
Performance under Failures of
DAG-based Parallel Computing

Hui Jin, Xian-He Sun, Ziming Zheng, Zhiling Lan and Bing Xie

Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois 60616, USA

{hjin6,sun,zzheng11,lan,bxie3}@iit.edu

Abstract— As the scale and complexity of parallel systems
continue to grow, failures become more and more an inevitable
fact for solving large-scale applications. In this research, we
present an analytical study to estimate execution time in the
presence of failures of directed acyclic graph (DAG) based
Scientific Applications and provide a guideline for performance
optimization. The study is four fold. We first introduce a
performance model to predict individual subtask computation
time under failures. Next, a layered, iterative approach is
adopted to transform a DAG into a layered DAG, which reflects
full dependencies among all the subtasks. Then, the expected
execution time under failures of the DAG is derived based on
stochastic analysis. Unlike existing models, this newly proposed
performance model provides both the variance and distribution.
It is practical and can be put to real use. Finally, based on the
model, performance optimization, weak point identification and
enhancement are proposed. Intensive simulations are conducted
to verify the analytical findings. They show that the newly
proposed model and weak point enhancement mechanism work
well.

I. INTRODUCTION

Many scientific applications, e.g. workflow based applica-
tions, can be represented by directed acyclic graphs (DAG)
[29]. The performance of a DAG application mainly depends
on its scheduling. In general, a DAG scheduling consists of
two parts: assigning the subtasks to resources (nodes), and
ordering the execution of subtasks [23]. DAG scheduling is
a well-known NP-Complete problem and various heuristic
strategies are proposed [11].

DAG scheduling becomes more complex when faults are
considered. System failures increase the uncertainty of DAG
execution. A failure of a single subtask may block all the
subtasks depending on it. The performance degradation might
get amplified at each layer of the DAG and become substan-
tial. Failures occur with certain probability and distribution.
This uncertainty makes performance scheduling under failures
extremely challenging.

In the field of high performance computing, production
systems continue to grow in scale. For instance, systems com-
posed of tens-of-thousands to hundreds-of-thousands of nodes
are being designed and deployed [25]. For systems of this
scale, failures become a major concern. Despite great efforts
in the designing of ultra-reliable components, the increase
of system size has outpaced the improvement of component
reliability. In a parallel system composed of thousands of

nodes, system failures may happen several times a day [18].
Conventionally, high performance computing research has
mainly focused on performance. However, performance under
failures has not received its deserved attention. This situation
should be changed by developing fault awareness enabled
computing environments for the next generation petaflops
computers [20]. Therefore, in this study, we investigate the
performance under failures of general DAG based parallel
computing.

A DAG is a scheduled DAG once the scheduling decision
has been made. Our study estimates the performance under
failures of a scheduled DAG, identifies the weak points, and
the methods of performance improvement.

We conduct this study step by step. We first predict the
performance of subtasks based on our previous work [27], in
which all subtasks are independent. This prediction provides
the prediction of subtasks under one layer of a general DAG.

We next introduce a layered, iterative method to transform
a scheduled DAG into a layered DAG, which reflects full
dependencies among all the subtasks of a scheduled DAG.

Then we apply and cumulate the predicted performance on
each layer to form the predicted performance under failures
of the DAG. Distinguished from existing reliability modeling,
our derived model not only estimates the mean DAG execution
time, but also provides the variance and distribution, which are
important factors to evaluate the performance.

Finally, we investigate performance optimization under fail-
ures. We introduce the concept of weak points - the nodes on
the DAG that determine the performance, derive an algorithm
to find weak points and identify the most unreliable weak point
of a scheduled DAG. Improving the performance of the DAG
becomes the enhancement of the reliability of the identified
weak points, where known methods, such as replacement and
duplication exist.

The rest of this paper is organized as follows. In Section II,
we present a model to predict the performance of a scheduled
DAG under failures. After the introduction of the mathematical
model and assumptions of a DAG in II-A, a general failure
model based on queuing theory is proposed to derive the
subtask computation time in section II-B. In Section II-C,
We adopt a layered approach to transform a scheduled DAG
to a layered DAG, which reflects full dependencies among
the subtasks. Finally in section II-D a DAG execution time

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

978-0-7695-3622-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.55

236

estimation algorithm is presented to analyze the impact of
failures. For performance improvement, in Section III, we
present an algorithm to identify weak points. Simulations and
experiments are conducted to verify the correctness of our
analytical models in section IV. Related works are discussed
in Section V. Finally, we conclude this study and discuss
future works in Section VI.

