
Checkpointing Orchestration for Performance Improvement

Hui Jin
Illinois Institute of Technology

Chicago, IL
Email: hjin6@iit.edu

Abstract

Checkpointing is a mostly used mechanism for support-
ing fault tolerance of high performance computing (HPC),
but notorious in its expensive disk access. Parallel file sys-
tems such asLustre, GPFS, PVFSare widely deployed on
super computers to provide fast I/O bandwidth for general
data-intensive applications. However, the unique featureof
checkpointing makes it impossible to benefit from the paral-
lel file systems. In addition, the design of parallel file sys-
tem introduces extra contention overhead for checkpointing
and significantly degrades the performance. In this study,
we propose checkpointing orchestration to mask the unnec-
essary overhead for a better performance. We extendOpen
MPI andPVFSto support the idea of checkpointing orches-
tration. The experimental results confirm the potential of
the proposed checkpointing orchestration.

1 Introduction

Checkpointing/Restart (C/R) is a widely used mecha-
nism for fault tolerance, where checkpointings are taken
periodically to store a snapshot of the application state to
a stable storage and used to restart the application in case of
failures [4]. The checkpointing/recovery mechanism miti-
gates the work loss due to failures. However, in the mean-
time, it introduces considerable overhead because of the ex-
pensive I/O access cost. In [8], the authors have shown that
1-petaFLOPS system can potentially harm the system per-
formance by50%.

Parallel file systems (PFS) such asLustre, GPFS and
PVFSare widely deployed on modern large-scale systems.
PFS is usually built on dedicated I/O servers that are sep-
arated from compute nodes. While speeding up the per-
formance of general data-intensive applications, the design
and implementation of PFS also place extra overhead on
checkpointing thus limit the performance. We conclude the
disparities between the characteristics of checkpointingand
the design of traditional PFS as follows.

• To speed up the I/O operation performance of a sin-
gle file, PFS usually stripes one file into thousands of
equal-sized data files such that they can be written to
multiple I/O servers concurrently. This optimization
of single file operation is difficult to benefit parallel
checkpointing. The multiple checkpointing requests
act as a whole and their performance is evaluated by
the elapsed time between the start and completion of
all the checkpointings.

• Modern file systems alternate among multiple I/O re-
quests in a round-robin manner to save the waiting
time of each request. However, waiting time of one
single request is not a metric in consideration for paral-
lel checkpointing. Due to the frequent synchronization
among processes of a parallel application, it makes lit-
tle sense for one single process to be responded earlier
if other processes involved in the synchronization are
delayed.

Coordinated checkpointing is basically a burst of write
requests from hundreds of thousands of computing pro-
cesses to the permanent storage. I/O contention is a main
factor to impact the checkpointing performance due to the
fact that the number of nodes used for computation is nor-
mally one to two orders of magnitude greater than the num-
ber of nodes used for I/O [9]. The gap is even enlarged
with the introduction of multi-core/many-core processors
that support multiple computation processes for one com-
pute node but help little to scale the corresponding I/O band-
width.

This research proposes the orchestration of checkpoint-
ing to minimize the I/O contention and enhance the per-
formance. Firstly, we propose vertical checkpointing data
access to reduce the number of competing checkpointing
requests for each I/O server. Secondly, the checkpointing
can be orchestrated for each I/O server to further boost the
performance. Preliminary experimental results have been
conducted to verify the potential of checkpointing orches-
tration for performance improvement.



(a) Traditional Checkpointing (b) Vertical Checkpointing (c) Vertical and Sequential Checkpointing

Figure 1: Comparison of Three Checkpointing Mechanisms

The rest of this paper is organized as follows. We intro-
duce the design and implementation of checkpointing or-
chestration in section 2. Section 3 presents the preliminary
experimental results. Section 4 reviews the existing work,
followed by the conclusions and future work of section 5.

