
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

VTEX() PIPS No:5093440 artty:ra (Kluwer BO v.2001/10/30)
C5093440.tex; 20/06/2002; 13:19; p. 1

Cluster Computing 5, 365–375, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Design and Development of a Scalable Distributed Debugger for
Cluster Computing

XINGFU WU
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA

QINGPING CHEN
Department of Computer Science, University of Science and Technology of China, Anhui, PR China

XIAN-HE SUN
Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract. Debugging is an essential part of parallel and distributed processing. However, developing parallel and distributed debugger is
difficult. This is especially true for cluster computing where heterogeneity presents. In this paper, we first give a survey of the current
debugging techniques and existing tools, and then present a client–server debugging model. Based on this model, we discuss the design and
development of a practical scalable distributed debugging system for cluster computing in detail, and give two case studies to show how
the distributed debugging system efficiently supports debugging message-passing programs such as various MPI and PVM programs. The
newly developed distributed debugger is based on the sequential debugger gdb and dbx. It has the capability of scaling to handle hundreds
of processes. Its interfaces are completely implemented in Java, and its graphical user interface is the same on all computing platforms. In
addition, it is portable, easy to learn and use.
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1. Introduction

Computer system design is dominated by the dramatic rate of
advance in small desktop systems in recent years. For large-
scale systems such as Massively Parallel Processors (MPPs),
due to their long engineering lag time and high cost, etc., they
do not fit in with the rapid development of processor chips.
Generally, before a MPP is completely developed, its proces-
sor chips are beginning to date. Therefore, at present, cluster
systems are poised to become a primary computing infrastruc-
ture from low end interactive computing to demanding serial
and parallel applications.

Software environments for cluster systems often play an
important role in efficiently utilizing the advanced cluster ar-
chitecture. Several message passing-based software systems
to support cluster computing, such as the popular MPI [7]
and PVM [6], have been developed in recent years. These
systems are mainly based on standardized Unix systems; use
standard sequential language C or Fortran to construct the
portable communication primitive library based on standard
communication protocols (TCP/IP) with high efficiency for
expressing parallel algorithms wisely and validly. However,
these systems require users explicitly assign special data to
some processes, the deadlock, communication mismatch or-
ders, idle waiting, access conflict, and resource contest often
exist in the users’ parallel programs. Thus, as an essential part
of the development process for parallel programs, a portable,
scalable, distributed tool for correctness debugging is in de-
mand.

This paper presents a survey of current debugging tech-
niques and existing tools, and the design and implementa-
tion of a portable, scalable, practical distributed debugger
CDB (dawning Cluster DeBugger) for cluster computing in
detail. Section 2 discusses the current debugging techniques
and tools. Section 3 mainly describes the design model,
method and framework of the distributed debugger CDB from
the three aspects: portability, scalability and practicability.
Sections 4 and 5 discuss how the CDB efficiently supports
message-passing programs such as MPI and PVM programs,
and shows several views of the debugger implemented in Java.
Section 6 concludes this paper.

2. Current debugging techniques and tools

In general, parallel and distributed program debugging can be
divided into two categories: correctness debugging and per-
formance debugging. Parallel programs are much more dif-
ficult to develop, debug, maintain, and understand than their
sequential counterparts. One reason is the difficulty in es-
tablishing correctness – which must take into account tempo-
ral conditions: liveness, deadlock-freeness, process synchro-
nization and communication, this is often called correctness
debugging. Another reason is the diversity of parallel archi-
tectures and the need to produce a highly efficient program
fine-tuned to a given specific target architecture. The im-
pact of task granularity on a parallel algorithm, the proper-
ties of the memory hierarchy, and the intricacies involved in
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the exploitation of multilevel parallelism, should all be care-
fully analyzed and used to devise a transformation strategy
for the program. The adaptation of an initially inefficient al-
gorithm to a specific hardware is often called performance
debugging [9,23], a term that suggests that the correctness
criteria for a parallel algorithm should be pre-assumed and
include requirements for its performance on a given architec-
ture. Therefore, correctness debugging is an essential part of
the development process for parallel programs, and initial re-
search efforts are naturally focused more heavily on correct-
ness debugging.