II. DAG PERFORMANCE UNDER FAILURES

A. Problem Description

In a DAG, each node (subtask) represents a computation
task. Edges between two subtasks represent a precedence
constraint. We assume that the system uses space sharing
mechanism so that each computing node executes computation
subtasks one by one. Throughout this paper, the term subtask
represents a computation subtask in a DAG, and node is a
computing node in parallel systems.

Assume there are m nodes Mi, i = 0, 1, ...,m−1 in a system,
and n subtasks S j, j = 0, 1, ..., n − 1 in the DAG. To schedule
the DAG, each subtask is assigned to a node in the system, and
subtasks execution order is determined by the scheduling. We
use three random variables to describe the attributes of each
subtask S j: computation time TC

j , start time T S
j and finish

time T F
j . Clearly, T F

j = T S
j + TC

j . Our goal is to analyze the
execution time of a scheduled DAG in the presence of failures.
Without loss of generality, we assume that the DAG starts at
time zero.

Many computation intensive applications preload data be-
fore computing where the data transfer can be counted as
part of the workload. Many other computation intensive
applications have very low communication to computation
ratios (CCR) [23], in which the communication cost is neg-
ligible[17]. In this paper, we focus on such computation
intensive applications and do not consider communication cost
explicitly.

B. Modeling of Subtask Computation Time

Suppose subtask S j is assigned to node Mi, we study the
property of TC

j (i.e., the computation time of subtask S j),
based on the failure characteristics of Mi.

In [27], we have presented a performance model to estimate
the mean, variance and distribution of a single sequential
task computation time. We adopt this model to estimate the
computation time of each subtask in the DAG.

We use an M/G/1 process [7] to describe system failures.
Based on the common assumption in the reliability research
that failures in a computer system are usually exponentially
distributed (or the occurrence of failures is essentially random)
[28, 4], we assume that for Mi, the arrival of failures follows
a Poisson distribution with λ f , the failure repair time follows
a general distribution with mean µ f and standard deviation
σ f , which is a generalization on the exponential downtime
distribution used in [28, 4]. Notice that λ f is the reverse of
MTBF (Mean Time Between Failure) and µ f reflects MTTR
(Mean Time To Recovery).

Checkpointing has been widely used for fault tolerance in
HPC. Hence we focus on modeling the performance influence
of checkpointing in this study. Depending on implementation,
checkpointing can be performed at either system-level or
application-level. Its frequency can be fixed (periodically) or
adaptive (adjusted at run time). We assume that the checkpoint-
ing/recovery cost follows a general distribution with mean µc

and standard deviation σc. Here the checkpointing/recovery
cost refers to the time required by the system to recover the
application from the last checkpoint to the failure point. Let
w denote the subtask workload, and the application execution
is interrupted by failures S times, the computation time of the
subtask can be expressed as,

TC
j = X1 + Y1 + Z1 + X2 + Y2 + Z2 + ...+ XS + YS + ZS + L (1)

Where Xi(1 ≤ i ≤ S) are the computing time consumed by
the application, Yi(1 ≤ i ≤ S) are the downtime of system
failures, Zi(1 ≤ i ≤ S) are the checkpoint/recover cost after
failure interruption and L is the execution time of the last
application process that finishes the application.

Please notice that µ f in general is not the same as E(Yi). µ f

is the mean time of one single failure repair, whereas E(Yi)
is the mean time of the system downtime due to failures.
Failures could overlap each other and in general µ f and E(Yi)
are different.

Since w = X1 + X2 + ... + XS + L, we get

TC
j = w + Y1 + Y2 + ... + YS + Z1 + Z2 + ... + ZS (2)

The mean and variance of TC
j can be obtained through the

following expression:

E(TC
j) = (

1
1 − λ fµ f

+ λ fµc)w (3)

V(TC
j) = (

µ2
f + σ

2
f

(1 − λµ)3 + µ
2
c + σ

2
c + 2

µ fµc

1 − λ fµ f
)λ f w (4)

The cumulative distribution function (CDF) of the applica-
tion computation time is expressed as:

P(TC
j ≤ t) = P(TC

j ≤ t|S = 0)P(S = 0)+P(TC
j ≤ t|S > 0)P(S > 0)

