HDF5 VOL Connector to Apache Arrow

Jie Ye
Lllinois Institute of Technology
Chicago, USA
jye20@hawk.iit.edu

I. EXTENDED ABSTRACT

With the ever-increasing dataset sizes and volumes, various
kinds of file formats such as Apache Parquet [1], ORC [2],
Avro [3] and Apache Arrow [4], [5] have been developed to
store data efficiently. In recent years, Apache Arrow is very
popular in Big Data Analysis and Cloud Computing domain
due to the standard columnar in-memory data representation
and its efficient data processing and data transfer. The
columnar data layout enables to take advantage of the SIMD
(Single Instruction, Multiple Operations) operation in modern
computers. It also reduces overhead of the copy-and-convert
when moving the data from one system to another. As Apache
Arrow is considered efficient and the data analysis can be
accelerated with integration of it. Thus, there is a need to
verify if the Apache Arrow can be used in High Performance
Computing system.

However, most scientific applications currently prefer to
using HDF5 [6], a widely used I/O middle-ware on HPC
sytems, to store and manage data. HDFS is designed to
store and manage high-volume and complex scientific data.
Although it supports a variety of features, like random access
to individual objects, partial access to selected dataset regions
and internal data compression, it doesn’t support column
storage and inefficient for column-access.

As mentioned above, Apache Arrow can create an efficient
in-memory column store that can be used to manage
streamed data. Accessing this data through HDFS5 calls would
applications to take advantage of transient, column-oriented
data streams, such as real-time data through high-speed
instruments and cameras. Moreover, bridging the gap between
science applications and analytic tools that use HDF5 and
Apache Arrow could bring new kinds of kinds of data together.
Therefore, there is a need to create a tool to support accessing
Apache Arrow data through native HDF5 calls without
changing the applications. Thus, the objects of this work are:

1) Design and implement a HDF5 VOL connector which
allows applications to access Apache Arrow data
through native HDF5 calls.

2) Explore its use for analyzing scientific data

II. BACKGROUND

A. HDF5

HDFS5 is a well-established and very flexible data model,
parallel I/O library and file format, which could handle many

Anthony Kougkas
lllinois Institute of Technology
Chicago, USA
akougkas @iit.edu

Xian-He Sun
Lllinois Institute of Technology
Chicago, USA
sun@iit.edu

store options and needs. HDF5 is designed to store and
manage high-volume and complex scientific data. It provides
a rich set of pre-defined datatypes as well as an unlimited
variety of complex user-defined datatypes. It also supports a
lot of powerful features for managing data, such as random
access to individual objects, partial access to selected dataset
regions and internal data compression. Due to its portability,
efficiency and the flexibleness of its data model, HDF5 has
been widely-used by a great number of scientific and industry
applications in HPC community to store and manage the data
they produced. By default, HDF5 library use its native file
format when storing data and takes advantage of MPI-1O to
perform parallel I/O.

With the emergence of new file format and storage system
which is not comply with the POSIX I/O standard, there is a
need to support the new file format and storage system without
modifying the applications’ code. To provide this capability
and allow developers to store data with more choices, HDF5
library introduces a Virtual Object Layer (VOL) released in
1.12 version of the library. VOL is a storage abstraction layer
within the HDF5 library and is implemented just below the
public HDF5 API. The VOL enables applications to store
the HDF5 data in many different storage (like storing the
data in PDC, DAO, Hermes, etc.) by intercepting the HDF5
I/O API calls and then seamlessly re-routing them to the
corresponding VOL connector backend, which could translate
these calls into the operations that it desires to perform.

