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Abstract—In this paper we consider a new caching model that enables data sharing for network services in a cost-effective way.

The proposed caching algorithms are characterized by using monetary cost and access information to control the cache replacements,

instead of exploiting capacity-oriented strategies as in traditional approaches. In particular, given a stream of requests to a shared data

item with respect to a homogeneous cost model, we first propose a fast off-line algorithm using dynamic programming techniques,

which can generate an optimal schedule within OðmnÞ time-space complexity by using cache, migration as well as replication to serve a

n-length request sequence in am-node network, substantially improving the previous results. Furthermore, we also study the online

form of this problem, and present an 3-competitive online algorithm by leveraging an idea of anticipatory caching. The algorithm can

serve an online request in constant time and is space efficient in OðmÞ as well, rendering it more practical in reality. We evaluate our

algorithms, together with some variants, by conducting extensive simulation studies. Our results show that the optimal cost of the

off-line algorithm is changed in a parabolic form as the ratio of caching cost to transfer cost is increased, and the online algorithm is less

than 2 times worse in most cases than its optimal off-line counterpart.

Index Terms—Data caching and migration, collaborative caching, anticipatory caching, dynamic programming, competitive analysis

Ç

1 INTRODUCTION

AS one of the often-used techniques to facilitate data
accesses in network services, data caching has been

widely studied since decades ago [1], [2], [3]. By leveraging
the data caching technique, one can substantially reduce
the access latency to frequently used data items, which in
turn also minimizes the network traffics. Traditionally, the
capacity of network cache is limited and its potentials are
maximized by exploiting the spatial-and-temporal localities
exhibited in programs to optimize the caching replace-
ments. Nowadays, with the explosive growth of data serv-
ices in diverse areas, the applications of data caching are
becoming much more challenging than ever before [4], [5],
[6]. Apart from the capacity constraints, there would be a
number of other factors that may affect the effectiveness of
the cache [6], [7]. Specifically, in contrast to traditional case,
there are two main challenges to the caching replacement
policies. First, the cache replacement policy is usually cost
driven in current data services, instead of being capacity-

oriented as in classic network caching [8], [9], [10], [11]. This
is because the current data services are usually deployed in
the cloud platforms, where the cache resources could be vir-
tually infinite provided that the users can afford them based
on the billing model. Second, as apposed to traditional net-
work caching, whose design, as stated, is to exploit the spa-
tial and temporal localities in access sequences, the data
caching in current data services is usually required to facili-
tate the mobile accesses that often exhibit spatial-temporal
trajectory patterns [12], [13]. This implies that the data items
need to be carefully cached along the path of request sites
at different points of time for efficient access.

The above challenges profoundly affect the design of cache
policies on how to utilize the resources in a cost-effectiveway.
The conventional capacity-oriented replacements like LRU or
LFU are typically designed to maximize the cache hit ratio by
selecting victims wisely to evict from the cache so that newly
accessed items could be brought in. While for the caching in
current data services, a newmodel is demanded that not only
facilitates the spatial-and-temporal trajectory of accesses, but
also supports the goal that minimizes the overall cost of the
accesses, instead of sensible use of the cache capacity, since
the capacity is in general not an issue anymore, it can be
neither fixed nor bounded as a cloud service.

In this paper, we study the new caching model by effi-
ciently moving around a shared data item, with possible
multiple copies, in a fully connected network so that a
sequence of requests to the item could be satisfied with min-
imum service cost. In the study, the request sequences could
be online or off-line, signifying different application scenar-
ios in reality. For example, let us imagine an off-line case
where a set of users of a multimedia network (say Netflix)
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may open different movies at different time from different
movie servers, and an ad clip is randomly inserted into the
stream of each movie video for advertisements. In this case,
the play time instances of the ad clip in each video stream
can be determined in advance, and the network service can
exploit this knowledge to schedule the ad clip to the request
sites at the desired time instances by caching or migrating
between the servers for cost saving, instead of retrieving it
from the central ad repository. As in this example, the off-
line sequence in general is embedded with the spatial-tem-
poral trajectory information of the requests, which could be
secured in advance by mining the data historical logs or
exploiting some spatial-temporal trajectory model [13].
While for online sequence, we assume nothing known about
it in order to make competitive analysis, which could give a
theoretical bound to the worst case of the algorithm.

As with the classic caching problem, which is usually
assumed to have homogeneous miss penalty cost, we also
assume that the cost model in the caching model is homoge-
neous, which means the transfer cost between any pair of
servers in the network is identical and the caching cost per
time unit at each individual server is also identical. The
model is practical in the sense that the provisioned infra-
structure for a particular data service is always organized as
a subset of homogeneous resources, which in turn results in
homogeneous computations and communications [14]. To
make our research goal more clear, a detailed comparison
between classic network caching and the new data caching
is listed in Table 1 where the fast optimal off-line and com-
petitive online algorithms for the data caching problem are
the focus of this paper, and the main results of this paper
are also highlighted in the table.

Specifically, we make the following contributions in this
paper:

1) An Optimal OðmnÞ Off-line Algorithm: We first con-
sider the off-line algorithms with respect to a given
request sequence characterized by its spatial-tempo-
ral trajectory information. To this end, we use
dynamic programming technique to design a fast
optimal algorithm that can cache, migrate and repli-
cate the shared data item in a fully connected
m-node network to serve an n-request sequence
within OðmnÞ time and space complexity. The result
is OðmlogmÞ times faster than the previous algo-
rithms [14], [17].

2) A 3-Competitive Online Algorithm: We conduct com-
petitive analysis on the online version of this

problem. By leveraging a concept of anticipatory cach-
ing idea, we propose an 3-competitive online algo-
rithm, together with some variants, which not only
guarantees the performance of this algorithm in the
worst case, but is also efficient in both time and
space. To the best of our knowledge, this is the first
competitive analysis to show this new caching para-
digm has a constant competitive ratio, a surprising
result when comparing it with those in the classic
caching problem.

3) Efficient Algorithm Implementation and Evaluation: We
develop efficient data structures to implement the
algorithms, together with some variants, and con-
duct simulation-based studies to investigate their
performance behaviors in reality. The results show
that the proposed algorithms are not only practical
to the data caching problem, but also appear to be of
theoretical significance to a natural new paradigm in
the realm of online algorithms

The reminder of this paper is organized as follows: we
survey some related work and compare them with ours in
Section 2, and introduce the problem notation in Section 3.
After that, we present the off-line algorithm, together with
its critical analysis, in Section 4, and conduct competitive
analysis for the online problem in Section 5. Then, we vali-
date our findings in Section 6, and conclude the paper in the
last section.

2 RELATED WORK

The caching problem, in its different forms, has been exten-
sively studied in many traditional network-based applica-
tions to improve the efficiency of data accesses [1], [2], [4],
[18], [19], [20]. Most of the existing researches, each with dif-
ferent knowledge and goals, are capacity oriented, which
implies the replacement strategies are determined given
limited size of the cache [8], [10], [11].

The caching problem can be considered in both online
and off-line settings, depending on the application scenar-
ios. In the online setting, the incoming requests are
unknown, and the replacements are determined at run-time
to improve the optimization goals (e.g., hit ratio, load balanc-
ing). Karger et al. [2] introduce a cooperative caching strat-
egy based on consistent hashing [21] to address the load
balancing and fault tolerance in the web caches. The consis-
tent caching approach does away with all inter-cache com-
munication and allows the involved caches to behave
together in one coherent system. In contrast, Chockler
et al. [4] study the caching problem in the cloud service, and
propose BLAZE, a simple multi-tenant caching scheme to
guarantee minimum QoS for each tenant. However, these
schemes are still oriented to the cache resources with lim-
ited capacity, which is not necessary in the cloud services.
With BLAZE as a basis, Chockler et al. [5] present a new
cloud-based caching service called Simple Cache for Cloud
(SC2), which can optimize the global use of cache resources
while simultaneously guaranteeing minimum service qual-
ity for all users according to their stated requirements.
Although SC2 is distributed in network for shared uses
among tenants as in our case, it, as in BLAZE, still takes the
maximization of overall hit ratio as a goal.

TABLE 1
Classic Model versus Cost-Driven Model

Classic Caching [9] Cost-Driven Caching

Network Fully Connected Fully Connected
Cost Model Transfer Cost Caching&Transfer Costs
Operation Page Fault Cache, Transfer& Replicate
Cache Size Fixed Number k Not Fixed Number
Opt. Goal Total Fault Cost Total Service Cost
Locality Spatial-Temporal Spatial-Temporal Trajectory

Opt. Off-line Belady’s Alg. [15] O(mn) Fast Opt. Alg.