2 Design and Implementation

2.1 Design Overview

We illustrate how parallel checkpointing requests are
handled on traditional PFS in Fig 1a. Suppose we have two
compute nodes, each of which is equipped with dual cores
and executes two parallel processes. The PFS is deployed
on two I/O nodes.

The snapshot of each process is divided into 4 data files,
which are evenly distributed onto the two I/O servers. In
the ideal case, the processing time of one single checkpoint-
ing is halved by parallelling of I/O operation with two I/O
nodes. Each I/O server alternates among the data files such
that the waiting time of each request is kept as low as pos-
sible.

The design of traditional PFS (striping and alternation)
actually helps little to speed up the checkpointing perfor-
mance because it is evaluated by the overall elapsed time of
all the checkpointing snapshots. Furthermore, the design of
traditional PFS introduces unnecessary I/O contention that
degrades the performance of parallel checkpointings.

We take two steps to eliminate the extra overhead in-
volved in checkpointing on traditional PFS. First,Vertical

Checkpointingis proposed to disable the striping of tradi-
tional PFS.

Fig 1b demonstrates the checkpointing layout on I/O
nodes for vertical checkpointing. We reduce the number of
competing checkpointings from 4 of Fig 1a to 2 and signifi-
cantly mitigate the I/O contention. The term vertical check-
pointing comes from the fact that each checkpointing file is
stored directly to one I/O node, instead of being horizon-
tally distributed among all the I/O nodes.

Checkpointing performance can be further improved by
ordering the requests for each I/O node. More specially,
we proposesequential checkpointingto service the snapshot
writing requests sequentially for each I/O node.

Fig 1c describes the idea of sequential checkpointing.
Opposed to interleaved writing for each file as in Fig 1b,
each I/O server handles the snapshot one by one for sequen-
tial checkpointing. All the other file requests are hold tillthe
completion of the current one. It is easy to observe that the
request alternation is reduced to only one for each I/O node
in Fig 1c, which is significantly less than that of traditional
PFS approach.

2.2 Preliminary Implementation of the
Prototype

We have three main procedures to implement check-
pointing orchestration, which are listed as follows.

• Configuration File Creation. In this procedure we
make the decision of scheduling checkpointing re-
quests to I/O nodes. It is required that the number of



requests serviced by all the I/O nodes are set the same
to guarantee the even distribution: the overloaded I/O
node may delay the entire parallel checkpointing pro-
cess thus hurt the performance.

• Vertical Checkpointing on PVFS2.Equipped with the
configuration file, PVFS is ready to implement ver-
tical checkpointing. When processing one incoming
checkpointing request, the PVFS2 server will check
the configuration file to select the corresponding I/O
node. PVFS2 has a functionality to disable striping
such that one checkpointing stores directly to only one
I/O node.

• Sequential Checkpointing on Open MPI.We choose to
implement sequential checkpointing on Open MPI [6].
The processes that share one I/O server are mutually
excluded for checkpointing, which guarantees only
one checkpointing request serviced for an I/O server
at any time and achieves sequential checkpointing.

The checkpointing orchestration is designed as an im-
provement to existing systems such as PVFS2 and Open
MPI and can be activated by a flag parameter specified by
the user. It is easy to switch back to checkpoint with tradi-
tional file system support.

3 Preliminary Experimental Results

The experiments were conducted on a Sun Fire Linux-
based cluster of 65 nodes, with one dual 2.7 GHz Opteron
head node and 32 dual 2.3GHz Opteron computing nodes.
All the nodes are composed of 8 GB memory and 250GB
SATA hard driver. Four extra nodes are dedicated as PVFS2
servers. Each I/O server of PVFS2 also works as a metedata
server. The stripe size for traditional checkpointing is set as
64KB.