B. Apache Arrow

Apache Arrow is an open source, columnar, in-memory
data representation that enables analytical systems and data
sources to exchange and process data in real-time. It specifies
a standard columnar in-memory format foe representing the
structured, table-like datasets. In most cases, Apache Arrow
acts as an interface between different computer programming
languages and systems. With the columnar in-memory data
layout for memory processing, it could process large amounts
of data quickly by using SIMD (Single Instruction, Multiple
Data) operations. Moreover, due to the standard column
format, it reduces the unnecessary overhead copy-and-covert
cost when moving data from one system to another. Apache
Arrow has a rich set of data types, including nested and
user-defined data types. It also creates a in-memory Plasma
Object Store [7] for different applications to share data within
the same node and makes use of Arrow Flight [8], an RPC

[Applications

g

HDF5 API

[Virtual Object Layer (VOL) Framework

Pass-through VOL connectors(e.g., async I/0)

Nauve
Connector

Fig. 1.

DAOS

@@

Apache Arrow within VOL

framework, for high-performance data services based on
Arrow data. All of this benefits and advantages make Apache
Arrow very popular in Big Data Analysis Area.

III. ARROW VOL CONNECTOR DESIGN AND
IMPLEMENTATION

According to the introduction of Apache Arrow, we already
know that Apache Arrow could create an in-memory store
and is considered as efficient to store and manage streamed
data. Accessing this data through HDF5 API would allow
applications to take advantage of the transient, column-
oriented data streams, such as real-time data from high-speed
scientific instruments and cameras. Therefore, there is a need
to support accessing Arrow data through HDF5 calls. Figure
1 shows the Apache Arrow location within VOL. It is a
terminal VOL connector, locating at the last layer of all the
VOLs. Arrow VOL connector will intercept the related HDF5
I/O API calls and then translates them into Apache Arrow
API and saves the data as Apache Arrow tables.

Currently, our Arrow VOL connector only implements a
subset of the HDF5 API. Apache Arrow itself is not an engine
or storage, it is only a columnar data representation format.
Therefore, in our implementation, HDF5 files and groups
are mapped to directories and responding sub-directories,
while HDF5 datasets are mapped to Apache Arrow tables. In
addition, as Apache Arrow doesn’t support multiple processes
to write part of a single table, each MPI process will write
its sepcified subset region as an arrow table to the back-end
storage (including parallel file system and Apache Arrow
Plasma in-memory Object Store) or Arrow Flight Server.
Figure 2 presents the internal work-flow of write and read
operations in Arrow VOL connector.

1) Write Operation: Once Arrow VOL connector
intercepts a H5Dwrite() request, it creates an internal
column-major buffer and then fill the row-major input
data into the internal buffer. This step requires the
row-major to column-major conversion. Both the
metadata and the internal column-major buffer are kept
in memory.

2) Close Operation: When Arrow VOL connector
intercepts a H5Dclose() request, it will create a
corresponding Arrow table by the internal buffer and
then flush the metadata and the Arrow table into the
selected back-end storage.

H5Write App HS5Read App

HS5Dwrite HSDClose

H5DRead

HDFS5 Public API

Column to-row conversion
and fill the mem-buffer

<

Returned dataset

HDFS Public API

H5DWrite

Write Close \ / Read Handler
Aol m m kel

HSDCJose

1.1 get data
from buffer

Internal buffer
(column-major)

Create table by
internal buffer
Arrow Table j \\

ﬂ Flush data

Row-to-column conversion|

and fill the internal buffer
Internal buffer
(column-major)

Filling the
internal buffer
1.2 load diata from

‘Arrow Tables l backend;storage

” Load data

Backend-storage

Arrow-Flight-Server ’

[Parallel file system][Plasma Object Store]

Fig. 2. Internal workflow in Arrow VOL Connector

3) Read Operation: When intercepting a H5Dread() re-
quest, Arrow VOL connector will first check if the data
is exist in the internal column-major buffer. If the request
data has already existed, Arrow VOL connector will fill
the output buffer directly through the internal column-
major buffer. If request data isn’t in the internal column-
major buffer, it will first load the data from the back-end
storage to the Arrow table and fill into the internal buffer.
Then it will fill the output buffer by this internal column-
major buffer. As with the write operation, this step needs
the column-major to row-major conversion no matter the
request data exists in the internal buffer or not.