(5)
Since P(S = 0) = e−λ f w, we have

P(TC
j ≤ t) = {

e−λ f w + (1 − e−λ f w)P(U(S) ≤ t − w|S > 0)i f t ≥ w
0, otherwise

(6)
where

U(S) = {
0, i f S = 0
Y1 + Z1 + Y2 + Z2 + ... + YS + ZS , i f S > 0

The first term e−λ f w on the right-side of Formula (6) is the
performance without failure interruption. The second term (1−
e−λ f w)P(U(S) ≤ t − w|S > 0) is the performance with the
failure interruptions. Based on [6], the Gamma distribution is
an appropriate distribution to describe P(U(S) ≤ u|S > 0),

237

which is derivable from its mean and variance. Please refer
[27] for detailed description and proof of the formulas.

C. DAG Transformation

To analyze the performance of a scheduled DAG, we need
to investigate subtask dependencies in it. In general, there
are two types of dependencies, task dependency and resource
dependency. Task dependency reflects the dependency of each
subtask given by the task DAG and resource dependency
reflects the resource competition of the subtasks,which is
determined by the underlying task scheduling. When multiple
subtasks are assigned to a node, the subtask that is scheduled
to start later has a resource dependency on the one that is
scheduled to run earlier. To capture all the dependencies in a
scheduled DAG, we transform it into a layered DAG [13].

Algorithm 1 DAG Transform Algorithm
Definition:Ready-to-Layer pool rPool is the collection of
subtasks that all of whose immediate predecessors have been
layered.
Objective: Transform a scheduled DAG to layered DAG
Begin
For each subtask S ∈ DAG

Compute the immediate predecessors set Ψ(S)
If Ψ(S) = ∅ then Layer(S) = 1 Else Layer(S) = 0 End

If
End For
Repeat

Update the ready-to-layer pool rPool.
For each S ∈ rPool

Layer(S) = maxS ′∈Ψ(S)(Layer(S
′

)) + 1
Add edges for non-redundant dependencies on S .

End For
Until Layer(S) > 0 ∀S ∈ DAG
End

The DAG transformation pseudocode is illustrated in Algo-
rithm 1. After initializing the first layer, we repeatedly place
subtasks in the Ready-to-Layer pool into the corresponding
layer till all the subtasks are layered.

D. Modeling of DAG Execution Time

In this section we present the model of DAG execution
time under failures. We first study the relationship among the
three random variables introduced by Section II-A (i.e.TC

j ,
T S

j and T F
J), followed by presenting an algorithm to get the

DAG execution time under failures.
In a layered DAG, the start time of S j is the maximum

finish time of its immediate predecessors. We have

T S
j = {

0 i f Ψ
′

(S j) = ∅
maxS k∈Ψ

′ (S j){T
F
k } otherwise (7)

Where Ψ
′

(S j) is the immediate predecessors set of subtask
S j.

Based on the probability theory, if Ψ
′

(S j) , ∅, the CDF of
T S

j can be expressed as:

P(T S
j ≤ t) =

∏
S k∈Ψ

′ (S j)

P(T F
k ≤ t) (8)

The CDFs of TC
j and T S

j can be derived according to
Equation (4) and (8). Given that T F

j = T S
j + TC

j , according to
probability theory, the probability distribution of the sum of
two independent random variables is the convolution of each
of their distributions. The formula is fT F

j
(·) = fT S

j
(·) ∗ fTC

j
(·),

which means

fT F
j
(y) =

∫ y

0
fT S

j
(y − t) fTC

j
(t)dt (9)

Here fT F
j
(·) is the density function of T F

j . fT S
j
(·) and fTC

j
(·)

are the density functions of T S
j and TC

j , respectively.
The pseudocode to estimate the distribution of DAG execu-

tion time under failures is shown in Algorithm 2. Basically,
in the outer loop we propagate the execution time of each
layer of a layered DAG, and in the inner loop we derive the
distribution of three random variables for each subtask in the
layer.

Algorithm 2 Execution Time Estimation Algorithm for a
Layered DAG
Definition:Tdag denotes the DAG execution time. Ωdag is the
set of exit subtasks for the DAG.
Objective: Estimate the distribution of execution time of a
scheduled DAG
Begin
Transform a scheduld DAG to layered DAG.
For i = 0 to depth(layered DAG)

For each subtask S j in layer i
Calculate the start time T S

j CDF in this layer based
on formula (8).

Calculate the computation time TC
j CDF based on

formula (6).
Calculate the density function of T S

j and TC
j based

on their CDFs.
Calculate the density function of finish time T F

j
based on formula (9).