A programmer debugging parallel or sequential program
always wants to know which functions and/or program blocks
the program enters and what the values of variables are.
A simply way to get the information is to insert “print” state-
ments in the program that report what section of the pro-
gram is executing and/or output the values of the specific
variables. This approach requires no skills or tools beyond
what the programmer is using to write the program, but the
programmer must decide in advance which variables and/or
execution statements to print and where to put the print state-
ments. Inserting such a print statement requires re-editing,
re-compiling, and re-executing the program. In addition, if
the program outputs a great deal of data, finding the informa-
tion of interest can be tedious.

There are many sequential debuggers to be used on se-
quential computers for many years. Although some sequen-
tial debuggers such as gdb [19] and dbx [20] are supported
on multiple platforms, there are no published standards of se-
mantics for debuggers. Therefore, debugger implementations
are subject to considerable variation in both the kinds of com-
mands that are available and what specific actions are per-
formed in conjunction with any particular command. In the
serial programming community, this situation has not been so
bad. Serial programmers may continue working on a system
for extended periods of time, get used to a favorite debug-
ger and not have to worry about changing tools frequently.
Within the parallel programming community, a lack of stan-
dards has resulted in a quite different scenario because of
rapidly changing hardware and software environments. Few
debuggers are supported across more than one platform, and
the parallel debuggers are often criticized for poor usability.
From the users’ viewpoint, it is not effective to have to learn
a new debugger for every new computer. To date, there is
no parallel debugger that behaves consistently across various
different architectures and operating systems, nor one that is
considered easy to learn and use. Thus, for the users, easy-to-
learn-and-use and cross-platform compatibility have become
key considerations in user decisions about whether to adopt
new parallel environments and tools. From the parallel com-
puter manufactures’ viewpoint, there has not been any real
economic advantage to expending efforts so that debuggers
will be consistent with those on competitors’ machines. As
a result, each new machine presents one debugger that has
features incompatible with earlier version, or a totally new
debugger. This lack of portability and standard makes pro-
gramming on cluster systems a hard task, especially under a

heterogeneous environment. The High Performance Debug-
ging (HPD) standard [5,10] is expected to make a major con-
tribution in solving these problems.

The High Performance Debugging Forum (HPDF) is a col-
laborative effort involving both researchers and commercial
debugger developers in the area of parallel debugging, as well
as representatives of High Performance Computing (HPC)
user organizations. It was established in March 1997, and is
sponsored by the Parallel Tools Consortium. Its overall goal
is to define standards relevant to debugging tools for HPC sys-
tems. The HPD standard attempts to be both architecture- and
operating system-neutral, in the sense that it should be possi-
ble to build a standard-conforming debugger on a wide variety
of different computing systems. The HPD Forum established
three general goals concerning parallel and distributed debug-
gers:

• parallel and distributed debuggers should satisfy basic de-
bugging requirements of high performance computing ap-
plication developers;

• parallel and distributed debuggers should be usable – in the
sense of easy to learn and easy to use – by these application
developers;

• parallel and distributed debuggers should be consistent
across any platforms, so that users of one standard-
conforming debugger can switch to another with little or
no effort.

Since the HPD standard attempts to address the needs of
HPC application developers and to be both hardware- and
operating-system-neutral, it assumes that programs need to
be system-independent. Explicit parallelism is assumed as
the basic programming model. The standard applies to both
distributed-memory programming (like multiple processes
cooperating via message-passing libraries such as MPI or
PVM) and shared-memory programming (like multiple
threads of execution in a single address space such as HPF).
The standard may also be useful for implicit parallel pro-
grams, but the issues of how to map from runtime information
or intermediate-level information to original user source code
are not addresses in the standard. The HPD standard does
not address interpreted languages that typically are packaged
with a built-in debugger such as Java. It only defines a stan-
dard command-based (i.e., non-graphical) interface for paral-
lel debuggers, and no future versions would deal with such
issues as graphical interfaces and support for debugging opti-
mized code.