 50

 100

 150

 200

 250

 300

5GB 10GB 20GB 40GB

C
h

e
c

k
p

o
in

ti
n

g
 C

o
s

t 
(S

e
c

o
n

d
s

)

Overall Image Size (GB)

Striped
Vertical

(a) Problem Size Scaling

 50

 60

 70

 80

 90

 100

 110

64 128 256

C
h

e
c

k
p

o
in

ti
n

g
 C

o
s

t 
(S

e
c

o
n

d
s

)

Number of Processes 

Striped
Vertical

(b) Task Scaling

Figure 2: Vertical Checkpointing Performance

We first verify the performance of vertical checkpoint-
ing in Fig 2. We deploy 8 processes on each compute node
and vary the overall image size in Fig 2a. We can observe
that vertical checkpointing constantly advances traditional

striped approach with at least25% for all the cases. In Fig
2b we fix the image size at 10GB and vary the number of
parallel processes from 64 to 256. Though the total image
sizes is fixed, we still observe the growth of checkpointing
overhead as the number of processes increased for the first
bar of striped checkpointing. For example, the checkpoint-
ing cost is increased from 72 seconds of 64 processes to 113
seconds of 256 processes. This observation reveals that the
resource contention on the I/O servers leads to considerable
overhead and confirms the significance of this research. The
advantage of vertical checkpointing over striped approach
is obvious. We also observe the cost increase for vertical
checkpointing as the number of processes increased. How-
ever, the growth is kept stable at about 10 seconds and does
not scale for more parallel applications.

 60

 80

 100

 120

 140

 160

 180

640MB 1280MB 2560MB 5120MB

C
h

e
c

k
p

o
in

ti
n

g
 C

o
s

t 
(S

e
c

o
n

d
s

)

Overall Image Size (MB)

Interleaved
Sequential

(a) Problem Size Scaling

 80

 100

 120

 140

 160

 180

32 64 128

C
h

e
c

k
p

o
in

ti
n

g
 C

o
s

t 
(S

e
c

o
n

d
s

)

Number of Processes 

Interleaved
Sequential

(b) Task Scaling

Figure 3: Sequential Checkpointing Performance

We spawn multiple (up to 128) processes on one com-
pute node , store the checkpointing image to the local disk
and observe sequential checkpointing performance in Fig
3. We study the performance with different image sizes
while fixing the number of processes at 128 in Fig 3a. Se-
quential checkpointing saves more than50% checkpointing
overhead than the traditional interleaved approach when the
image size is less than 256MB. The advantage of 5120MB
is relatively low, this is due to that the checkpointing may
actually needs double memory size, which overloads the
system memory of 8GB and triggers extra swap in/out oper-
ations. Fig 3b reports the performance with different num-
ber of processes and confirms the advantage of proposed
sequential checkpointing.

4 Related Work

It is well recognized by the community that checkpoint-
ing overhead is an important issue to limit the scalability
and performance of large-scale systems and the upcoming
extreme-scale environment. Several efforts have been made
recently to optimize checkpointing performance from the
perspective of the file system or storage.

Lightweight File System (LWFS) [9] allows secure, di-
rect access to storage, bypassing features of traditional file



systems that impose performance bottleneck. However, the
resource contention of existing PFS is not a concern in [9].

In [1], the authors proposed a parallel log-structured file
system(PLFS) that sits between the applications and the un-
derlying parallel file system to achieve a higher checkpoint-
ing bandwidth. The goal of [1] was the performance op-
timization of N − 1 checkpointing, instead of aN − N

approach tackled in this study.
Several efforts have been made to aggregate the writ-

ing requests at the compute node side to accelerate the
performance. [7] implemented the proposedGAS(Gather-
Arrange-Scatter) architecture by adding a system call for
compute nodes and developing a file system prototype for
the I/O servers. The authors of [10] categorized the writing
requests from the perspective ofVFSand aggregates small
and medium writes to relatively large writes for better per-
formance. We differentiate our work by proposing the ver-
tical checkpointing. In addition, the checkpointing orches-
tration eliminates the inter-process aggregation of [10] that
changes the file organization and does not require to rebuild
checkpointing for restart.