Comp. Online k-competitive [16] 3-competitive
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As with Karger et al. [2], Cao and Irani also investigate
the web caches, but from competitive analysis perspective.
They present a cost-aware caching algorithm that incorpo-
rates locality with cost and size concerns in a simple and
non-parameterized fashion for high performance [1]. Their
algorithm is k-competitive, where k is the ratio of the size of
the cache to the size of the smallest data item.

Charikar et al. [22] propose a dynamic servers (DS) prob-
lem, which can be viewed as a generalization of the data
caching problem in our case in terms of its request pattern
andmetric space. For the onlineDS problem in arbitrarymet-
ric spaces, they present an Oðminflogn; logfgÞ-competitive
algorithm where n is the number of requests and f, the (nor-
malized) diameter of the metric space. This is an improve-
ment to the previous result of Halperin et al. in [23] where
the DS problem has an OðlognÞ competitive algorithm in a
special case of paths. As a complement to these studies, our
results further show that the DS problem has constant com-
petitive ratio with respect to homogeneous cost model when
the sequence of requests is not batched (i.e., batch size is one).

More recently, Mansouri et al. [24] studied a similar
problem regarding the dynamic replication and migration
of data in cloud data centers. They propose two online algo-
rithms that could make a trade-off between residential and
migration costs and dynamically select storage classes
across CSPs. Our problem is different from theirs in terms
of system model, cost model, and problem definition. How-
ever, they are highly related. We achieve an online algo-
rithm with a constant competitive ratio for our problem
while the competitive ratios of their algorithms depend on
the configurations of their system model, which could be
much worse in certain cases.

In the off-line setting, one of the pioneer works on opti-
mal caching is conducted by Belady [15]. Although there
have been some follow-up studies on this problem since
then [25], [26], [27], none of them is applicable to our cach-
ing model. A highly related one is Veeravalli’s work [17],
which deals with the network caching problem with respect
to sharing a data item in a set of fully networked servers.
With a homogeneous cost model, they obtain an optimal
algorithm using dynamic programming technique within
Oðnm2logmÞ time, which can automatically generate multi-
ple copies to minimize the total service cost of request
sequence. In contrast to this algorithm, our off-line algorithm
can reach the same goal inOðmnÞ time and space complexity.
Veeravalli’s work is later extended by Wang et al. [14] to the
context of clouds with some practical constraints so that a
balance between the caching costs and the transfer costs of
multiple shared data items can be optimally struck.

Unlike previous studies, Scouarnec et al. [6] investigate
cache policies for cloud-based caching from a different angle
that views cloud resources to be potentially infinite and only
paid when used. To deal with this new context, they design
and evaluate a new caching policy that minimizes the cost of
a cloud-based system in online fashion. We adopt this point
of view to design the optimal off-line and competitive online
data caching algorithms in the cloud. Particularly, the off-line
sequence is assumed to be available in advance when consid-
ering the trajectory information inherent in access patterns.

In summary, compared to existing methods, our model is
new in the sense that it not only uses the cost metric, but

also considers the spatial-and-temporal trajectory pattern of
the mobile accesses, whereby a fast optimal off-line and
Oð1Þ-competitive online algorithms are introduced, together
with their deep analysis.

3 CACHING MODEL AND ITS NOTATION

In this section, we describe the caching model in details
under a homogeneous cost model. We first define some use-
ful concepts and then give the standard form of the solution
to the problem. Some used symbols are listed in Table 2 for
easy reference.

Suppose in a network environment, the server set is
S ¼ fs1; . . . ; smg that are fully connected by a network, and
a shared data item is initially located at a certain server, say
s1. The request for the data item is generated online at each
server, which could be made by users outside the network.
The request vector is denoted asR ¼ < r1; . . . ; rn > , where
each ri ¼ ðsi; tiÞ, with ti < tiþ1 and si 2 S, represents that ri
is made from si at ti. Note that the use of superscripts for
the server indexes (e.g., si) should be distinguished from
the reference labels (e.g., si). For example, the ith request
ri’s server si could be sj. To satisfy the request sequence, the
shared item should be moved around between the servers,
replicated at or cached and then deleted at certain servers to
satisfy each request on time only if the total cost is mini-
mum (cost model is discussed later).

To simplify boundary conditions, we define r0 ¼ ðs1; 0Þ
and r�j ¼ ðsj;�1Þ; 1 � j � n.1 Note that the requests at

TABLE 2
Frequently Used Notation

Symbol Meaning

S server set S ¼ fs1; . . . ; smg
si server index
si server reference label
R request vectorR ¼ r1; . . . ; rnh i
ri request ri ¼ ðsi; tiÞ; si 2 S
r0 r0 ¼ ðs1; 0Þ
r�j r�j ¼ ðsj;�1Þ; 1 � j � n
dti;j dti;j ¼ tj � ti, time diff. btw ri and rj
pðiÞ the previous req. before ti (same server)
p0ðiÞ the most recent event before ti (same server)
si si ¼ ti � tpðiÞ
Trðsi; sj; xÞ data transfer from si to sj at tx
Hðs; x; yÞ data is held in cache on server s from tx to ty
m uniform caching cost per time unit
� uniform transfer cost between servers
vi
j the ith anticipatory caching cost on sj

Vj the set of SC costs on sj

GðiÞ space of the feasible schedules for up to ri
C�ðnÞ optimal schedule for up to rn
CostðCðiÞÞ the cost of scheduleCðiÞ
Cð�1ÞðiÞ sub-schedule ofCðiÞ for up to ri�1
DCðiÞ marginal cost DCðiÞ ¼ PðCðiÞÞ �PðCð�1ÞðiÞÞ
bi bi ¼ minf�;msig; 1 � i � n:
Bi Bi ¼

Pi
j¼1 bj

C0ðiÞ conditional opt. sched. withHðsi; tpðiÞ; tiÞ
as the final cacheH

k pivot index

1. As special cases, we use server indexes for r0 and r�j, instead of
the server labels as in ri ¼ ðsi; tiÞ.
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�1 will never be included in a solution, and are only
defined to make notation on the intervals on a server easier.
We assume at least one request for each server (i.e., we
ignore those servers without requests).

For i < j, we define dti;j ¼ tj � ti, which is the time
difference between requests ri and rj. For ri ¼ ðsi; tiÞ;
1 � i < n, we define the previous request on the same
server by pðiÞ ¼ argmaxi0 <ifsi0 ¼ sig. Then, we can define
the server interval on request ri as si ¼ ti � tpðiÞ. Moreover, we
can define a data item transfer Trðsi; sj; xÞ from server si to
sj at time x, and say the data item is cached, or held in cache
on server s from time x to y using the notation ofHðs; x; yÞ.

The cost model for this process is homogeneous in the
sense that the cost of one unit of time caching on each server
is the same across all the servers, denoted by m, and the
transfer cost from any server to any other server, denoted
by �, is also identical no matter which servers are being
used. As a result, the transfer cost between servers sj and sk

is �, 8j 6¼ k at any time x, and the caching cost from time x
to y for any server is mðy� xÞ. This model is corresponding
to the traditional caching model where the penalty of cache
miss is always assumed a constant. On the other hand, the
homogeneous cost model is also available in reality [14].

The problem is to find the set of cache intervals and
transfers for the data item so that

1) at least one server is caching the data item at any
time t; t0 � t � tn.

2) The data item is available for rj on sj at time tj,
1 � j � n (discuss later).

3) The total transfer and caching costs are minimized.
To this end, multiple copies of the data item could be

automatically generated during the service process. Except
the first one each of the other copies is caused by a transfer,
and eventually deleted when it is no longer used. Therefore,
without loss of accuracy, we assume that the replication
cost and the deletion cost are free since these costs are
always constants and can be included in the transfer cost.

Fig. 1 shows an example to illustrate the problem nota-
tion where three servers are fully connected by a network.
A shared data item is initially located at s1, it is migrated,
replicated or cached among the servers to satisfy the request
sequence in time order with minimized total cost as a goal.
Note that the red color indicates that the corresponding
cached data item is deleted after being accessed. As such,
the next request at the same server should be served by a
transfer (e.g., r7@s3).

Definition 1 (Schedule). We say that a schedule CðiÞ is any
minimal set of caches and transfers satisfying 1) and 2) for
online requests r0; . . . ; ri. A schedule is optimal if it also satis-
fies 3). However, it is not achievable for online algorithms.