Calculate the CDF of T F
j from its density function

End For
End For
Overall DAG execution time is the result of multiplication on
finish times of the all the exit subtasks,
P(Tdag ≤ t) =

∏
S k∈Ωdag

P(T F
k ≤ t)

End

III. IDENTIFY WEAK POINT

A critical path (CP) of a DAG is a longest path in the DAG
from one entry subtask to one exit subtask [11]. A weak point
is defined as a node on a critical path of a scheduled DAG
that is weak in reliability.

Variance is an important factor of performance. We use
E(T F)(1 + Coe(T F)) to measure a subtask finish time, not

238

E(T F). Similarly, we use E(TC)(1 + Coe(TC)) − workload to
measure the reliability of a subtask, and its corresponding
node. Here E(T F), Coe(T F) and E(TC), Coe(TC) represent
the mean and the coefficient of variance of the finish time and
computation time respectively for one subtask. We propose
an efficient algorithm to identify a candidate weak point for
possible performance improvement.

The algorithm consists of two parts, finding the critical
path and identifying a candidate weak point. For a collection
of subtasks (normally parallel subtasks), we denote critical
subtask as the subtask with the maximum finish time. Ac-
cording to Section II , the execution time of a DAG is
determined by critical exit subtask. If a subtask is located
at layer 2 or higher, its start time is decided by its critical
immediate predecessor (the start time of subtask in layer one
is zero). Starting at a critical exit subtask, we can find its
critical immediate predecessor subtask, this process can repeat
on these predecessors until an entry subtask (subtask located
at layer 1) is reached. The critical exit subtask and its critical
predecessor recursively form the critical paths.

The algorithm to identify a candidate weak point for re-
liability/performance enhancement is given below. We first
find critical path of a layered DAG recursively by finding
the predecessor of the critical exit subtask. The finish time
of a critical exit subtask is the execution time of the DAG
(assuming the DAG starts at time zero) and it is also the weight
of the critical path which ends at the critical exit subtask.
Similarly, for a subtask S j, the finish time of its critical
immediate predecessor reflects the weight of the longest path
from one entry subtask to S j. The performance of the nodes in
a critical path directly determines the performance of the DAG.
All the nodes on a critical path are important. But from the
reliability and fault tolerant point of view, only those nodes not
reliable are weak. We find a critical subtask with the maximum
E(TC)(1+Coe(TC))−workload and identify its corresponding
node as the candidate weak point for possible performance
enhancement. Please notice that for every subtask, the mean,
coefficient of variance for the computation time and finish time
can be derived in the process of DAG performance estimation
with no extra cost. The cost of the algorithm is very low. The
algorithm can be applied repeatedly to enhance weak points
one by one.

IV. EXPERIMENTS

We use two DAGs to evaluate our model: one is a synthetic
DAG with considerable complexity, and the other is a DAG
from the LQCD application [14]. We also study the model
sensitivity with respect to different workloads and number of
subtasks.

The first DAG studied in our simulation is shown in Figure
1.a. We have 12 subtasks in the task DAG. The workload
of each subtask is a multipliable to test the accuracy and
sensitivity for different workloads. The second DAG is shown
in Figure 1.b, which is a prototype of LQCD workflow, two-
point (2-pt) analysis. LQCD (Lattice QCD) is the numerical
simulation of QCD[16]. Its calculations allow us to understand

Algorithm 3 Algorithm to Find a Candidate Weak Point
Definition:Critical Path Stack S tackcp is the stack used to
store the subtasks in the critical path.
Objective: Identify the weakpoint in a layered DAG
Begin
Find the critical exit subtask from all the exit subtasks in
a layered DAG, push it to S tackcp

S c = top(S tackcp)
While layer(S c) , 1

Find the critical immediate predecessor of S c and push
it to S tackcp

S c = top(S tackcp)
End While
max = −1 weakP = NULL
While S tackcp , ∅

S j = pop(S tackcp)
w = E(TC

j)(1 +Coe(T c
j)) − workload j

i f w > max then
max = w
weakP = S j

end i f
End While
Return WeakP

the results of particle and nuclear physics experiments in terms
of QCD [16]. In our experiment the number of subtasks in
level 3 (S 9, S 10, ..., S k−1) is a variable. By changing the number
of subtasks, we can test the effectiveness of the model for
different number of subtasks.