Effective user debugging of parallel and distributed code
or sequential code has been a topic of theoretical and practi-
cal interest in software development and parallel and distrib-
uted communities for several decades, yet the state of the art is
still highly uneven today. Pancake and Netzer [17] collected a
list of references including technical reports, journal and con-
ference papers, and Ph.D. dissertations dealing with parallel
debuggers published before the middle of 1993. Because of
the nature of rapidly changing high performance computing
hardware and software environments, most of them are out of
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date today. Therefore, we present a brief survey of the current
literature and practice on parallel and distributed debuggers
as follows.

TotalView [4] is a commercial parallel and distributed
debugger, and is being actively developed currently. It is
based on X window systems, and has been ported to mul-
tiple platforms, languages and parallel programming models
with great effort. It also has the versions for message-passing
(such as MPI, PVM) or shared-memory (such as HPF). It is
only available on homogenous parallel computer systems. To-
talView’s user interface caters primarily to the expert user,
and source display windows are tied to individual processors.

P2D2 (Portable Parallel/Distributed Debugger) [2,11] and
Mantis [15] are both based on the sequential debugger gdb,
and are implemented by Motif. Mantis only supports debug-
ging Split-C programs. P2D2 adopts a client-server approach
to provide a uniform interface for various platforms, commu-
nication libraries, and programming models. Its prototype can
support debugging PVM and MPI programs. By specifying
protocols for interaction between a user interface client and a
debugger server, P2D2 tries to separate the development ef-
forts for the two parts to achieve portability.

PDBX and XPDBX [12] only run under IBM POE envi-
ronment, and are based on only the IBM AIX dbx debugger.
Xmdb (Message based DeBugger) [3] is a simulated parallel
debugger supporting PVM programs on a single processor. It
requires that a PVM program must be compiled by linking
its special library before the program is debugged, so that the
PVM program can be instrumented. Thus, it affects the exe-
cution behavior of the PVM program to some degree.

Some distributed debuggers have a front-end to act as a
unified user interface and to serve as an agent for scatter-
ing or gathering debugging operations across the collection
of processes [8,16]. But such a front-end is tedious to im-
plement for heterogeneous computation because it has to ac-
count for subtle differences in the input and output formats of
the debuggers.

Node Prism [18,21] extends the data parallel debugger
Prism for CM-5 machine to support the message-passing par-
adigm. Prism addresses scalability by taking advantage of the
parallel nature of the debugger itself. It is only available on
the CM-5.

X windows Parallel DeBugger (XPDB) [24] can be used
to monitor and control the execution of SPPL (Stuttgart Par-
allel Processing Library which is a message-passing library)
programs. It works on the message exchange level and treats
the parallel program as objects, which are exchanging mes-
sages. To debug processes internally XPDB can call sequen-
tial source-level debuggers. It is only available for SPPL pro-
grams.

IBM distributed debugger [13] is a client/server applica-
tion that enables to detect and diagnose errors in programs.
This client/server design makes it possible to debug programs
running on systems accessible through a network connection.
The debugger server (also known as a debug engine) runs on
the same system where the program debugged runs. This
system can be a workstation or a system accessible through

a network. If a program running on the workstation is de-
bugged, local debugging is performed. If a program running
on a system accessible through a network connection is de-
bugged, remote debugging is performed. The Distributed De-
bugger client is a graphical user interface where commands
used by the debug engine can be issued to control the execu-
tion of a program. The debugger is only available for C/C++,
COBOL, Fortran, High Performance Compiled Java, inter-
preted Java, and PL/I.

For optimized code debugging, Brender, Nelson and Ar-
senault [1] presented a good survey of the literature and cur-
rent practice that leads to the identification of three aspects
of debugging optimized code that seem to be critical as well
as tractable without extraordinary efforts. They are: (1) split
lifetime support for variables whose allocation varies within
a program combined with definition point reporting for cur-
rency determination; (2) stepping and setting breakpoints
based on a semantic event characterization of program be-
havior; (3) treatment of inlined routine calls in a manner that
makes inlining largely transparent.

For designing an High Performance Fortran (HPF) debug-
ger, LaFrance-Linden [14] presented several of the challenges
involved in designing an HPF debugger and how an experi-
mental debugging technology successfully addresses many of
them.