There could be many feasible (off-line) schedules for
r0; . . . ; ri, and we use GðiÞ to represent the space of the feasi-
ble schedules for up to ri, each CðiÞ having a cost, denoted
by CostðCðiÞÞ. The goal is to find an optimal scheduleC�ðnÞ

C�ðnÞ ¼ argmin
CðnÞ2GðnÞ

fCostðCðiÞÞg:

We can view a schedule in a space-time diagram as shown
in [19], where the edges are caching intervals or transfers,

and the vertices are requests or end points of transfers.
More formally, we have

Definition 2 (Space-Time Graph). We define a space-time
graph as a weighted directed graph G ¼ ðV;E;WÞ where
V ¼ fvji : 0 � j � m; 0 � i � ng. Vertex vji corresponds to
time ti on server sj when 1 � j � m, and v0;i represents the
external storage at ti. The edge set E consists of two subsets:

1) a set of cache edge C ¼ fðvj;i�1; vjiÞ : 0 � i � n;
1 � j � mg,

2) a set of transfer edge T ¼ fðvki; vjiÞ; ðvji; vkiÞ : j 6¼ k;
and ðsk; tiÞ 2 Rg.

Then, the weight of edge e 2 E is defined as

WðeÞ ¼ � e 2 T
mðti�1 � tiÞ e 2 C:

�

Note that a request ri in the instance will correspond to
vertex vsi;i in the graph. For convenience we will often refer
to request vertex ri. We call all the other vertices intermediate
vertices. The set of vertices v�i induce a subgraph that is a
biconnected star centred on the request vertex ri. According
to the graph, the transfer time is negligible, we thus can sat-
isfy ri by a transfer at time ti. This assumption can be vali-
dated by tweaking the graph as shown in [14], and is thus
often adopted in previous studies [14], [17], [22].

As a schedule is minimal, it implies that it is tree-like. If
there is more than one path from s1 to ri then at the last
juncture of paths, at least one of the entries must be a trans-
fer, which can be deleted without loss of service since such
a path cannot be minimal. Also, a schedule will contain no
dead-end caches, that is cache on a server beyond the last
request or transfer time from that server.

The data staging problem in its general form is a variant
of the Rectilinear Steiner Arborescence problem [28]. As
such, it is believed to be NP-complete [17]. However, its for-
mal proof still remains open. Fortunately, in some realistic
settings as in our case, when the cost model is homoge-
neous, we can expect optimal solution to this problem. The

Fig. 1. Three servers are fully connected by a network (only caches are
depicted as squares), and a shared data item is initially located at s1,
which could be migrated, replicated, or cached to satisfy request
sequence R ¼ r1; . . . ; r12h i in time order. The characters in each square
specify how the data item is created in the cache, say “C” is by caching,
and “T” is by transferring, each being charged by its own rate. After the
requests are served, the corresponding cached items could be either
kept in the cache for future demands (in green color) or deleted for cost
saving (in red color). The goal is to minimize the costs to serve the
request sequence.
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following observation indicates that we only need to con-
sider the schedules where the transfers end on requests.

Observation 1 (Standard Form). For any instance, there
exists at least one optimal schedule in which every trans-
fer occurs at a request time ti with its output ends on
server si.

This observation can be directly obtained from Theorem
1 in B. Veeravalli [17]. Fig. 2 shows an optimal schedule in
the standard form in a space-time diagram that all transfers
end up with the requests at different servers. In the figure,
the caching cost and the transfer cost are 1:4mþ 0:2mþ
1:6m ¼ 3:2 and 4� ¼ 4:0, respectively, when m ¼ 1 and
� ¼ 1.

The following observation implies that the optimal
schedule is a directed tree rooted at s1 (see Fig. 2).

Observation 2. In any optimal schedule, each request ri
will be served: 1) by the cache (i.e., the cached copy) on
si, or 2) by a single transfer ending at ri (see Fig. 2 again).

Given the standard form of schedules, we can define sub-
schedule as follows:

Definition 3 (Sub-schedule). The primary sub-schedule,
hereafter referred to as the sub-schedule, Cð�1ÞðiÞ of CðiÞ is a
schedule for ri�1 that consists of the set of caching intervals and
transfers fromCðiÞ required to satisfy all requests r0; . . . ; ri�1.
Note that even if CðiÞ is optimal, the sub-schedule

Cð�1ÞðiÞmay not be an optimal schedule for r0 . . . ri�1. More-
over,Cð�1ÞðiÞmay not be unique.

Since Observation 1 applies to every transfer in an opti-
mal schedule C�ðiÞ, it will also hold in the sub-schedule
Cð�1ÞðiÞ. This justifies that from now on we only need to
consider those schedules in the standard form indicated by
Observation 1, which dramatically simplifies the feasible
schedule space as it is not necessary to consider the proac-
tive data transfer to some vantage servers for the subse-
quent requests. Note that the last caching interval in C�ðiÞ
may be truncated to the last transfer point or request prior
to i on that server inCð�1ÞðiÞ (e.g., r7@s3 in Fig. 2).

4 AN OPTIMAL FAST OFF-LINE ALGORITHM

Given the notation of the caching model, in this section, we
conduct strict analysis on the problem and give our opti-
mal off-line algorithm in time and space complexity of
OðmnÞ. We also present our efficient implementation of
the proposed algorithm, and show how it works via a
running example.

4.1 Problem Analysis and Algorithm

The following lemma shows that if a time interval is greater
than �, we only consider a single caching location.

Lemma 1. In any optimal schedule, if mdti;iþ1 > � then only
one server will cache the data in the interval ½ti; tiþ1�.

Proof. Suppose there are two or more caching intervals cov-
ering ½ti; tiþ1� in some optimal solution. By Observation 2,
riþ1 will be served by exactly one of the following choices,

1) the cached copy on server siþ1
2) a transfer Trðsj; siþ1; tiþ1Þ where sj holds one of

the overlapping caching intervals and sj 6¼ siþ1.
In either case, there will be another cached copy on

another server sk, Hðsk; tk; tjÞ which spans the interval
½ti; tiþ1�. Since there are no requests between ri and riþ1,
tk < ti and tj > tiþ1. If we transfer Trðsiþ1; sk; tiþ1Þ and
eliminate the interval ½ti; tiþ1� on server sk, we will reduce
the cost by mdti;iþ1 � � > 0, contradicting the assump-
tion that the solution was optimal.2 tu
On the other hand, if a server interval is short enough,

then it is always an advantage to cache the data copy on the
server for that interval, even if this means caching at two or
more locations.

Lemma 2. For any i where msi < �, Hðsi; tpðiÞ; tiÞ is a part of
every optimal schedule.

Proof. Consider a request ri where msi < �. Any solution
which uses a transfer to supply request ri can be
improved by �� msi by replacing the transfer with the
cached copy on si for the interval ½tpðiÞ; ti�. tu
Fig. 2 illustrates the both cases given m ¼ 1 and � ¼ 1.

Let’s see r4 and r5, their time difference is 1.2, which is
greater than � ¼ 1. Thus, r5 is satisfied by the cached copy
on s3 plus a transfer from s3 to s2. According to Lemma 1, it
is unlikely to keep other copies on s1 and s2 that span across
½t4; t5� in optimal schedule. The copy on s3 is the unique
copy in the interval ½t4; t5�. In contrast, s6 ¼ 0:2, which is
less than �. According to Lemma 2, it is more advantageous
to use the copy held on s2 to satisfy r6.

Definition 4 (SSI and SR). In view of Lemma 2, we define
the set of requests on short server intervals (SSI) by
SR ¼ fri : msi < �; i > 0g.

Definition 5 (Marginal Cost). We define the marginal cost
DCðiÞ of ri in a schedule CðiÞ as the difference in the cost of
CðiÞ minus the cost of the sub-scheduleCð�1ÞðiÞ, that is

DCðiÞ ¼ PðCðiÞÞ �PðCð�1ÞðiÞÞ:

Referring to Lemma 2 we obtain

Observation 3. For any optimal schedule C�ðiÞ, if ri 2 SR
then the marginal cost of ri inC�ðiÞ is DCðiÞ ¼ msi.

On the other hand, all non-SSI requests (i.e., r =2 SR)
require a transfer or a caching over an interval greater than
�, and thus we have

Fig. 2. An example of a standard schedule (shown in bold lines) for an
off-line request sequence (solid dots along timeline). The vertical (hori-
zontal) lines represent transfers (caching) that end on requests. The
optimal cost is 1:4mþ 0:2mþ 1:6m (caching cost) þ4� (transfer cost) =
1:4þ 0:2þ 1:6þ 4:0 ¼ 7:2 (m ¼ 1 and � ¼ 1).

