
A Multifaceted Approach to Automated I/O
Bottleneck Detection for HPC Workloads

Izzet Yildirim1, Hariharan Devarajan2, Anthony Kougkas1, Xian-He Sun1, and Kathryn Mohror2

iyildirim@hawk.iit.edu, hariharandev1@llnl.gov, akougkas@iit.edu, sun@iit.edu, kathryn@llnl.gov
1Illinois Institute of Technology

2Lawrence Livermore National Laboratory

I. EXTENDED ABSTRACT

Real-world HPC workloads impose a lot of pressure on
storage systems as they are highly data dependent. Such
workloads may be in the form of individual applications
such as simulations and machine learning (ML) applications,
or in the form of workflows that consist of a collection of
applications that work cooperatively towards a common goal,
such as coupling of scientific simulation with data analytics
and artificial intelligence (AI). On the other hand, as a result
of recent developments in storage hardware, it is expected
that the storage diversity in upcoming HPC systems will
range from node-local storage in the form of solid-state disks
(SSDs), and shared burst buffer layers, to parallel file systems
with hard disk drives (HDDs). This growing complexity in
the storage system presents challenges to users, and often
results in I/O bottlenecks due to inefficient usage.

Reducing I/O bottlenecks has been the subject of several
studies. Some of the earliest studies worked to explain I/O
characteristics and their impact on a file system based on
their evaluation [1], [2]. As the HPC systems grew more
complex, this manual approach became impractical since it
needed reconfiguring and executing applications to understand
the implications of adjusted I/O characteristics. Following the
development of I/O characterization tools (e.g., Darshan [3]),
other studies captured I/O traces from running applications and
analyzed them manually. Such analysis often needed to be cou-
pled with domain expert insight to derive positive outcomes.
This process may take several weeks, which is undesirable.
Most analysis tools look at the performance data from one
perspective. However, the problem is multifaceted with many
metrics to consider. For instance, if we look at the CM1 [4]
workload and only consider I/O request size as a metric, we
observe that most I/O happens during read operations. How-
ever, if we consider the amount of time spent in I/O operations,
we observe that CM1 spends the most of its I/O time on small
writes. This example demonstrates how consideration of dif-
ferent metrics can identify different sources of I/O bottlenecks.
Consequently, performing this multifaceted analysis manually
is laborious and error-prone even for experts.

In this work, we develop a methodology that produces a
multifaceted view of the I/O behavior of a workload to identify
potential I/O bottlenecks. The facets of the view include time
steps, individual processes, files, transfer sizes, and observed

bandwidths. To demonstrate this methodology, we build a
tool called Diagnose I/O (DigIO), which performs this task
automatically on an HPC system. This tool can potentially
reduce weeks of analysis by an I/O expert into a matter
of minutes. The DigIO tool is created as a Python library
that utilizes Dask [5] to benefit from distributed analysis on
workload traces. To enable efficient distributed analysis, we
first convert the collected I/O trace (from Recorder [6]) into
the Parquet format [7]. Then our tool consumes the Parquet
files to build a multifaceted view of the workload, that
accounts for several key I/O metrics. This view represents a
graph of I/O observations within the workload. Finally, we
pass our observations through a rule engine which produces
bottleneck diagnoses automatically. We analyzed six different
workloads including two simulation applications, two AI
applications, and two scientific workflows using Montage.
These workloads were executed on the Lassen supercomputer
at Lawrence Livermore National Laboratory (LLNL) [8]. The
main contributions of this work are:

1) Illustration of a methodology to detect I/O bottlenecks in
complex HPC workloads

2) Design of an automated tool, called DigIO, which auto-
mates the I/O bottleneck detection

3) Demonstration of I/O bottleneck detection for six diverse
HPC workloads

II. AUTOMATED I/O BOTTLENECK DETECTION

A. The design of DigIO

DigIO uses Dask and runs the analysis on Lassen which
uses the LSF workload manager. This allows us to complete
the bottleneck detection in minutes even for large workloads
with millions of I/O operations. Figure 1 shows the overview

Fig. 1. Overview of DigIO. It takes Parquet-formatted I/O traces as input
and generates observations though a multifaceted view. It then filters those
observations according to their BLS and passes them through a rule engine.
Finally, the rule engine produces bottleneck diagnoses.



of the tool, its components and how they interact with each
other. The Observation Generator uses the traces to build a
multifaceted view that the observations are derived from. The
observations are then fed into the I/O Bottleneck Generator,
which in turn filters them and run them through the rule-based
engine to produce bottleneck diagnoses.