In this paper, we focus on discussing distributed debuggers
for cluster computing, design and develop a Java-based scal-
able distributed debugger CDB to meet three general goals
concerning parallel and distributed debuggers.

3. Design framework and models of the distributed
debugger CDB

In general, cluster systems have good scalability, and each
node is a complete computer system. Users are familiar with
sequential debuggers of such a complete computer, such as
dbx, gdb, which is used in all major Unix systems, such as
IBM’s AIX, SUN’s SUNOS, Solaris, HP’s HPUX, Digital
Unix, SCO Unix, FreeBSD, LINUX, and so forth. There-
fore, it is indeed worthy of developing a portable, scalable,
and user-friendly distributed debugger based on the general
sequential debuggers on cluster systems. The distributed de-
bugger CDB is to support any Unix network computing en-
vironments, such as Networks of Workstations, Networks of
Computers, etc. On the Dawning2000 cluster system [22], we
designed and developed the distributed debugger CDB based
on sequential debuggers, and used Java to implement other
debugging functions and interfaces. Therefore, the distrib-
uted debugger CDB can be executed on any Unix platforms
with Java.

A sequential debugger is a tool that gives a user visibility
into an executing program and control over the target pro-
gram. A parallel and distributed debugger performs the same
function for a parallel and distributed program. In parallel
and distributed computing, an executing program consists of
one or more processes, each associated with a particular ex-
ecutable. Each process occupies a memory address space,
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and has one or more threads, each with its own register set
and stack. Therefore, the target program is the complete set
of threads and/or communicating processes that make up a
given execution of the user’s application over the full course
of program execution.

To initiate debugging sessions, a debugger can be invoked
from the command line and the target program executed
within the debugger environment. For a parallel and distrib-
uted target program, which consists of many processes, the
debugger may need to interact with the run-time system that
is responsible for managing those processes (e.g., message-
passing systems such as MPI or PVM). Assume that debug-
ging information is only generated when a target executable is
compiled with special options “-g” in effect. (Note that when
a program is compiled with “-g -O”, the optimizer rearranges
the source code. Do not be surprised when the execution path
does not exactly match the source code.) In this case, the de-
bugger not only controls the executable(s) that constitute the
target program, reflected in memory and register values of the
execution program, but also utilizes debugging information
associated with the source code of the executables.

To control a distributed process, users want to be able to
set breakpoints, and start and stop the distributed programs.
A breakpoint specifies that execution should stop whenever
it reaches a given location relative to the source code. In the
CDB, stopping a process means any processes that have not
triggered a breakpoint will be unaffected, but all threads in
each process that have done so will be stopped together. Start-
ing a process is similar to the stopping the process.

The distributed debugger CDB is designed to receive user
input on what actions should be taken to control the target pro-
gram’s execution or to reveal information about it. It provides
a portable graphical user interface easy to learn and use. The
input is via the graphical interface. In response to user input,
a debugger typically issues a variety of debugging messages.
Some of them confirm that an operation completed success-
fully or indicate that a problem occurred. Others provide the

detailed information about what the debugger/target program
is doing. The CDB displays the debugging information in the
corresponding debugging window.

The CDB implements distributed debugging by mainly ex-
tending the functions of the sequential debuggers. Its advan-
tages are:

(1) It uses many sequential debugging commands that users
know, and the users can use the CDB without taking much
time to learn and use it.

(2) It not only efficiently uses current existing debugging
techniques, but also simplifies the design and implemen-
tation of the distributed debugger.

The distributed debugger CDB is divided into four levels
from top to bottom as follows, its architecture is shown in
figure 1.

Generally, a user can only see the CDB’s GUI (Graphical
User Interface). The debugging command that the user inputs
can be sent to the sequential debugger through Socket Chan-
nel. Master Server is the Socket’s server; Slave Server is the
Socket’s client. The results which the sequential debugger
executes a debugging command are returned through Socket
Channel, and are displayed in the GUI. The main dataflow
graph of the CDB is shown in figure 2.