2. We can modify the improved solution without cost to match
Observation 1 by storing on server siþ1 until the nearest future request
on sk before transferring.
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Observation 4. For any optimal schedule C�ðiÞ, if ri 62 SR
then the marginal cost of ri in C�ðiÞ is at least �, i.e.,
DCðiÞ � �.

We still use Fig. 2 to illustrate these concepts. In the
figure, SR ¼ fr6; r8g as s6 and s8 (again m ¼ 1) are less than
� ¼ 1. Then the marginal cost of r6 and r8 in optimal sched-
ulesC�ð6Þ andC�ð8Þ are s6 ¼ 0:2 and s8 ¼ 0:7, respectively.
Clearly, for those non-SSI requests fr1; r2; r3; r4; r7g, they
can be satisfied either by the copies in the same servers that
are kept for a period with cost greater than si (fr4; r7g) or by
the copies in different servers (fr1; r2; r3; r5g). In both cases,
the marginal cost is at least �.

To this end, we first obtain a lower bound on the mar-
ginal costs to satisfy each individual request by combining
above observations, which is defined by

Definition 6 (Marginal Cost Bound). The marginal cost
bound of request ri is bi ¼ minf�;msig; 1 � i � n:

Based on the marginal cost bound, we can further have a
lower bound on the total costs to satisfy a request sequence,
which is defined by

Definition 7 (Running Bound). The running bound of the
marginal costs up to request i is Bi ¼

Pi
j¼1 bj:

The following table shows the marginal cost bounds and
running bounds for each request in the example in Fig. 2.

i 0 1 2 3 4 5 6 7 8

bi 0 1 1 1 1 1 0.2 1 0.4
Bi 0 1 2 3 4 5 5.2 6.2 6.6

Definition 8 (Optimal Cost CðiÞ).We define CðiÞ; 1 � i � n
to be the cost of the optimal schedule C�ðiÞ. Recall that r0 is a
boundary variable we created, with Cð0Þ ¼ 0, so CðiÞ is defined
for 0 � i � n.

Clearly, given the definitions of Bi and CðiÞ for 1 � i � n,
we can have the following observation as Bi is only a lower
bound of the optimal cost, that is Bi � CðiÞ; 1 � i � n.

Our goal is to create a recurrence for CðiÞ that we can
solve dynamically. To this end, we first prove the following
lemma,

Lemma 3. If C�ðiÞ is an optimal schedule in which the last oper-
ation is a transfer Trðsj; si; tiÞ then Cð�1ÞðiÞ is an optimal
schedule up to request ri�1 ði:e:;Cð�1ÞðiÞ ¼ C�ði� 1ÞÞ.

Proof. If the optimal C�ðiÞ ends in a transfer, it must cache
the unique data copy on the interval ½ti�1; ti� on some
server other than si. All transfers are of equal cost, so
one optimal extension to the sub-schedule is to cache
Hðsi�1; ti�1; tiÞ and then transfer Trðsi�1; si; tiÞ. If Cð�1ÞðiÞ
were not optimal this would lead to a contradiction. tu
Given Observation 2, we only need to consider two cases

that ri is served, either by the cache on si or by the immedi-
ate transfer from ri�1. The next lemma covers the easy case
of our recurrence.

Lemma 4. If the conditions of Lemma 3 hold, then

CðiÞ ¼ Cði� 1Þ þ mdti�1;i þ �:

Proof. This is just the sum of the optimal cost up to ri�1 plus
the cost of caching and transfer. tu
Now, we consider the non-trivial case that the optimal

scheduleC�ðiÞ uses the cached data copy on server si to sat-
isfy ri. Unlike the transfer case where the last data transfer
Trðsj; si; tiÞ does not impact the optimality of Cð�1ÞðiÞ, in
this case, the last Hðsi; tpðiÞ; tiÞ may impact all the requests
made in ½tpðiÞ; ti�1� since a cache is extended from tpðiÞ to ti
which allows the requests to re-adjust the sources of the
data item (e.g., a cache may be changed to transfer for cost
reduction). As a consequence, no request rj; 0 < j < i is
guaranteed to be optimal anymore for the sub-schedule of
C�ðiÞ with respect to the interval ½t1; ti�1�. To deal with this,
we define an auxiliary recurrence that helps compute CðiÞ
in this case.

Definition 9 (Semi-Optimal Cost DðiÞ). We define DðiÞ to
be the semi-optimal cost of a schedule CðiÞ in standard form
(see Observation 1) under the condition that ri is served by
cache on server si. Clearly, CðiÞ � DðiÞ.
To see the efficacy of this definition we note the

following.

Observation 5. In a CðiÞ, if si has a cached copy at ti, then
the cache extends from time tpðiÞ, that is, the cache is
Hðsi; tpðiÞ; tiÞ.
Observation 5 follows from the standard form require-

ment that no transfer ends at point that is not a request.
We can now complete the recurrence for CðiÞ in terms of

the not yet completed DðiÞ since the optimal will either use
cache or transfer (Observation 2)

CðiÞ ¼
0 i ¼ 0
minfDðiÞ; Cði� 1Þ þ mdti�1;i þ �g

1 � i � n:

8<
: (1)

Recall that we added boundary points to our problem
definition, and we extend here by defining base cases
DðiÞ ¼ þ1; i < 1. These together with the infinite negative
starting values of these intervals prevent us from using DðiÞ
as the cost of the first request on any server. That is, the first
request on any server except s1 will have to be served by a
transfer. Recall that the first request on s1 is r0 with cost 0.

The basic idea of auxiliary recurrence is to establish the
relationships between DðiÞ and certain CðkÞ that has been
available whereby the most recent CðiÞ can be computed.
To this end, we define the following concepts.

Definition 10 (Reduced Schedule). Let C0ðiÞ be a condi-
tional optimal schedule with Hðsi; tpðiÞ; tiÞ as the final cache H.
Given its cost of DðiÞ, we define the reduced schedule
Cð�HÞðiÞ to beC0ðiÞ with the cacheH removed.

Note that a reduced schedule may not be a proper sched-
ule for requests in the interval ½tpðiÞ; ti�, since transfers from
the server which held the removed cache will no longer be
valid. We now look for the last cache in Cð�HÞðiÞ that covers
rpðiÞ (again, such a cache has potentials to satisfy rpðiÞ by a
transfer), defined as the pivot index, and extend it to get our
recurrence for DðiÞ. To this end, we first define a concept of
cover index set forCð�HÞðiÞ, and then the pivot index.
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Definition 11 (Cover Index Set). We define cover index set
pðiÞ with respect toCð�HÞðiÞ as follows:

pðiÞ ¼ fkjHðsk; tpðkÞ; tkÞ � Cð�HÞðiÞ; pðkÞ < pðiÞ � k < ig:

Definition 12 (Pivot Index k). The pivot index k with respect
to Cð�HÞðiÞ is defined by either 0 or the maximum in pðiÞ,
depending on whether or not pðiÞ ¼ ? , i.e.,

k ¼ 0 pðiÞ ¼ ?

maxfpðiÞg Otherwise:

�

The definition of k 6¼ 0 is important as it signifies the last
request in ½tpðiÞ; ti�1� that is served by the cacheHðsk; tpðkÞ; tkÞ
other than the transfer from Hðsi; tpðiÞ; tiÞ in C0ðiÞ, which
forms the basis for the DðiÞ recurrence. We distinguish two
cases: 1) k � pðiÞ, and 2) k > pðiÞ. The first is the boundary
case, which is trivial.

Lemma 5. For the pivot index k as defined in Definition 12, if
k � pðiÞ then the optimal restricted cost DðiÞ ¼ CðpðiÞÞþ
msi þBi�1 �BpðiÞ.

Proof. In Cð�HÞðiÞ all requests up to tpðiÞ must still be satis-
fied. CðpðiÞÞ is a lower bound on any schedule satisfying
this. The cost of the cache H is msi, and with this cache
we can satisfy all requests rj; pðiÞ < j < i using transfers
and short cache intervals by a cost ofBi�1 �BpðiÞ.

3 Since this
difference is a lower bound on serving these requests, the
total is optimal under the stated conditions of the lemma. tu
An illustrative example of the trivial case is shown in

Fig. 3 where k � pðiÞ. According to Observation 2, rpðiÞ could
be served by a single transfer ending at rpðiÞ (in bold black
line), say the cache on s1 in the example. In this case,
Bi�1 �BpðiÞ might be overestimated as msj in bj ¼ min
f�;msjg has been reduced by an amount of mdtpðjÞ;pðiÞ on s1.
However, such reduction does not compromise the correct-
ness of the algorithm since the examination of Hðs1; tpðjÞ; tjÞ
in Recurrence (2) will get rid of the overestimate.