1) Multifaceted Analysis: To perform a multifaceted
analysis, DigIO creates filter groups and metrics. We have
five filter groups, that split the I/O trace into different views of
the same performance data, as follows: a) Time-based: splits
the I/O trace into time-steps according to the job time; b)
Process-based: splits the I/O trace into processes for a given
process (or app); c) File-based: splits the I/O trace into files
for a given file (or directory); d) Transfer size-based: splits
the I/O trace into transfer size groups (e.g., 4KB, 1MB); e)
Bandwidth-based: splits the I/O trace into bandwidth groups
(e.g., 100MB/s, 1GB/s). We currently employ the following
metrics: total I/O size, I/O time per process, number of I/O
operations, number of files, average bandwidth, transfer size,
and parallelism. DigIO uses the metrics to make observations
and calculate the Bottleneck Likelihood Score (BLS) that gives
an indication of the importance of the observation. We score
each metric by its observed value in the filter group, based on
global min-max of the metric. For instance, in a time-based
filter group, if the average bandwidth of a particular time-step
is significantly lower than the ideal bandwidth, we regard
such bandwidth as an indicator of a bottleneck.

Using the filter groups and metrics, DigIO creates a
multifaceted view of the I/O behavior of the workload,
resulting in more accurate bottleneck identification. One of
the advantages of this approach is that it helps us eliminate
false-positives efficiently. For instance, a time-step with
densely concentrated I/O operations may be falsely identified
as a bottleneck in the time-based view, but if the corresponding
processes exhibit high parallelism in the process-based view
with a satisfactory bandwidth, that observation gets discarded.
Finally, to produce user-friendly text-based results, DigIO
utilizes a heuristically designed rule-based engine to identify
bottlenecks from candidate observations.

B. I/O Bottlenecks in HPC Workloads

We select HPC workloads with different I/O behaviors that
are representatives of real-world scenarios. These include
CM1 (an atmospheric simulation), HACC [9] (a cosmological
simulation), CosmoFlow [10] (a cosmological simulation
using DL), JAG ICF model [11], and two workflows [12],
[13] using Montage (a mosaic engine). Due to lack of space,
we will showcase the results from a single workload (CM1)
and from only the time-based analysis (The rest of the results
will be showcased on the poster).

1) Application Description: CM1 is an atmospheric sim-
ulation that models phenomena such as thunderstorms and
tornadoes. It proceeds by iterations and produces more than
750 files (each around 128MB) during 193 simulation steps.

2) Observations detected by DigIO: Our time-based
analysis shows that the application takes 668 seconds to

Fig. 2. Time-based analysis on the I/O write operations of CM1. We run a
five-level depth-based analysis and calculate BLS at every level for each time-
step. As the search area narrows, we observe an increased BLS, indicating a
likely bottleneck within the time-step being analyzed.

finish, reads 20.03GB, and writes 1.14GB data in total. The
I/O time per process is around 0.08 seconds and the number
of I/O operations is around 26k. The initial observation that
DigIO made was the fact that among 26k I/O operations,
86.9% of them was actually metadata operations. This
indicates that there might be a large amount of unnecessary
metadata operations that reduces the overall I/O performance
of the application. DigIO also observed that 94.6% of I/O
time is spent during the first 20 seconds and on only read
operations. However, the BLS calculated for the time-step was
only 48.6% as the tool found no significant issue on the other
metrics such as the average bandwidth and the transfer size.
This illustrates the efficiency of the multifaceted approach.

3) Bottleneck detected by DigIO: Figure 2 shows a
potential bottleneck detected on the I/O write operations
with a BLS of 77.5%. DigIO finds that in this particular
time-step, the application does around 300 small (<500KB)
I/O operations with a low bandwidth (~400MB/s) from a
single process (no parallelism).