As shown in figures 1 and 2, the Slave Server is an imple-
mentation of Java objects that translates the request on a Mas-
ter Server object into sequential debugger’s commands, sends
the commands to the appropriate instance of the sequential
debugger, parses the sequential debugger’s reply when it ar-
rives, then communicates the result to the code that requested
the service. Notice that, when a target program is executing
under the control of a sequential debugger, both the debugger
and the user’s application may be reading or writing output to
the same terminal.

The CDB’s design is kept simple and scalable. The CDB
has the following main features:

Figure 1. Architecture of the CDB. L1: graphical user interface level, L2: network communication level, L3: sequential debugger level, and L4: parallel and
distributed program level.
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3.1. Portability

Basically, a debugger’s job is to provide mapping services be-
tween the user’s program at the source level and the machine
version at the object level. In performing this procedure, a de-
bugger replies on its execution environment for many ser-
vices [11]. These services may depend on the target archi-
tecture for things such as trap instructions used in breakpoint
implementation, the operating system for process control and
access to the address space, and the compiler for symbol table
information that enables mapping between source and object.
The CDB isolates them from the user interface through the
client–server debugging model shown in figure 1.

In addition, the CDB was implemented by Java, and could
support debugging various PVM and MPI programs. Because
Java language is independent on platforms, and popular mes-
sage passing systems: PVM and MPI have good portability,
therefore, the distributed debugger CDB is portable, and can
support debugging parallel programs in heterogeneous net-
work computing environments.

3.2. Scalability

In the CDB, the concept of process group is proposed. A user
can set several logical processes into a process group. If the

Figure 2. Main dataflow graph of the CDB.

user inputs a debugging command for the group, the CDB
can send the command to all processes in the group simulta-
neously. It is very convenient for the users to use the function
to debug their programs. The CDB may efficiently support
debugging PVM and MPI programs with various sizes, espe-
cially, using the group management function. It has the capa-
bility of controlling the execution of hundreds of processes.
When the debugged parallel program creates many parallel
sub-processes, the CDB can display their source codes in the
debugging windows in parallel, and any debugging windows
may be activated or closed according to the users’ require-
ments.

Here is the logical breakpoint determination of the CDB
in a process group shown in figure 3. Setting a breakpoint
in a logical process group sets a breakpoint in each phys-
ical process in the group and collects the physical rep-
resentations into a logical breakpoint. As shown in fig-
ure 3, G0, G1, . . . , Gn are logical process groups defined by
the user. “•” means “stopped at some breakpoint”. P0Gm,
P1Gm, . . . , PqGm are all physical processes of Group Gm

(q = i, j, . . . , k; m = 0, 1, . . . , n). Setting a breakpoint in a
logical process group Gm means setting the same breakpoint
in all physical processes P0Gm, P1Gm, . . . , PqGm.

3.3. Practicability

Our goal is to keep the CDB simple and scalable. The CDB
has a user-friendly graphical user interface, such as simple op-
eration graphical interfaces, simple window contents, simple
and understandable command windows, short and clear hints,
etc. It provides the same graphical user interface on all plat-
forms. The users can choose to use their favorite sequential
debugger such as dbx or gdb. The CDB can greatly reduce
the effect of the execution behavior of PVM or MPI programs
using the debugger to debug them. Some views of the CDB’s
GUI will be shown in the following sections.

4. Implementation of the distributed debugger CDB

In general, the overall experience of using a tool is often as
important as the tool’s functionality. For this reason, we step

Figure 3. Logical breakpoint determination of the CDB.
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Figure 4. Initial window.

Figure 5. Main window of the CDB.

through the process of debugging a parallel and distributed
program using the CDB in this section. At the same time,
we explain the tool’s functionality and how it fits into parallel
debugging objectives. Because Java language has good porta-
bility, and can support multiprocess control, multithread con-
trol, socket communication, Input/Output redirection, etc., we
use it to implement overall graphical interfaces and low-level
debugging interfaces of the CDB, so that the CDB has good
portability. In the following subsections, we shall discuss the
implementation of the CDB in detail.

The CDB executes a monitoring program Master Server
in the local machine, and the program is in charge of re-
ceiving the connection requests from other programs. When
receiving a connection request, the Master Server shall cre-
ate a new thread: Master Server Thread, and makes the true
client/server connection with that program which sent the re-
quest (shown in figure 1).