Now let’s examine the non-trivial case that k > pðiÞ. In
this case, both Hðsk; tpðkÞ; tkÞ and Hðsi; tpðiÞ; tiÞ are in the
final schedule C0ðiÞ as shown in Fig. 4 as an example, then
we have

Lemma 6. For k as defined in Definition 12, if k 6¼ 0 then the
optimal restricted costDðiÞ ¼ DðkÞ þ msi þBi�1 �Bk

Proof. We can construct a schedule up to rk equal in cost to
Cð�HÞðiÞ by modifying Cð�HÞðiÞ. In Cð�HÞðiÞ, all requests
up to tpðiÞ are satisfied. All requests rh; pðiÞ < h � kwhich
were satisfied with a transfer from si in CðiÞ will now use
a transfer from sk. DðkÞ is a lower bound on the cost
of this schedule; that is, DðkÞ � CostðCð�HÞðiÞÞ. Since
Bi�1 �Bk is a lower bound on adding the requests
rh; k < h < i, and we must add msi to cover the interval
½tpðiÞ; ti�. Then, we see that DðkÞ þ msi þBi�1 �Bk � Cost
ðC0ðiÞÞ ¼ DðiÞ.

If we start with a restricted optimal schedule to rk with
cost DðkÞ, then we can similarly construct a restricted
schedule to ri with cost DðkÞ þ msi þBi�1 �Bk, and thus
the lemma follows. tu
By combining these lemmas, we enumerate all the

request indexes on the interval ½tpðiÞ; ti�1� to derive DðiÞ
recurrence as follows:

DðiÞ ¼
þ1 �m � i � 0

min
CðpðiÞÞ þ msi þBi�1 �BpðiÞ
minj2p0ðiÞfDðjÞ þ msi þBi�1 �Bjg;

�8<
: (2)

where p0ðiÞ ¼ fkjHðsk; tpðkÞ; tkÞ that pðkÞ < pðiÞ � k < ig
for 1 � i � n.

Theorem 1. With a homogeneous cost model, Recurrences (1)
and (2) correctly compute the minimum cost of the data caching
problem within OðmnÞ time and space complexity.

Proof. The optimality of the algorithm can be directly
derived from Lemmas 4, 5, and 6 by ruling out the overes-
timate in Lemma 5. As for the time and space complexity,
we can sweep the off-line sequence first so that for each
request ri, its index set p0ðiÞ can be computed in OðmÞ
time and space complexity (jp0ðiÞj ¼ m). Since there are n
requests in total, we then have OðmnÞ time and space in
pre-processing stage. Given p0ðiÞ for each ri, Recur-
rence (2) can also be computed in OðmnÞ time and space.

Suppose rpðiÞ is served by a single transfer from the
cache at tj0 on sj (Observation 2), and the most recent
request on sj after the cache is rj, that is j

0 ¼ pðjÞ, we con-
sider several cases (reference Fig. 3).

When � � msj, then bj ¼ msj, which will incur the
overestimate of Bi�1 �BpðiÞ in Lemma 5 by an amount of
mdtpðjÞ;pðiÞ. However, such overestimated DðiÞ can be

Fig. 3. An example of the trivial case when k � pðiÞ. Hðsi; tpðiÞ; tiÞ as the
final cache H impacts how the requests in ½tpðiÞ; ti�1� are served (shown
in bold blue line).

Fig. 4. An example of the non-trivial case when there are some caches in

Cð�HÞðiÞ span across tpðiÞ (pðiÞ 6¼ ? ). Hðsi; tpðiÞ; tiÞ as the final cache H
impacts how the requests in ½tpðiÞ; ti�1� are served (shown in bold blue
line). Additionally, the figure also shows the concept of pivot index k.

3. This value might overestimate the cost when k ¼ 0. However, the
overall optimal cost can be corrected by Recurrence (2) when those
DðjÞs that satisfy pðjÞ < pðiÞ < j < i are enumerated.
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ruled out by considering j as the pivot index (i.e.,
Hðsj; tpðjÞ; tjÞ covers rpðiÞ) in Lemma 6. The same argu-
ments can also be applied to the case when mðsj�
dtpðjÞ;pðiÞÞ � � � msj.

Finally, when � < mðsj � dtpðjÞ;pðiÞÞ, then bj ¼ �, and
thus, there is no overestimate in Bi�1 �BpðiÞ. Overall,
Equation (2) correctly computes DðiÞ. By combining
Equations (1) and (2), we conclude the theorem. tu

4.2 Efficient Implementation

4.2.1 An OðmnÞ Time&Space Implementation

We assume here that the requests are available ordered by
time, and we use a uniform cost random access model of
computation.

Recurrences (1) and (2) define a recurrence system that
allows us to compute the optimal cost. Using a sweep algo-
rithm, we can compute this value by incrementally indexing
through the requests from 1 to n, storing CðiÞ and DðiÞ for
each request. A straightforward implementation should run
in Oðn2Þ time, which is dominated by the need to check at
most OðnÞ previous values in the computation of DðiÞ as
indicated in Recurrence (2).

However, a closer look at Recurrence (2) indicates that at
each i we need check at most one interval on each server
(since jpðiÞj � m, we do not need to compute pðiÞ for
1 � i � n in our algorithm), provided we can efficiently find
the interval on each server containing time tpðiÞ (reference
Fig. 4). To do this we create the following structures in a
pre-scan of the requests. For each server, sj; 1 � j � m, we
create a doubly linked list Qj which is initialized by the
dummy boundary request, and a matrix A½n;m� of pointers.
As ri is considered, 1 � i � n, it is added to the list Qsi , and
Ai;j is assigned to the current last element of Qj for
1 � j � m. Then, for each request node ri ¼ ðsi; tiÞ in Qj, a
pointer is set up for each other server sk that points to its
most recent request node rk ¼ ðsk; tkÞ, which could be
obtained from A½i; k�; k 6¼ j. Given that each node in
Qj; 1 � j � m, has OðmÞ space, the total data space in pre-
scan thus takes OðmnÞ time and space.

During the next pass over the requests to compute the
recurrences, these pointers can be used to precisely identify
each of the intervals required by Recurrence (2) in OðmÞ
time per request. Thus this pass also takes OðmnÞ time.

Fig. 5 is an example to how the data structures are orga-
nized in efficient implementation of the proposed algorithm
for the data staging problem in Fig. 2. During the computa-
tion of the recurrences, the algorithm follows the pointer of

recent request ri in A½i; j� (e.g., A½7; 3�) to find the current
last element of Qj (e.g., request node 4.0) and then go back
along the backward link to get its previous request node
which records tpðiÞ (e.g., 0.8). Then, by following the m ¼ 1
pointers, each for one server, the required interval on each
server by Recurrence (2) can be identified in Oð1Þ (e.g.,
f½0; 1:4�; ½0:5; 2:6�;? ;?g in our example).

4.2.2 A Running Example

For illustration purpose, we present a running example of
the algorithm for an off-line demand sequence shown in the
space-time diagram Fig. 6 where m ¼ 4, n ¼ 8 and each
time instance for the requests is also marked. The data item
is initially located at s1 given � ¼ 1 and m ¼ 1.

To facilitate the computation, we can pre-scan the
sequence and compute the marginal cost bound bi, the run-
ning bound Bi as well as p0ðiÞ, for each individual request
ri, 1 � i � n, in advance as we illustrated before. With the
information ofBi, we can further compute theCðiÞ andDðiÞ.

At t0 ¼ 0, Cð0Þ and Dð0Þ are initialized by 0 and þ1,
respectively. Since the first request on any server except s1

will have to be served by a transfer, Dð1Þ �Dð3Þ are set by
þ1, while Cð1Þ ¼ minfDð1Þ; Cð0Þ þ 1þ 0:5g ¼ 1:5, Cð2Þ ¼
minfDð2Þ; Cð1Þ þ 0:3þ 1g ¼ 2:8, Cð3Þ ¼ minfDð3Þ; Cð2Þ þ
0:3þ 1g ¼ 4:1. In order to compute Cð4Þ, we have to com-
pute Dð4Þ first. Dð4Þ ¼ Cð0Þ þ 1:4þ 3� 0 ¼ 4:4 and Cð4Þ ¼
minfDð4Þ; Cð3Þ þ 0:3þ 1g ¼ 4:4. Now we consider to com-
pute the final optimal value Cð7Þ. To this end, according to
Recurrence (2), we haveDð7Þ ¼ 9:2 and Cð7Þ ¼ 8:9 because

Dð7Þ ¼
Cð2Þ þ 3:2þ 5:6� 2 ¼ 9:6

min
4:4þ 3:2þ 5:6� 4 ¼ 9:2;
6:5þ 3:2þ 5:6� 5 ¼ 10:03;
7:1þ 3:2þ 5:6� 5:6 ¼ 10:03;

8<
:

8>><
>>:

and Cð7Þ ¼ minfDð7Þ; Cð6Þ þ 0:8þ 1g. The full vectors of C
andD are listed in the table of Fig. 6.

