS-0509118, CNS-0406328, EIA-0224377, EIA-
0130673, and in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

246 S. Byna et al.

References

1. Surendra Byna, William Gropp, Xian-He Sun, and Rajeev Thakur, “Improving the
Performance of MPI Derived Datatypes by Optimizing Memory-Access Cost,” In
Proceedings of IEEE International Conference on Cluster Computing, December 2003.

2. Surendra Byna, Xian-He Sun, William Gropp and Rajeev Thakur, “Predicting Memory-
Access Cost Based on Data-Access Patterns,” In Proceedings of IEEE International
Conference on Cluster Computing, September 2004.

3. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur, “PVFS: A
Parallel File System for Linux Clusters,” In Proceedings of the 4th Annual Linux
Showcase and Conference, pages 317--327, Atlanta, GA, 2000, USENIX Association.

4. William Gropp, Ewing Lusk, and Deborah Swider, “Improving the Performance of MPI
Derived Datatypes,” In Proceedings of the Third MPI Developer's and User's Conference,
MPI Software Technology Press, pp. 25–30, March 1999.

5. M. Lam, Edward E. Rothberg, and Michael E. Wolf, “The Cache Performance of Blocked
Algorithms,” In Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 63–74, April 1991.

6. Q. Lu, J. Wu, D. Panda and P. Sadayappan, “Applying MPI Derived Datatypes to the NAS
Benchmarks: A Case Study,” Technical Report OSU-CISRC-4/04-TR19, Ohio State
University.

7. Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard”, Version
1.1, June 1995. http://www.mpi-forum.org/docs/docs.html.

8. T. Mowry and A. Gupta, “Tolerating Latency Through Software-controlled Prefetching in
Shared-memory Multiprocessors,” Journal of Parallel and Distributed Computing, Volume
12, Issue 2, June 1991.

9. H. Ogawa and S. Matsuoka, “OMPI: Optimizing MPI Programs using Partial Evaluation,”
In Proceedings of IEEE/ACM Supercomputing Conference, Pittsburgh, November 1996.

10. Ralf Reussner, Jesper Larsson Träff, and Gunnar Hunzelmann, “A Benchmark for MPI
Derived Datatypes,” In Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 7th European PVM/MPI Users’ Group Meeting, volume 1908 of Lecture Notes
in Computer Science, pages 10-17, 2000.

11. R. Ross, N. Miller, and W. Gropp, “Implementing Fast and Reusable Datatype
Processing,” In Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 10th European PVM/MPI Users’ Group Meeting, volume 2840 of Lecture Notes
in Computer Science, pages 404-413, 2003.

12. Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, and Falk Zimmermann, “Flattening
on the Fly: efficient handling of MPI derived datatypes. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 6th European PVM/MPI Users’ Group
Meeting, volume 1697 of Lecture Notes in Computer Science, pages 109-116, 1999.

13. Jiesheng Wu, Pete Wyckoff, Dhabaleswar Panda, “High Performance Implementation of
MPI Derived Datatype Communication over InfiniBand,” In Proceedings of the 18th
International Parallel and Distributed Processing Symposium, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