The debugging process of the CDB mainly includes envi-
ronment parameter configuration, choosing a target program,
creation of process group, starting the debugging, finishing
the debugging, and exiting the CDB.

4.1. Parameter configuration

The users’ system environments are often very different, such
as their home directories, the sequential debuggers which they
would like to use, and so on. Therefore, before the users use
the CDB, they need to configure various parameters according
to their environments. These parameters are:

(1) the number of processes;

(2) the directory path of message-passing programs such as
PVM or MPI source codes;

(3) the whole directory of a sequential debugger, such as
/usr/bin/dbx or /usr/bin/gdb;

(4) the setup of debugging commands of the chosen sequen-
tial debugger.

When the CDB is invoked, an initial window is first ap-
peared. This window is shown in figure 4. The user must

Figure 6. Startup debugging window.

Figure 7. Process group window.

input the maximum number of debugging processes, and the
number should not be less than that of parallel processes. Al-
though the maximum number of debugging processes in the
CDB is not limited, it is often set less than 256 because of
some limitations such as operating systems and screen size,
etc.

After this step, the main window of the CDB occurs as
shown in figure 5. It has the following components:

• Process buttons
The number of process buttons equals the maximum num-
ber of debugging processes that have been given. The but-
ton number stands for the logical process number. For ex-
ample, process button P0, P1, . . . , Pn stands for the logical
process 0, 1, . . . , n, respectively. Each process button will
be mapped to a process of the parallel program. These
buttons are not clickable right now.

• Menu bar
Setup: Configuring some parameters such as sequential
debugger, debugging commands, the path of source code,
etc.;
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Figure 8. Debugging window.

Start: Choosing a target program and starting the debug-
ging process;
GroupManager: Creating some process groups;
Clear: Clearing all windows and processes of the last de-
bugging;
Return: Exiting the debugging environment.

After debugging a parallel program is finished, the main
window of the CDB should not be exited. The window can be
reusable.

When the first configuration is finished, it will be used as a
default configuration. When the distributed debugger is exe-
cuted again, these parameters need not to be configured again
unless reconfiguration is needed.

4.2. Choosing a target program

The CDB can support debugging C or Fortran PVM and MPI
programs. It provides a user-friendly interface to choose the
types of debugging programs (such as PVM, MPI or Unix)
and the types of programming languages (such as C, Fortran)
as shown in figure 6. Here, Unix means a general sequential
program that can be run on Unix platforms, i.e., the CDB also
supports debugging sequential C or Fortran program. The
number of processes shown in figure 6 is only valid for ex-
ecuting MPI target program after choosing the program type
as MPI + C/Fortran.

4.3. Creation of a process group

The CDB provides the function of process group manage-
ment. If some processes are set as a group, for example, as
shown in figure 7, the group1 includes the logical process 0, 1,
and 2. The group2 includes the logical process 1 and 2. No-
tice that, logical process number 0, 1, and 2 are mapped into

Figure 9. Replay dialog window.

Process Button P0, P1, and P2 shown in figure 5, respectively.
Then it is valid for all processes of group1 to send debugging
commands to the group1. Therefore, using a debugging com-
mand can control all processes of the same group. The CDB
can use the global condition control to efficiently monitor the
real-time processes of a program execution.

4.4. Starting the debugging

The distributed debugger CDB can support the source-level
multiprocess debugging. Its debugging window is divided
into four parts from top to bottom: source code path, debug-
ging command input, source code browser, and debugging in-
formation output as shown in figure 8. The user can input
or modify the path of his source code, and type a debugging
commands or click a debugging command button. The CDB
provides the debugging window of each process (but it is not
necessary) and sends some processes a debugging command
to let them to do it, and displays the execution results of these
processes on the debugging windows.

The CDB provides a replay function to treat the nondeter-
mination of parallel execution process based on event records
as shown in figure 3 and 9 in order to replay the whole debug-
ging procedure for finding some hidden errors. During the
record phase the relevant ordering information about occur-
ring events in a program’s execution is stored into a tracefile.
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These traces are used to perform trace-driven replay of the
program under the constraint of an equivalent execution.