The optimal schedule C�ð7Þ can be reconstructed by
recursively backtracking the vectors of C and D up to the
initial configuration at t ¼ 0. As such, we can phase by
phase steer to the final optimal results as shown in Fig. 6.
Since the transfer cost is a constant, we can only store the
cache schedule by marking the responding request nodes in
Qj, 1 � j � m (Fig. 6).

Based on the description of this algorithm, we can easily
obtain the best result for multiple data items in our caching

Fig. 5. An example to show how the efficient implementation of the pro-
posed algorithm addresses the data staging problem in Fig. 2 where the
computed cache intervals on each server are also marked, and each
pointer, represented by “*” in different colors, is kept up to t8 (updated
when a new request made on that server is processed).

Fig. 6. An optimal schedule for an off-line request sequence (solid dots) is
shown in bold lines, and themarginal cost bounds (bi), running bounds (Bi),
aswell as costsCðiÞ andDðiÞ are also presented in the table at bottom.
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context since we can apply the algorithm to each individual
item independently without concerning with the cache
capacity (again, the service cost reduction is our goal).

5 AN 3-COMPETITIVE ONLINE ALGORITHM

Although the off-line algorithm for the problem can effi-
ciently minimize the cost in an optimal way, it is only useful
in certain scenarios when the whole sequence of requests is
pre-defined and fully available in advance, which is not
always feasible in reality. As a result, online algorithm is
necessary. In this section, we first present an 3-competitive
online algorithm for this problem, and then make a compet-
itive analysis on it. We close this section with a description
of some variants in the implementation of this algorithm.

5.1 The Algorithm

The algorithm is built on a concept of anticipatory caching
that allows the copy migrated to a sever to anticipatorily
keep active for another period of Dt ¼ �=m after it serves the
most recent request at time t. The rationale behind this idea
is that if the next request is coming no later than tþ Dt, it
should be served by caching as the caching cost is not more
than �; otherwise, the copy is not worthwhile to be kept,
and the request is served by a transfer from other server,
instead. In this way, we can enable the online algorithm to
mimic the optimal off-line algorithm as close as possible.
The algorithm operates on a per-epoch basis along the time-
line, and each epoch is composed of n transfers. We call this
online algorithm Anticipatory Caching (AC) algorithm, which
operates as follows in each epoch.

1) use variables c and r to record the number of active
copies and the number of transfers in current epoch,
respectively. Initially, c 1 and r 0, and the data
is located at s1;

2) use a counter array of C½m�, initialized by zero, to
maintain the copy expiration information of each
server in current epoch, e.g., C½i�  ti indicates the
copy on si will expire at ti; 1 � i � m.

3) when a new request ri on sj is coming at ti:
� for sj, if ti 2 ½tp0ðiÞ; tp0ðiÞ þ DtÞ and C½j� 6¼ 0, then

serve ri by the copy on sj, and then update
C½j�  ti þ Dt. Otherwise, serve ri by a transfer
from sk; k 6¼ j where ri�1 is made, and update
C½j�  ti þ Dt and r rþ 1;

� for sk; k 6¼ j, if skðC½k� 6¼ 0Þ performs a transfer at
ti, then update C½k�  ti þ Dt.

� if r ¼ n then the current epoch is completed, and
the next epoch is started with c 1 and r 0,
C½m�  0; 1 � i � m, and the data located at sj.

4) when events of copy expiration happen at ti:
4

� c the number of active copies,
� if there are two events on sj and sk at the same

time, and c > 2, then c c� 2 and delete the
copies on sj and sk (i.e., C½j�  0; C½k�  0).

� if there are two events on sj and sk, but c ¼ 2 (the
last two copies), then delete the copy in source

server, say sj, to break the tie, keep the copy in
target server sk (i.e., C½j�  0; C½k�  ti þ Dt),
and finally set c 1,

� in other cases, if there is a single event on sj and
c > 1, just delete the copy on sj (i.e., C½j�  0)
and set c c� 1. Otherwise if there is a single
event on sj but c ¼ 1, then extend the copy expi-
ration time on sj to ti þ Dt (i.e., C½j�  ti þ Dt).

An illustrative example of this algorithm for a single
epoch with 5 transfers is shown in Fig. 7 where each copy
survives another anticipatory period of time at most
Dt ¼ �=m for incoming requests. Based on the algorithm and
this example, we can easilymake the following observation:

Observation 6. For each request ri at ti on sj, the online AC
algorithm satisfies the following properties:

1) when mdtp0ðiÞ;i < �, ri is always served by caching
on sj;

2) when mdtp0ðiÞ;i � �,
� if tp0ðiÞ < ti�1, ri is served by the copy created

at ti�1 on sk; k 6¼ j via a transfer where
tp0ðiÞ < ti�1.

� otherwise, tpðiÞ ¼ ti�1, ri is served by the copy
created at ti�1 on sj.

here, tp0ðiÞ is the most recent time instance that a request
or a transfer (to other server) happen before ri at ti on the
same server, say sj in this observation (e.g., p0ð6Þ ¼ 3 and
tp0ð6Þ ¼ 0:8 on s2 in Fig. 7). Clearly, pðiÞ � p0ðiÞ � i� 1. 2) is
correct since according to the algorithm, the latest copy cre-
ated at ti�1 is always available to ri by continuously expand-
ing its active periods.

5.2 Competitive Analysis

In analyzing online algorithms, the competitive ratio (CR) is
always adopted to measure the quality of solution, which is
defined below for online algorithm A (if we ignore the addi-
tive constant term)

gA ¼ sup
R

CostðA;RÞ
CostðOPT;RÞ : (3)

gA is essentially the approximation ratio of algorithm A.
For the sake of easy analysis, we transform the AC sched-

ule in an epoch into an equivalent shadow schedule, called
Double Transfer (DT) schedule, that has exactly the same cost
with the AC schedule. To this end, we denote the set of AC
costs on sj as Vj, and have the following definition:

Definition 13 (Double Transfer Schedule). The double
transfer schedule can be obtained from the AC schedule by
performing the following transformations for each AC cost
vi
j 2 Vj on sj; 1 � j � m (note that vi

j � �):

Fig. 7. An example of the online AC algorithm where the schedule for
an epoch with size of 5 is illustrated.

4. According to AC, there are at most two expiration events resulted
from a transfer that could occur at the same time.
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1) if j ¼ 1 and i ¼ 1, increase the initial cost on s1 from
0 to v1

1;
2) otherwise, remove vi

j and add it to the weight of the
most recent transfer edge to sj, whose value is
increased to �þ vi

j which is less than or equal to 2�.

The transformation is reasonable as each vi
j on sj corre-

sponds to an incoming transfer edge in the schedule. There-
fore, for any online sequenceR, we can have CostðDT;RÞ ¼
CostðAC;RÞ in OðmnÞ time.

An example of the schedule produced by theDT algorithm
after the transformation is shown in Fig. 8. Given v2

2 and v2
3

starting at t4 are equal to zero in the example, one can verify
they have the same scheduling strategies and the total costs.

With these results, we have the following lemma that
shows if a time interval is greater than �, we can only con-
sider a single caching location for both DT and any optimal
algorithm (OPT).

Lemma 7. In the DT schedule, if mdti�1;i > � then only one
server will cache the data in ½ti�1; ti�.

Proof. According to the DT schedule, if mdti�1;i > �, then
tp0ðiÞ;i � i� 1, and dtp0ðiÞ;i > �. According to DT, ri is
served by the copy created at ti�1 on sk; k 6¼ j via a trans-
fer. If there is another cached copy on another server that
spans the interval ½ti�1; ti�, it must contradict the algo-
rithm by following the same arguments for OPT in
Lemma 1. As a result, no more than one copies in DT will
be active in parallel in ½ti�1; ti�. tu
Based on Lemma 7, we can make the following reduction

on both schedules.

Definition 14 (V-Reduction). For each interval ½ti�1; ti�; i 2
½1; n� that satisfies mdti�1;i > � in both schedules (DT and
OPT), we can reduce its weight to mdti�1;i ¼ � by setting
mdti�1;i0 ¼ 0 where ti0 < ti. We call it V-Reduction.

As such, for any ri 2 R in an epoch, we have mdti�1;i � �
in both DT and OPT after the reduction. An example of the
v-reduction is shown in Figs. 8 and 9.