IV. INITIAL RESULTS

Testbed: All tests were conducted on the Cori Supercomputer
at the National Energy Research Scientific Computing Center
(NERSC), which is a Cray XC40 supercomputer with 1630
Intel Xeon Haswell nodes. Each node consists of 32 CPU
cores and 128GB memory. The supporting storage system is
Lustre, an extensively used parallel file system. It has 248
object storage targets (OSTs) and is shared by all users.
Software used: The Arrow VOL connector implementation
depends on HDF5 (v1.13.0), Apache Arrow (v4.0.1). The
MPICH version used for parallel I/O processing is 3.3.1 and
the GCC version is 7.3.0.

Analysis: In our experiment, we evaluated the write perfor-
mance by VPIC-IO, a plasma-physics application’s I/O kernel,
and read performance through BD-CAST 1I/O kernel, which is
used for analyzing the data produced by particle simulation.
All the experiments were executed on 4 nodes with 128
processes.In VPIC-10O, each MPI process writes a region with
different number of particles (such as 1M, 2M and 4M) and
each particle has 8 properties. The particles are organized as a
1D-array. Figure 3(a) shows the write performance with arrow-
vol and without arrow-vol. We can see that the raw write rate
with arrow-vol is about 9 GB/sec while the raw write rate
with native hdf5 is only hundreds of Megabytes per second.
One reason is because of the different configuration of the file
system stripe count for native hdf5 and arrow-vol. The other

10K ® with arrow-vol = native hdf5 14K m with arrow-vol = native hdf5

9K

12K
8K
7K 10K
6K 8K
5K
4K 6K
3K 4K
2K

2K
1K
0K 0K

1 2m 4m im 2m 4m

m
of particles in each process # of particles in each process

Raw write rate (MB/sec)
Raw read rate (MB/sec)

(a) Write Performance (b) Read Performance
Fig. 3. Arrow-VOL vs Native HDF5 performance

reason is that native hdf5 needs to flush data into the file sys-
tem when executing the H5write() operations while the data is
saved in memory when using Arrow Vol connector. Figure 3(b)
shows the read performance with arrow-vol and without hdf5.
We can see that the performance of without arrow-vol far ex-
ceeds that of with arrow-vol. That’s probably because the test
scale is small and part of the data has been cached in memory.

V. CONCLUSIONS

In this work, we designed and implemented a HDF5 VOL
connector to Apache Arrow that enables science applications
to access Apache Arrow data through native HDF5 calls
without changing the original code. We also have seen the
initial write/read performance results when using Arrow-VOL
Connector and native HDF5. Although the performance is not
very good, there is still a lot of room for optimization. Most
importantly, we have verified that Apache Arrow can be inte-
grated into HPC system, which laid the foundation for our fu-
ture work, like the integration of HPC and Big Data Analysis.

REFERENCES

[1] “Apache parquet.” [Online]. Available: https://parquet.apache.org/

[2] “Apache orc.” [Online]. Available: https://orc.apache.org/

[3] “Apache avro.” [Online]. Available: https://avro.apache.org/docs/current/

[4] “Apache arrow.” [Online]. Available: https://arrow.apache.org/

[5] J. Chakraborty, I. Jimenez, S. A. Rodriguez, A. Uta, J. LeFevre, and
C. Maltzahn, “Towards an arrow-native storage system,” arXiv preprint
arXiv:2105.09894, 2021.

[6] “Hdf5 library.” [Online]. Available:
https://portal.hdfgroup.org/display/HDF5/HDF5

[7] “Apache arrow plasma in-memory object store.” [Online]. Available:
https://arrow.apache.org/docs/python/plasma.html

[8] “Apache arrow flight rpc framework.” [Online]. Available:
https://arrow.apache.org/docs/format/Flight.html