We simulate a 256-node system. For each node, the mean
failure arrival rate ranges from 1.5 × 10−3 to 2.5 × 10−3 per
hour and the mean failure downtime ranges from 2 hours to 4
hours. Fault recovery overhead in our simulation is set to be 2
hours. The overhead includes both checkpointing cost and the
rollback cost. The standard deviations of both downtime and
recovery cost are 2. The parameters on each node are randomly
generated within their corresponding ranges so that the failure
rate and downtime on each machine are independent. Failure
downtime and recovery overhead follow lognormal distribu-
tions. The choice of parameter values and distributions are
based on Los Alamos data [12, 18].

The scheduling algorithms employed in our experiments
include list schedules such as HLEFT, HLFNET, SCFNET,
etc [11]. The experimental results prove that the accuracy of
the proposed model is independent of scheduling algorithms.

For each scheduled DAG, we issue 20,000 runs, then we
get a sample set of size 20,000 to be used as our simulation
results. We calculate the mean µ, standard deviation σ and
the CDF of the simulation results. The model is evaluated in
three aspects. For a sample set of normal distribution with
mean µ and standard deviation σ, almost all (99.7%) of the
values in a normal distribution sample set lie within a range
of [µ±3σ][8]. To test whether our model predicts an accurate
range of DAG execution time, first we plot error bars within
the range [µ − 3σ, µ + 3σ]for both the prediction results and

239

(a) A Synthetic DAG and Base Workloads (Hours) (b) 2-pt DAG and Workloads (Hours)

Fig. 1: DAGs in The Experiments

the simulation results. We introduce average residual error
(or average residual for short) to show the goodness of the
predicted performance distribution. Residual is defined as the
sum of vertical distances between the simulated points and the
predicted model curve [8]. Suppose Q1,Q2, ...,Qnare n identi-
cal observations of DAG execution times in the simulation, we
have AverageResidual =

∑
j=1 to n

|Predicted(P(T j))−S imulated(P(T j))|
n .

Smaller average residual indicates better fitness of our model
with the simulation. Through this section, the term ”predicted”
refers to the results derived from the model, the term ”sim-
ulated” means the results gained from the simulation. In the
simulation, we also study the prediction mean error, which is
defined as |Predicted Mean−S imulated Mean|

S imulated Mean [26].
The simulation results for the synthetic DAG of Figure 1.a

are plotted in Figure 2. In Figure 2.a we demonstrate the means
with error bars for different workloads. The workloads are
multiplied by 1, 4, 8, 12, 16 and 20 times. The corresponding
shortest execution time, the DAG execution time without
failure interruption, is marked in x-axis. The colored bars
represent [0, µ − 3σ] for prediction and observation results,
while error bars of [µ − 3σ, µ + 3σ] are indicated by the
uncolored bars on the top of colored bars. The first observation
is that all the simulated error bars are covered by the predicted
error bars, which implies that almost all the simulated results
can be predicted by the model. Further, for each identical
workload, the predicted and simulated error bars are quite
close to each other, which convinces that we can provide a
precise prediction of the performance range.

The average residual of Figure 2.b indicates the accuracy of
CDF predicted by the model. The average residuals are kept
less than 4% through our simulation, which means that the
average prediction error for the CDF is better than satisfactory.
Also, we do not see the loss of accuracy with the increase of
workload: the average residual even decreases for an expected

execution time of more than 1700 hours. In real applications
we rarely have a task that will run as long as 8500 hours,
we just list this data to prove the stability of our model with
the increase of workload. Mean error bars are also plotted in
Figure 2.b and we can find that all the observed mean error
are kept less than 0.5%.

In the simulation of 2-pt analysis DAG shown in Figure 3,
we set the number of subtask in level 3 as a variable ranged
from 32 to 1024. The more number of subtasks implies more
parallelism of the application.

In Figure 3.a, we notice that with the increase of subtask
numbers, the portion of simulated error bars that cannot be
covered by the predicted error bars is remained as stable
as 15%, which means that we can predict the range of
DAG execution time with 85% accuracy or more. Another
encouraging observation of Figure 3.a is that when the number
of subtasks in level 3 is more than 128, the standard deviation
prediction error will be remained below 5%. This indicates
that the difference between predicted error bars and simulated
error bars is mostly due to the prediction mean error for
more parallel applications. Standard deviation prediction error
contributes little to the error bar difference. For example,
for the DAG with 1024 subtask at level 3, the predicted
standard deviation is 10.0972, compared with 10.5492 of
simulated standard deviation. So the mismatching of error bars
is mostly due to the mean difference: 594.158 of predicted
mean compared with 583.33 of simulated mean. This fact
inspires us to work toward more accurate mean prediction to
improve the model in the future.