Moreover, we have the following lemma to show that
each request in SR ¼ fri : msi < �; i > 0g is satisfied in the
same way by both DT and any OPT schedules.

Lemma 8. For any i where msi < �, Hðsi; tpðiÞ; tiÞ is a part of
the DT schedule.

Proof. A direct conclusion from Observation 6. tu
Based on Lemma 8, we can make the following reduction

on both schedules.

Definition 15 (H-Reduction). The caching cost of each
request in SR can be removed by setting the cost to zero for
both schedules. We call itH-Reduction.

As a result, we have for any ri 2 R in an epoch, msi � �
in both DT and OPT after the reduction. We can observe it
by comparing the h-reductions in Figs. 8 and 9.

With these two reductions, we can reduce both DT and
OPT by first applying h-reduction to ensure for any ri 2 R in
an epoch, msi � �, and then performing v-reduction for all
intervals f½ti�1; ti�jmdti�1;i > �; i 2 ½1; n�g. Let DT 0 and OPT 0

denote the reduced DT and OPT schedules, we can make the
following observation, note that dt0i�1;i and s0i are defined
with respect toR0 in the sequel, whereR0 ¼ R n SR.5

Observation 7. In both DT 0 and OPT 0, for any ri 2 R in an
epoch, we have mdt0i�1;i � � and ms0i � �.

With above results, we can have our main theorem:

Theorem 2. The anticipatory caching (AC) algorithm is 3-
competitive.

To prove the theorem, we first have the following lemma
to show an upper bound of CostðDT 0;R0Þ.
Lemma 9. For any online sequence R in an epoch, Cost
ðDT 0;R0Þ is upper bounded by 3n0� where n0 ¼ jR0j.

Proof. Since for DT 0, the schedule reduction results in
mdti�1;i � � for any request ri 2 R0, we then have

� if mdt0p0ðiÞ;i < �, ri is served by caching at cost of

less than �.
� Otherwise, ri is served by the copy created at ti�1

on sk; k 6¼ j via a transfer at most cost of 2�. Since
mdt0i�1;i � �, the cost to serve ri would be at most
3�.

Overall, the total cost to serve the whole sequence R0
in an epoch is at most 3n0�. tu
Now, we estimate the lower bound of CostðOPT 0;R0Þ

and have the following lemma,

Lemma 10. For online sequence R, CostðOPT 0;R0Þ is lower
bounded by n0� where n0 ¼ jR0j.

Proof. According to Definition 7, CostðOPT 0;R0Þ � B0,
where the running bound B0 is defined as B0 ¼Pn0

i¼1 b
0
i ¼Pn0

i¼1 minf�;ms0ig with respect to R0 after the h-reduction
from R. Based on Observation 7, we have ms0i � �. Then,
CostðOPT 0;R0Þ � B0 ¼Pn0

i¼1 bi ¼
Pn0

i¼1 minf�;ms0ig ¼ n0�. tu

Fig. 8. An example of the DT schedule where the red circle and transfer
lines represent the initial cost and the transfer cost of the data that are
increased by corresponding vi

j 2 Vj; 1 � j � 4 (v2
2 ¼ 0 and v2

3 ¼ 0 start-
ing at t4). Additionally, the two types of reductions are also showed in
shaded rectangles.

Fig. 9. The optimal schedule with 4 transfers after the two types of
reductions.

5. We can equivalently view the reduced schedules as those work-
ing onR0 after the h-reduction.
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With the above results, we can prove Theorem 2 as follows
since both DT and OPT schedules are reduced by the same
amount of costs in serving any online sequenceR, we have

CostðAC;RÞ
CostðOPT;RÞ ¼

CostðDT;RÞ
CostðOPT;RÞ

� CostðDT 0;R0Þ
CostðOPT 0;R0Þ �

3n0�
n0�
¼ 3:

(4)

Finally, CostðAC;RÞ � 3 	 CostðOPT;RÞ in an epoch. Since
it can be repeated on each epoch, the AC algorithm is at
most 3-competitive.

As with the case of the off-line algorithm, the designed
online algorithm can be also applied to the multiple data
items, each being scheduled independently. As such, we
can also achieve the same competitive ratio.

5.3 Implementation

One of the key points in the design that may have impact
the overall performance of the algorithm is how to select a
copy from the current live ones to serve the next incoming
request. By default, we limited the algorithm to select the
one that is alive in the last active server (serving a request).
Of course, given the homogeneous cost model, it makes no
difference in selecting other live copies in terms of the trans-
fer cost. However, different selection strategies may have
different performance in reality since the lifespan of the
selected copies in corresponding servers are extended even
though they all bear the same competitive ratio.

To fully study the online algorithm, in addition to the
default strategy, we also implement two other simple strate-
gies for cost optimization purposes.

� Balance: The algorithm keeps track of all the live cop-
ies, and deliberately selects the one with the shortest
remaining life to serve the next incoming request;

� Priority: The algorithm not only keeps track of the
live copies, but also prioritizes the workload intensi-
ties of the servers in descending order. The algo-
rithm tries to select the copy from the active server
with the highest priority.

The rationale behind this implementation is that for the
balance strategy, we intend to make a balance between the
lifespans of the live copies in different servers for balanced
case while for the priority strategy, we are in favor of the
extensions to the lifespans of the copies caching in those
servers with intense workloads for unbalanced case.

6 SIMULATION STUDIES

So far we have analyzed the performance of the proposed
algorithms from theoretical perspective. However, the
actual performance of these algorithms may exhibit diverse
behaviors in reality. In this section, we conduct simulation-
based study to show how the proposed algorithms, includ-
ing both the online and off-line, behave in practice with
respect to different incoming sequences of requests.

6.1 Experimental Setup

To reach our goal, we developed a network caching simulator
in C++ to measure the average request cost as our major

performance metric. The simulator efficiently implements
the proposed algorithms for both the online and off-line
cases as well as the models upon which the algorithms are
built. As with the study in [14], we deliberately pulled out
some properties and features of the network platform in the
solver such as network traffic, bandwidth capacity, link
latency and CPU power, and focus squarely on the factors
closely related to our research goal since these properties
and features, although important to model the reality, can
be fully reflected in the monetary cost in our caching model.

The simulator is configured by several parameters
including the size of network (the number of servers), the
caching cost m, the transfer cost �, and other parameters
regarding the model of incoming sequence of requests.
We adopted the modeled requests since we can vary the
generated sequence to fully evaluate the algorithms by
simulating different situations in reality. In our studies,
we assume the sequence is either presumably known in
advance or generated in an online fashion, and each
request is characterized by two-element tuple < t; s > ,
representing it is made at server s at time t. There exist
studies on modeling the generation of various access
sequences in different contexts and scenarios [29], [30]. In
our particular case, we assume for each server the inter-
arrival time of the requests follows the exponential distri-
bution (determined by the rate parameter u > 0), which is
often-used to model the web access patterns.

As for the experimental environment, we simulate a net-
work of 50 to 200 fully connected nodes, and distinguish
two cases, balanced and unbalanced, to manifest the situations
in reality. In the former case, each node has a similar access
intensity, which is determined by the value of u > 0, while
in the later case, the access intensity is unevenly distributed
among the nodes. The degree of load balancing is specified
by load-balance factor b, which is defined as follows:

b ¼ avefli : 0 � i � mg
maxfli : 0 � i � mg ; (5)

where li : 0 � i < m is the number of requests made at
nodei. Clearly, b � 1 and the larger, the more balanced.

To reflect the highly-skewed nature of the accesses in
the unbalanced case, in our experiments we deliberately
assume the values of u among the nodes are also exponen-
tial distributed. The smaller the u is, the more intensive the
access requests. As such, a small number of nodes could be
configured to experience highly intensive access workloads
while others are light weighted. We will investigate the pro-
posed algorithms, including both the online and off-line, for
both cases in terms of performance and execution time. All
experiments are conducted under Linux Ubuntu 14.04
(lucid) running on Intel Core2 CPU@3.16 GHZ with 4 GB
Memory and 6 MB L2 Cache.

6.2 Simulation Results

In this section, we present our simulation results based on
the experimental setup described above. We first character-
ize the workloads for our experiments, and then study the
features of the off-line algorithm. We finally evaluate the
online algorithm, together with its variants, by comparing it
with its optimal off-line counterpart.