The advent of new storage medias proposes new oppor-
tunities for the checkpointing storage. In [3], the authors
investigated the feasibility of usingPCRAMas checkpoint-
ing storage. The potential of usingSSD(Solid State Disk)
has been studied in [11] [5]. The emerging storage medias
pose new research challenges from the perspective of file
system and will be remained as our future work.

5 Conclusions and Future Work

Checkpointing is a widely adopted fault tolerance mech-
anism for parallel computing but criticized for its high over-
head due to I/O accesses. It is still an issue under investi-
gation that whether checkpointing is still applicable to help
guarantee the system resilience of the upcoming Exascale
computing environment [2].

Observing the performance and scalability issues, we fo-
cus this research on the analysis of underlying sources of the
inefficiency. Based on the unique features of checkpointing
from general data-intensive applications, in this paper we
propose to orchestrate the checkpointing requests to reduce
the potential I/O contention and physical disk movements
and improve the checkpointing performance. After intro-
ducing the design and implementation, we present the pre-
liminary experimental results to verify the proposed check-
pointing orchestration.

Our next step of this research is to integrate the vertical
checkpointing and sequential checkpointing for a complete
solution. It is supposed that the proposed checkpointing or-
chestration also enhances the restart performance due to its
efficient utilization of data locality, which will be verified in
future experiments.

The long term goal of our research is to build a scalable,
efficient and reliable file system that facilitates checkpoint-
ing for large-scale computing and the upcoming extreme
computing environment.

Acknowledgement

This research was supported in part by National Science
Foundation under NSF grant CCF-0937877, CNS-0834514,
CNS-0751200, CCF-0702737, and by Department of En-
ergy SciDAC-2 program under the contract No. DE-FC02-
06ER41442. The author would like to acknowledge Dr.
Xian-He Sun, Dr. Yong Chen and Tao Ke from Illinois In-
stitute of Technology for the collaboration.

References

[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczyn-
ski, J. Nunez, M. Polte, and M. Wingate. PLFS: a checkpoint
filesystem for parallel applications. InProc. of ACM/IEEE
Supercomputing, 2009.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir. Toward Exascale Resilience.International Journal
of High Performance Computing Applications, 23(4):374–
387, 2009.

[3] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and
Y. Xie. Leveraging 3D PCRAM technologies to reduce
checkpoint overhead for future exascale systems. InProc.
of ACM/IEEE Supercomputing, 2009.

[4] E. N. M. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems.ACM Comput. Surv., 34(3):375–408, 2002.

[5] L. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka.
Distributed Diskless Checkpoint for Large Scale Systems.
In Proc. of IEEE/ACM CCGrid, 2010.

[6] J. Hursey, T. I. Mattox, and A. Lumsdaine. Interconnect
Agnostic Checkpoint/Restart in Open MPI. InProc. of ACM
HPDC, pages 49–58, 2009.

[7] K. Ohta, H. Matsuba, and Y. Ishikawa. Improving Paral-
lel Write by Node-Level Request Scheduling. InProc. of
IEEE/ACM CCGrid, May 2009.

[8] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela,
R. Riesen, and P. Roth. Modeling the Impact of Check-
points on Next-Generation Systems. InProc. of the 24th
IEEE Conference on MSST, 2007.

[9] R. Oldfield, L. Ward, R. Riesen, A. Maccabe, P. Widener,
and T. Kordenbrock. Lightweight I/O for Scientific Appli-
cations. InProc. of IEEE Cluster Computing, 2006.

[10] X. Ouyang, K. Gopalakrishnan, and D. K. Panda. Accelerat-
ing Checkpoint Operation by Node-LevelWrite Aggregation
on Multicore Systems. InProc. of ICPP, 2009.

[11] X. Ouyang, S. Marcarelli, and D. K. Panda. Enhancing
Checkpoint Performance with Staging IO and SSD. InProc.
of IEEE Workshop on Storage Network Architecture and
Parallel I/Os, 2010.