The Process Group Menu shown in figure 8 includes Cur-
rentNode (default option), All Processes, and some user-
defined groups. If the option is CurrentNode, all debugging
operations are only valid for the current process. If the option
is All Processes, then all debugging operations are valid for all
processes. If the option is a group named g1 by a user, all de-
bugging operations are valid for all processes of the group g1.

4.5. Finishing the debugging

The process of debugging a program is a process of contin-
ually finding the errors of the program and modifying them.
When the debugging is finished, the CDB automatically ter-
minates all debugging processes (local and remote processes),
and clear various debugging “garbage”, so that none can af-
fect the next debugging. If this debugging fails, the CDB
provides a function to automatically clear various debugging
“garbages”. For example, the “Clear” button shown in fig-
ure 5 is for this function.

4.6. Exiting the CDB

This means exiting the whole CDB debugging environment.
For example, the “Return” button shown in figure 5 is for this
function.

5. Case studies: debugging message-passing programs

The CDB is a distributed debugger based on the sequential de-
bugger dbx or gdb for cluster systems. It supports debugging
not only SPMD or MPMD (C or Fortran) PVM programs, but
also C or Fortran MPI programs. In the following subsections,
we shall present how the CDB efficiently supports debugging
MPI and PVM programs.

5.1. Support for debugging MPI programs

In this subsection, we describe how the distributed debugger
CDB supports debugging MPI programs.

5.1.1. Modifying MPI source codes
Do not need any modification of the MPI source code.

5.1.2. Compiling MPI source codes
In order to support source-level program debugging, when
MPI programs are compiled, only -g option is used and the
MPICH standard subroutine libraries are linked. No other
special library is needed.

5.1.3. Debugging
When users start to use the CDB to debug a MPI program,
they need to input the debugging program name in the main
interface of the CDB, next the CDB can execute a Slave
Server program in the local machine, and the debugging pro-
gram name is regarded as a parameter of the program. Then

the Slave Server program requests to make a connection with
the local monitoring program Master Server. The monitor-
ing program can create a new thread Master Server Thread to
make the true client/server connection. After the connection
is made, the Slave Server runs the following command:

mpirun −debugger −np procnum program −p4norem,

where “debugger” is a sequential debugger the users chose,
such as dbx or gdb; “procnum” is the number of processes;
“program” is the executable; the point of this option
“−p4norem” is to enable the user to start the remote processes
under his favorite debugger. It sends its output results to the
Master Server Thread. The thread shall start a Slave Server on
the specified node. The Slave Server requests to make a con-
nection with its local monitoring program, and runs the exe-
cutable in a sequential debugger. From the connection chan-
nel, the local Master Server Thread can get the debugging
program name from a node and the node’s IP address, regard-
ing them as the titles of the respective debugging windows,
and displays the respective source codes in their debugging
windows. It can also get the source code of the executable
from the node which the program are being executed on, then
return it to the local node and displays it in its debugging win-
dow.

At this time, the user may use the CDB’s user interface
to input some debugging commands, such as setting break-
points, running step by step, etc. These commands are sent to
the sequential debugger through the connection channel be-
tween the local Master Server Thread and Slave Server. After
the sequential debugger executes the user’s requests, the out-
put results are returned through the connection channel and
are displayed in the debugging information columns.

If the users want to control many processes at the same
time, they need to set and choose the suitable process group.
If so, the debugging commands can be sent to many sequential
debuggers through many connection channels.

5.1.4. An example
Figure 10 shows a C language MPI program. The source code
is “systest.c”, its executable is “systest”. The “systest” pro-
gram is loaded to the nodes: compass, paper, print, respec-
tively. Thus, the three buttons P0, P1, and P2 are clickable,
the rest are not clickable. In figure 11, only the button P1
and P2 are clicked, therefore, only the debugging windows
Debug_window1 and Debug_window2 are shown.

5.2. Support for debugging PVM programs

In this subsection, we depict how the distributed debugger
CDB supports debugging PVM programs.

5.2.1. Modifying the default debugger of PVM
In PVM system, the default sequential debugger is assigned
in the shell file “debugger” of the directory $PVM_ROOT/lib.
In the CDB, the shell file is modified so that when creat-
ing a new process, in fact, it executes the Slave Server pro-
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Figure 10. The CDB views for debugging MPI programs.