672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 3, MARCH 2019



6.2.1 Workload Characteristics

We present the characteristics of the workloads that are gen-
erated according to the described model for both the bal-
anced and unbalanced cases. Fig. 10 illustrates how the
number of requests, including their mean inter-arrival times,
are generated before certain time thresholds (say t ¼ 2000
time units), and distributed among the 100 nodes in an
ascending order in the network to give different load balanc-
ing scenarios. Given the same requests, a similar observation
can also bemade for other sizes of the networks (not shown).

According to Fig. 10, the studied workloads can be truly
characterized by the factor b to reflect the load balancing
scenarios when they are served by the network service as
we can observe that workloads are more evenly distributed
in the b ¼ 0:79 case than in the b ¼ 0:29 case. Additionally,
we also measure the mean inter-arrival times of the requests
for each node as overlapped in Fig. 10, which reflects how
intense a sequence of requests is served by each node, and
determines the overall service cost.

6.2.2 The Off-Line Algorithm

We first investigate the impact of the ratio r ¼ �=m on the
behaviors of the off-line algorithm with respect to different
bs. For fair comparisons, we deliberately enable �þ m to
have a fixed value, and change r to see how this ratio effects
the cost on per-request basis for the network varied from 50
nodes to 200 nodes. Moreover, we also generate a set of
request sequences by following the discussed methods,
each representing a different workload distribution, charac-
terized by b. Fig. 11 shows our experimental results on the
changes of the average costs across different b values for
different network scales when �þ m ¼ 6 cost units and
r ¼ �=m is varied from 0.2 to 5, which cover a wide range of
cloud storage pricing in reality [24].

From Figs. 11a and 11b, we can make three observations.
First, as r grows up, the corresponding average cost of the
requests for each b is changed in a parabolic form that it is
quickly increased at the initial stage, and then gradually
decreased afterwards for the networks with 50 and 200
nodes. This is not surprising as when the ratio r is low, the
transfer is much cheaper than the caching, as thus in this sit-
uation, due to the nature of exponential distribution, the
small number of live copies selected for the requests with
large inter-arrival times will incur much caching cost, which
in turn raises the average cost of the requests. As r contin-
ues to increase, the transfer will become more expensive,
and thus, the number of transfers will be reduced and more
copies are created, which are relatively cheap to serve the
requests. As a result, the total cost, also the average cost for

each request, is minimized. We can further evidence this
observation by depicting how the percentages of the trans-
fers are monotonically decreased (accordingly the percen-
tages of the caching are monotonically increased) with the
increase of r in Figs. 11c and 11d. From this experiment, we
can derive that in reality to minimize the service cost, the
values of � and m should not be defined close to each other
as in this case it is hard for the algorithm to select the opera-
tions for data schedule optimization.

Second, as b increases from 0.29 to 0.73, the workloads
(the number of requests) among the service nodes are
becoming more balanced. As the workloads become more
balanced, we found that the average cost for each request is
gradually increased no matter what size of the network is.
This is not an expected phenomenon since load balancing is
always a goal to pursue for performance optimization.
However, in our case we have to pay for it. The rationale
behind this phenomenon could lie in the fact that the bal-
anced case would result in more costs due to its even distri-
bution of the requests among the network nodes, compared
to its unbalanced counterpart, which would incur more
transfer operations, especially when r becomes large. Thus,
in reality we should strike a balance between the service
cost and the performance benefits from the load balancing.

Finally, another interesting observation is the scalability
of the algorithm. Fig. 11 shows how the performance of the
algorithm with respect to different bs is consistent across
the networks with 50 and 200 nodes, respectively. We also
conducted experiments for the networks with other number
of the nodes, say 100 and 150, and made a similar observa-
tion that the average cost of the requests are relatively stable
and independent of the network size, which demonstrates
the scalability of our online algorithm in terms of the aver-
age service cost.

6.2.3 The Online Algorithm

In this experiment, we first evaluate the actual performa-
nce of the online algorithm by comparing it with the
optimal off-line algorithm, and then implement a random

Fig. 10. The distributions of the number of requests as well as their mean
inter-arrival times on per-node basis in an 100-node network for both the
balanced (b ¼ 0:29) and unbalanced (b ¼ 0:79) cases.

Fig. 11. Impact of r on the performance behaviors of the off-line
algorithm with respect to different load-balancing factor rs for different
network scales.
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copy-selection strategy, denoted by Random, as the baseline
to measure the proposed Balance and Priority strategies in
copy selections.
� Performance Ratios. With the same configuration of �

and m as in Fig. 11, we show the cost ratios of the online
algorithm to the optimal off-line algorithm based on differ-
ent network scales in Fig. 12, where b is varied from 0.29
(unbalanced) to 0.73 (balanced).

From Fig. 12, we can make the following observations.
First, the actual ratios of the online algorithm to its optimal
off-line counterpart in all the studied cases are in range of
½1:3; 2:0�, which are much better than the theoretical compet-
itive ratio of 3. This demonstrates the effectiveness of the
online algorithm for service cost reduction in practice.

Second, the cost ratio curves of the online algorithm for
all the b values exhibit a similar trend, which starts from rel-
atively a low value at r ¼ 0:2, and then quickly increases to
maximum around r ¼ 0:5, after that, gradually decreases to
minimum at r ¼ 5. This reveals that the online algorithm
would progressively behave better when r ¼ �=m is
increased over 1. We can draw this conclusion by investigat-
ing how both the algorithms perform in different cases as
shown in Fig. 13, where the percentages of transfers for
both algorithms across different bs are plotted side by side.

Based on Fig. 13, the online algorithm incurs more trans-
fers than the off-line algorithm when r ¼ �=m is small, and
this discrepancy is gradually diminished as r is increased.
This is easy to understand. When � is small, compared to m,
the anticipatory period of AC is relatively short, reducing its
effects in servicing more incoming requests, and thus, incur-
ring more caching and transfer operations, which in turn
increases the overall costs. These costs are gradually reduced
as r becomes large, where the large values of � limit the uses
of transfers in the online algorithm (Fig. 13), as such,
enabling the algorithm to exploit more cheaper caching oper-
ations and thereby exhibiting better performance.

Finally, the relative performance of the online algorithm
becomes worse as the b is varied from 0.29 to 0.73, which
demonstrates again the online algorithm, as with its off-line

counterpart, is unfriendly to the load balancing. We can rea-
son about this phenomenon by following the same argu-
ments in the off-line case. By comparing Figs. 12a and 12b,
we can further reveal that the online algorithm, as with its
off-line counterpart again, is scalable to the network scales.
We attribute this result to the design of the algorithm as
well as the homogeneity of the cost model.
� Copy Selections. In this experiment, we measure the

online algorithm that adopts different strategies to select a
live copy for the next incoming request. To this end, we
develop a random strategy, denoted by Random, as a base-
line, which keeps track of all the live copies, and randomly
selects one in a uniform way to serve the next request.

Fig. 14 illustrates how the performances of the online
algorithm with different copy selections are changed rela-
tively to Random. Overall, for both network scales (50 nodes
and 200 nodes), Default and Priority are slightly better or
competitive with Random, while Balance exhibits much
worse performance than Random. Default prefers to extend
the livespan of the most recent copy in the last serving
node. As a result, it reduces the chances of other live copies
to extend their lifespan by serving the incoming requests,
which in turn minimizes the total cost. Similar to Default,
Priority is in favor of the node (also the copy) with intense
incoming requests, and thus it has similar performance mer-
its with Default. In contrast, Balance adopts a balance strat-
egy that tries to extend the lifespan of all the live copies,
which could result in high caching cost, especially when r

is small and network is large as in both cases either caching
is costly or more live copies are available.

7 CONCLUSIONS

In this paper, we studied a new caching model problem for
cost-effective accesses to current data services, which is
characterized by exploiting the monetary cost and the trace
of access trajectory information to derive the cache replace-
ments. With homogeneous cost model, we first leveraged
dynamic programming techniques to propose a fast optimal
algorithm that can serve an off-line request sequence within
OðmnÞ time-space. Then, we introduced an idea of anticipa-
tory caching to present an online algorithm with competitive
ratio of 3. We provably achieve these results by making sev-
eral key observations on how a sequence of requests is
served in both online and off-line cases, and thereby con-
ducting a strict analysis on the schedules in both algorithms.
To validate our findings, we also developed some efficient
data structures to implement the algorithms, and conducted
simulation-based studies. Our results showed that the pro-
posed algorithms are not only practical to the data caching

Fig. 12. The relative performance changes of the online algorithm over
the optimal off-line algorithm in different situations.

Fig. 13. Percentages of transfers between the online and off-line algo-
rithms across different bs.

Fig. 14. Changes of the relative performance of the online algorithm with
different copy selections across different bs.
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problem, but also appear to be of theoretical significance to
a natural new paradigm in the realm of online algorithms.
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