In Figure 3.b we plot the average residuals and mean errors
for DAGs with different number of subtasks. The average
residual are kept lower than 18%, or less than 15% when the
size of level 3 is more than 128. The mean prediction error is
stabled at less than 8% or less than 6% when the size of level

240

(a) Mean with Error Bars for the Synthetic DAG (b) Average Residual and Mean Error for The Synthetic DAG

Fig. 2: Simulation Results for The Synthetic DAG

(a) Mean with Error Bars for 2-pt DAG (b) Average Residual and Mean Error for 2-pt DAG

Fig. 3: Simulation Results for 2-pt DAG

3 is more than 256. Though both average residual and mean
error is bigger than those in Figure 2.b, they are acceptable due
to the high workload. For example, compared with the shortest
execution time of 1024 subtasks at level 3 of 550 hours, the
prediction error of 10 hours is trivial. We conclude the model
is scalable, based on the observation that both average residual
and mean error have the trend of decreasing with the increase
of the number of subtasks.

Simulations are conducted to evaluate the efficiency of
the proposed weak point identification algorithm. We assume
a failure-free node is used to replace the identified weak
point to enhance the DAG performance. We compare several
performance enhancing technologies:
• Weak Point Based: we enhance the weak point identified

by the proposed algorithm with a failure-free node.
• Random: nodes are randomly selected to be enhanced by

the failure-free node.
• Reliability Based: The least reliable node of the system

is replaced. The reliability of a node is approximated by
λ f × (µ f + σ f + µc + σc). The symbols share the same
meaning with those in Section II-B.

• Workload Based: we simply enhance the subtask with
highest workload.

• Performance Loss Based: The node with maximum per-
formance loss is selected for enhancement. The per-

formanceloss of subtask S j is defined as E(TC
j)(1 +

Coe(TC
j)) − workload j.

The failure data used in the experiment are from 32 repre-
sentative computing nodes of [12]. We introduce Performance
Gain, the time saved by issuing the enhancing technology, as
the metric to evaluate different methodologies.

In Figure 4.a we illustrate the performance gains for the
synthetic DAG of Figure 1.a with different enhancing tech-
nologies and workloads. The advantage of weak point based
enhancing technology is obvious. We can improve the DAG
performance effectively by replacing the node of weak point
with an ultra reliable node. Other enhancing approaches, with
performance gains less than 1, rarely improve the DAG per-
formance compared with the optimized weak point solution.
The negative gains are generated by the random runs of each
DAG and can be considered as zero.

The experimental results for 2-pt DAG are plotted in Figure
4.b. Unlike Figure 4.a, the weak points in Figure 4.b are always
the nodes with least reliability and performance loss. This is
due to that 2-pt DAG is more symmetrical than the synthetic
DAG. The workloads for the subtasks in the same level are
identical, which introduce many “homogeneous” candidates
for the critical path. As a result, the most unreliable node
with most performance loss will outperform their peers and
be identified as the weak point. This observation suggests that

241

(a) Performance Gains for The Synthetic DAG (b) Performance Gains for 2-pt DAG

Fig. 4: Performance Gains for Different Enhancement Techniques

more effective algorithms can be conducted for DAGs with
featured structure, e.g., fork-join DAG.

Figure 4.b also differs from Figure 4.a in that the opti-
mal performance gains do not grow proportionally with the
increase of subtask number. They initially increase with the
number of subtask grows, and diminishes after arriving at the
peak when the number is 32. The performance gain grows
at first because failures have more impact on more parallel
DAG and the enhancement can remedy the loss. However, in
the experiment we only have one ultra reliable node for use,
which is not enough to compensate the performance loss when
the DAG scales beyond some threshold. More reliable nodes
are needed to keep the performance gain grow proportionally.
The identification of multiple weak points for replacement can
be achieved by applying our proposed algorithm repeatedly.
The optimal number of weak point replacement for DAG of
a specific size is an interesting topic and will be the task of
future work.