C. Conclusion

In this work, we demonstrate our methodology and our tool
DigIO that produce multifaceted views of I/O data to identify
I/O bottlenecks. We showcase that applying an automated mul-
tifaceted analysis is a complex task but can reveal several new
insights on our performance data as shown in the evaluation
for CM1. Specifically, we identify that, even though CM1 per-
forms most I/O on read operations initially, it spends majority
of I/O time on small write operations followed by metadata
operations on these files. Additionally, we demonstrate the tool
can perform this multifaceted analysis in seconds or minutes
(as opposed to weeks by an I/O expert) and can produce user-
friendly outputs for describing the bottleneck.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Labo-
ratory under Contract LLNL-POST-838770. Also, the material
is based upon work supported by the National Science Foun-
dation under Grant no. NSF OAC-2104013, OCI-1835764, and
CSR-1814872.

2



REFERENCES

[1] A. L. N. Reddy and P. Banerjee, “A study of i/o behavior of perfect
benchmarks on a multiprocessor,” in Proceedings of the 17th Annual
International Symposium on Computer Architecture, ser. ISCA ’90.
New York, NY, USA: Association for Computing Machinery, 1990, p.
312–321. [Online]. Available: https://doi.org/10.1145/325164.325157

[2] P. Crandall, R. Aydt, A. Chien, and D. Reed, “Input/output characteristics
of scalable parallel applications,” in Supercomputing ’95:Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing, 1995, pp. 59–59.

[3] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and
K. Riley, “24/7 characterization of petascale i/o workloads,”
in 2009 IEEE International Conference on Cluster Computing
and Workshops (CLUSTER). Los Alamitos, CA, USA: IEEE
Computer Society, sep 2009, pp. 1–10. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CLUSTR.2009.5289150

[4] H. Rahman, M. M. Verstraete, and B. Pinty, “Coupled surface-
atmosphere reflectance (csar) model: 1. model description and inversion
on synthetic data,” Journal of Geophysical Research: Atmospheres,
vol. 98, no. D11, pp. 20 779–20 789, 1993. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93JD02071

[5] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, vol. 130. Citeseer, 2015, p. 136.

[6] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel i/o tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2020, pp. 1–8.

[7] D. Vohra, Apache Parquet. Berkeley, CA: Apress, 2016, pp. 325–335.
[Online]. Available: https://doi.org/10.1007/978-1-4842-2199-0 8

[8] “Lassen — High Performance Computing.” [Online]. Available:
https://hpc.llnl.gov/hardware/platforms/lassen

[9] K. Heitmann, T. D. Uram, H. Finkel, N. Frontiere, S. Habib, A. Pope,
E. Rangel, J. Hollowed, D. Korytov, P. Larsen, B. S. Allen, K. Chard,
and I. Foster, “HACC cosmological simulations: First data release,” The
Astrophysical Journal Supplement Series, vol. 244, no. 1, p. 17, sep
2019. [Online]. Available: https://doi.org/10.3847/1538-4365/ab3724

[10] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P. Harrington,
J. Balewski, S. Matsuoka, P. Nugent, and B. V. Essen, “The case for
strong scaling in deep learning: Training large 3d cnns with hybrid
parallelism,” IEEE Transactions on Parallel amp; Distributed Systems,
vol. 32, no. 07, pp. 1641–1652, 2021.

[11] J. L. Peterson, B. Bay, J. Koning, P. Robinson, J. Semler, J. White,
R. Anirudh, K. Athey, P.-T. Bremer, F. Di Natale, D. Fox, J. A. Gaffney,
S. A. Jacobs, B. Kailkhura, B. Kustowski, S. Langer, B. Spears,
J. Thiagarajan, B. Van Essen, and J.-S. Yeom, “Enabling machine
learning-ready hpc ensembles with merlin,” Future Gener. Comput.
Syst., vol. 131, no. C, p. 255–268, jun 2022. [Online]. Available:
https://doi.org/10.1016/j.future.2022.01.024

[12] M. Reagan, The Hand of God: Thoughts and Images Reflecting the
Spirit of the Universe. Templeton Press, 2011. [Online]. Available:
https://books.google.com/books?id=L7BmzgAACAAJ

[13] M. Rynge, G. Juve, J. Kinney, J. Good, B. Berriman, A. Merrihew, and
E. Deelman, “Producing an Infrared Multiwavelength Galactic Plane
Atlas Using Montage, Pegasus, and Amazon Web Services,” in Astro-
nomical Data Analysis Software and Systems XXIII, ser. Astronomical
Society of the Pacific Conference Series, N. Manset and P. Forshay,
Eds., vol. 485, May 2014, p. 211.

3