Figure 11. The CDB views for debugging PVM programs.

gram. This program is in charge of communication between
the local process and remote process(es), and is the client of
the communication channel. The Slave Server program can
get the sequential debugger chosen by the users, and starts
a new process under the control of the sequential debug-
ger.

5.2.2. Modifying PVM source codes
In PVM programs, the users only specify PvmTaskDebug
in pvm_spawn(), and do not need other modification of the

source code. If PvmTaskDebug is specified in pvm_spawn(),
PVM runs $PVM_ROOT/lib/debugger, which opens a debug-
ging window in which it runs the task in a sequential debug-
ger.

5.2.3. Compiling PVM source codes
In order to support source-level program debugging, when
PVM programs are compiled, only -g option is used and the
PVM standard subroutine libraries are linked. No other spe-
cial library is needed.
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5.2.4. Debugging
When users start to use the CDB to debug a PVM program,
they need to input the debugging program name in the main
interface of the CDB, then the CDB can execute a Slave
Server program in the local machine, and the debugging pro-
gram name is regarded as a parameter of the program. Then,
the Slave Server program requests to make a connection with
the local monitoring program Master Server. The monitor-
ing program can create a new thread Master Server Thread
to make the true client/server connection. After the con-
nection is made, the Slave Server runs the executable in a
sequential debugger. From the connection channel, the lo-
cal Master Server Thread can get the debugging program
name from a node and the node’s IP address, regarding them
as the titles of the respective debugging windows, and dis-
plays the respective source codes in their debugging win-
dows. It can also get the source code of an executable from
the node which the program are being executed on, then re-
turns it to the local node and displays it in its debugging win-
dow.

At this time, the user may use the CDB’s user interface
to input some debugging commands, such as setting break-
points, running step by step, etc. These commands are sent to
the sequential debugger through the connection channel be-
tween the local Master Server Thread and Slave Server. After
the sequential debugger executes the user’s requests, the out-
put results are returned through the connection channel and
are displayed in the debugging information columns.

When the PVM program runs the subroutine pvm_spawn(),
PVM may run a Slave Server program on any node of the
cluster system. Similarly, these Slave Server programs can
also request to make connections with their local monitor-
ing programs, and each local monitoring program shall cre-
ate a new thread Master Server Thread to make the true
client/server connection. If the users want to control many
processes at the same time, they need to set and choose the
suitable process group. If so, the debugging commands can
be sent to many sequential debuggers through many connec-
tion channels.

5.2.5. An example
Figure 11 shows a Master-Slave Fortran PVM program. Its
master program is “master1.f”, and the executable is “fmas-
ter1”. Its slave program is “slave1.f”, and the executable
is “fslave1”. The “fmaster1” is executed on the master
node 10.10.10.101, and the “fslave1” is executed on the
slave nodes: print, compass, and paper, respectively. In fig-
ure 10, these buttons of the CDB’s main interface link the
debugging windows, where P0 is the debugging window De-
bug_Window0, P1 is the Debug_Window1, P2 is the De-
bug_Window2, and P3 is the Debug_Window3. The number
of these buttons should not be less than that of real processes.
The button P4 and P5 are not used, thus they are marked by
red color, and are not clickable. The master process P0 is
marked by green color. The slave processes P1, P2, P3 are
marked by yellow color.

6. Conclusions

This paper discussed the current debugging techniques and
existing tools, and presented the design and implementation
of a Java-based scalable distributed debugger CDB for cluster
computing, which supports debugging message-passing pro-
grams such as PVM and MPI programs. We developed the
distributed debugger by extending the functions of current ex-
isting sequential debuggers, and used Java to implement the
overall interfaces of the CDB so that our distributed debugger
achieved the three general goals identified by High Perfor-
mance Debugging standard concerning parallel and distrib-
uted debuggers. It is an attempt to combine Java with se-
quential debuggers to reach portability and easy to use and
learn. Many works will be further done, such as the support
for debugging HPF and OpenMP programs, and the support
for Microsoft NT cluster system.
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