V. RELATED WORK

In [27], we have proposed a queuing theory-based ap-
proach to estimate the CDF, as well as mean and variance
of sequential task execution time. The models separate the
influence of failure rate, failure repair time, checkpointing
period and cost. The parallel task addressed in [27] is assumed
to be ”completely parallel”, which means that there is no
dependency among the subtasks. In this study, we present a
general model for any application that can be represented by a
DAG, where dependency is considered. The models proposed
in this study can be applied to general HPC environment
to predict the application performance. In addition, we have
introduced the concept of weak point to enhance performance
under failures for a general DAG based workflow system.

In probability theory, mean is a way to describe the location
of a distribution, while the variance is a way to capture its
scale and degree of distribution. The combination of mean and
variance provides a comprehensive description of a random
variable [9, 10]. Most existing models only provide the mean
of execution time. One advantage of our model is that it
provides both mean of the DAG execution time and the
variance and distribution. The latter is vital for layered DAG

performance analysis where the distribution of variance can
be amplified through layers and lead to an execution time far
from the mean.

With the assistance of distribution and variance, we provide
the range of DAG execution time, the percentile that the DAG
can be done within some time. Unlike existing studies [28, 4,
5], our model provides the CDF of job execution time which
can be used to derive the percentile. Mean expected execution
time alone is not a good metric for choosing an appropriate
scheduling; the distribution of variance must be considered
in practice. That makes our model unique. A user can use
the estimated execution time and its distribution to choose an
appropriate scheduling.

In [21,19], DAG scheduling algorithms are designed to
maximize the reliability. Their goal is to minimize the number
of failures during the DAG execution. Heuristic methods, e.g.
high workload tasks are allocated to more reliable nodes,
are devised to schedule a DAG. However, in their papers
they did not consider the impact of other parameters such
as repair time and checkpointing, which may significantly
degrade the application performance [27]. Our study provides
a more comprehensive solution in that we focus on DAG
execution time under the impact of almost all the failure related
parameters, i.e., MTBF, MTTR, checkpointing cost and their
standard deviations. The scheduling is made not only based
on the mean or medians, the coefficient of variance is also
considered.

VI. CONCLUSION AND FUTURE WORK

In this study, we have proposed performance models to
estimate the execution time of DAG in the presence of failures.
We have utilized a layered approach to capture both resource
dependency and task dependency among the subtasks in a
DAG and then derived the distribution of execution time of
the layered DAG. We have also introduced the concept of
weak points to enhance performance under failures.

Experiments have shown that the newly proposed models
work well with an accuracy of more than 85%. The identifi-
cation of weak point can also be used effectively to improve
the DAG performance. This research of performance under

242

failures is aimed to large-scale parallel computing and has a
real potential for the petaflops high-end computing era.

In the future, we plan to further study the practical part
of the proposed models, their applications in task scheduling
and reliability enhancement. We’re currently working on the
development of a fault aware computing environment for par-
allel computing based on these models. We are also interested
in integrating the proposed failure models with existing job
management middleware, e.g. PBS, Condor.

ACKNOWLEDGEMENT

We would like to thank our colleagues at the LQCD work-
flow group at the Fermi National Accelerator Laboratory for
their valuable inputs on the LQCD workflow test cases. This
work was supported in part by National Science Foundation
under NSF grants CNS0834514, CNS0751200, CNS0720549,
CCF0702737, CNS0406328, EIA0224377, and by Department
of Energy SciDAC program under the contract No. DOE, DE-
FC02-06 ER41442.

REFERENCES

[1] T.L. Adam, K.M. Chandy, and J.R. Dickson. “A com-
parison of list scheduling for parallel processing systems,”
Commun.ACM 17, pp. 685-690, Dec. 1974.

[2] E. G. Coffman, and P.J. Denning, Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, N.J. 1974.

[3] G. Decanda, D. Hastonrun, M. Jampani, G. Kakulapati.,
etc. “Dynamo: Amazon’s Highly Available Key-value Store,”
Proceedings of SOSP’07. Oct, 2007.

[4] A. Duda, “The Effects of Checkpointing on Program Ex-
ecution Time,” Information Processing Letters, vol. 16, pp.
221-229, June 1983.

[5] S. Garg, Y. Huang, C. Kintala, K.S. Trivedi, “Minimizing
Completion Time of a Program by Checkpointing and Rejuve-
nation,” Proceedings of 1996 ACM SIGMETRICS Conference,
pp. 252-261, Philadelphia, PA, May 1996.

[6] L. Gong, X.-H. Sun, and E. Waston, “Performance Modeling
and Prediction of Non-Dedicated Network Computing,” IEEE
Trans. on Computers, Vol 51, No 9, pp. 1041-1055, Sep., 2002.

[7] D. Gross, C. M. Harris, Fundamentals of Queuing Theory,
3rd Edition, John Wiley Sons, 1998.

[8] R. Jain., The art of Computer Systems Performance Analysis,
John Wiley Sons, 1991,

[9] A. Kamthe and S.Y. Lee, “A Stochastic Approach to Esti-
mating Earliest Start Times of Nodes for Scheduling DAGs
on Heterogeneous Distributed Computing Systems,” Proceed-
ings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05)

[10] A. Kagan, L. A. Shepp, “Why the variance,” Statistics
Probability Letters. Vol 38, Issue 4, pp. 329-333, July 1998.

[11] Y.K. Kwok, I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” ACM Com-
puting Surveys (CSUR), Vol 41, Issue 4, pp. 406-471, Dec.
1999

[12] Los Alamos National Laboratory, Operational Data
to Support and Enable Computer Science Research,
http://institute.lanl.gov/data/lanldata.shtml

[13] Y.A.Li and J.K.Antonio, “Estimating the execution time
distribution for a task graph in a heterogeneous computing
system,” proceedings of the 6th Heterogeneous Computing
Workshop (HCW’97), p.172, April 1997.

[14] Lattice QCD Project, http://www.usqcd.org/
[15] C.D. Lu, “Scalable Diskless Checkpointing. for Large

Parallel Systems,” Ph.D dissertation, Department of Computer
Science. University of Illinois at Urbana-Champaign, 2005.

[16] L. Piccoli, X.-H. Sun, J. N. Simone, D. J. Holmgren, etc.
“The LQCD Workflow Experience: What Have We Learned,”
Posters of ACM/IEEE SuperComputing Conference. 2007
(SC’07), Nov. 2007.

[17] P. Ratn, F. Mueller, M. Schulz and B. de Supinski, “Preserv-
ing Time in Large-Scale Communication Traces,” Proceedings
of International Conference on Supercomputing, Jun 2008,
pages 46-55.

[18] B. Schroeder, G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” Proceedings of the
2006 International Conference on Dependable Systems and
Networks, Philadelphia, PA, June 2006.

[19] S. Shatz, J. Wang, and M. Goto, “Task Allocation for
Maximizing Reliability of Distributed Computer Systems,”
IEEE Trans. on Computers, Vol 41(9), 1992,pp. 1156 - 1168

[20] X.-H. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng, “To-
wards a Fault-aware Computing Environment,” Proceedings of
the High Availability and Performance Computing Workshop
(HAPCW), Mar. 2008.

[21] S. Srinivasan, and N.K. Jha, “Safety and Reliability Driven
Task Allocation in Distributed Systems,” IEEE Trans. Parallel
and Distributed Systems, Vol 10(3), 1999, pp. 238-251

[22] A.B. Tayyab and J.G.Kuhl, “Stochastic Performance Models
of Parallel Task Systems,” proceedings of 1994 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer
Systems, pp.284-285, May 1994.

[23] H. Topcuoglu, S. Hariri and M.Y Wu, “Performance Effec-
tive and low-Complexity Task Scheduling for Heterogeneous
Computing,” IEEE Trans. on Parallel and Distributed Systems,
Vol13, NO. 3, pp.260-274, March 2002.

[24] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Task scheduling
algorithms for heterogeneous processors,” Proceedings of the
Eighth Heterogeneous Computing Workshop, 1999(HCW’99),
pp. 3-14, April 1999.

[25] Top 500 Supercomputing Website. http://www.top500.org
[26] R. Wolski, “Dynamically forecasting network performance

using the network weather service,” Cluster Computing, Vol
1, pp. 119-132, 1998.

[27] M. Wu, X.-H. Sun and H. Jin, “Performance under Failure
of High-End Computing,” Proceedings of the ACM/IEEE
SuperComputing Conference. 2007 (SC’07), Nov. 2007.

[28] J. W. Young, “A First Order Approximation to the Optimal
Checkpoint Interval,” Comm. ACM, Vol 17, No 9, pp. 530-531,
1974.

[29] J. Yu and R. Buyya, “A Taxonomy of Scientific Workflow
Systems for Grid Computing,” Special Issue on Scientific
Workflows, ACM SIGMOD Record, Vol34, NO 3, ACM Press,
Sept. 2005.

243

