
APC: A Novel Memory Metric and Measurement
Methodology for Modern Memory Systems

Dawei Wang, Member, IEEE and Xian-He Sun, Fellow, IEEE

Abstract—Due to the infamous “memorywall” problemand a drastic increase in the number of data intensive applications,memory rather
than processors has become the leading performance bottleneck in modern computing systems. Evaluating and understanding memory
system performance is increasingly becoming the core of high-end computing. Conventional memory metrics, such as miss ratio, AMAT,
etc., are designed to measure a given memory performance parameter, and do not reflect the overall performance or complexity of a
modern memory system. On the other hand, widely used system-performance metrics, such as IPC, are designed to measure CPU
performance, and do not directly reflect memory performance. In this paper, we propose a novel memory metric called Access Per Cycle
(APC), which is the number of data accesses per cycle, to measure the overall memory performance with respect to the complexity of
modernmemory systems. A unique contribution of APC is its separation ofmemory evaluation fromCPUevaluation; therefore, it provides
aquantitativemeasurement of the “data-intensiveness”of anapplication.Simulation results show that thememoryperformancemeasured
by APC captures the concurrency complexity of modern memory systems, while other metrics cannot. APC is simple, effective, and is
significantly more appropriate than existing memory metrics in evaluating modern memory systems.

Index Terms—Memory performance measurement, memory metric, measurement methodology

1 INTRODUCTION

THE rapid advances of semiconductor technology have
driven large increases in processor performance over the

past thirty years. However, memory performance has not
experienced such dramatic of gains as processors; this leaves
memory performance lagging far behind CPU performance.
This growing performance gap between processor and mem-
ory is referred to as the “memory wall” [1], [2]. The “memory
wall” problem is experienced not only in main memory but
also in on-die caches. For example, in the Intel Nehalem
architecture CPU, each L1 data cache has a four-cycle hit
latency, and each L2 cache has a 10-cycle hit latency [3].
Additionally, the IBM Power6 has a four-cycle L1 cache hit
latency and an L2 cache hit latency of 24 cycles [4]. The large
performance gap between processor and memory hierarchy
makes memory-access the dominant performance factor in
high-end computing. Recent research tries to improve the
performance of memory systems. However, understanding
the performance of modern hierarchical memory systems
remains elusive for many researchers and practitioners.

While memory (“memory” is referred to as synonym for
the entire memory hierarchy for the remainder of this paper)
is the bottleneck for performance, how to measure and
evaluate memory systems has become an important issue
facing the high performance computing community. The
conventionally used performance metrics, such as IPC

(Instruction Per Cycle) and Flops (Floating point operations
per second), are designed from a computing-centric point-of-
view. As such, they are comprehensive but affected by
instruction sets, CPUmicro-architecture, memory hierarchy,
and compiler technologies, and cannot be applied directly to
measure the performance of a memory system. On the other
hand, existing memory performance metrics, such as miss
rate, bandwidth, and average memory access time (AMAT),
are designed tomeasure aparticular component of amemory
system or the performance of a single access of the memory
system. They are useful in optimization and evaluation of a
given component, but cannot accurately characterize the
performance of the memory system as whole. In general,
component improvement does not necessarily lead to an
improvement in overall performance. For instance, when miss
rate decreases, IPC may not increase, and sometimes IPC will
decrease. (See Section 4.2 for details.) When non-blocking
caches are used, the AMAT metric shows a negative effect on
IPC. (See Section 4.2.3 for details.) Since there is no known
correlation study between existing memory metrics and the
final system performance, a frequent and common question of
practitioners is whether a component improvement actually
leads to a system improvement. Therefore, an appropriate
metric to measure memory systems is critically needed to
analyze system design and performance enhancements.

There are several reasons that traditional memory perfor-
mancemetrics cannot characterize the overall performance of
a memory system. First, modern CPUs exploit several ILP
(Instruction Level Parallelism) technologies to overlap ALU
instruction executions and memory accesses. Out-of-order
execution overlaps CPU execution time and memory access
delay, allowing an application to hide the miss penalty of an
L1 data cache miss that hits the L2 cache. Multithreading
technology, such as SMT [5] or fine-grained multithreading
[6], can tolerant even longer misses throughmainmemory by

• D. Wang is with the Department of Computer Sciences, Illinois Institute
Technology, Chicago, IL 60616. E-mail: david.albert.wang@gmail.com.

• X. Sun is with the Department of Computer Sciences, Illinois Institute
Technology, Chicago, IL 60616. E-mail: sun@iit.edu.

Manuscript received 07Dec. 2011; revised 21 Dec. 2012; accepted 04 Feb. 2013.
Date of publication 24 Feb. 2013; date of current version 27 June 2014.
Recommended for acceptance by E. Miller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.38

1626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

executing another thread. Speculation mechanisms are used
to overcome control dependencies, which helps to avoid CPU
stalls. Speculation can also activate memory access instruc-
tions that are not committed to the CPU registers due to miss
predictions. Incorrect speculations can aggravate the burden
of data access, and the correctness of speculations is hard to
predict. Even worse, a wrong prediction does not necessarily
mean that the prefetch is useless. If a wrongly predicted data
load accesses the same cache block as the next data load, then
the incorrect speculation can be seen as an effective data
prefetch, and it provides a net benefit to memory perfor-
mance. All of these problems make component-based mea-
surement unsuitable for the measurement of the overall
performance of a memory system.

Additionally,modernmemory systemsuse a largenumber
of advanced caching technologies to decrease cache latency.
Some widely used cache optimization methods, such as non-
blocking cache [7], pipelined cache [8], multibanked cache [9],
and data prefetching [10], allow cache accesses generated by
CPU or prefetcher to overlap with each other. These technol-
ogies make the relation between memory access and proces-
sor performance even more complicated, since the processor
could continue executing instructions or accessing memory
even under multiple cache misses. Even more complicated,
the modern commercial state-of-the-art multi-core proces-
sors, such as IBM POWER7 [11], Intel Nehalem [3], or even
embedded ARM processors Cortex-A15 [12], adopt one or
two levels of private caches and one shared last level cache
(SLLC) on chip. Threads executed on these cores contend or
share their SLLC. This blurs the effects of whole memory
system performance into final processor performance. These
advancedmemory technologies and private/sharedmemory
hierarchal structures make the behavior of memory accesses
much the same as instructions dispatch because they both
contain methods for executing tens or even hundreds of
operations at once. Evaluatingmemory systems from a single
memory access or on a single component does not match the
complexity of modern memory systems. As with the mea-
surement of instruction executions, memory system evalua-
tions should consider all the underlying parallelism and
optimizations to measure the overall performance of a mem-
ory system.

Based on the above observations, a new metric for overall
memory system performance, which is separate from CPU
performance and in the meantime correlates with CPU per-
formance, is needed. In the other words, it should correlate
with IPC but measure data access only. The notion of corre-
lating with IPC is important due to the fact that memory
performance is a determining factor of the overall perfor-
mance of modern computing systems. The requirement of
separating computing from data access is to provide a better
understanding of memory systems, a better understanding of
the capacity of a memory system to handle the so-call data-
intensive applications, and a better understanding of the
match between computing power and memory system per-
formance. To reach this goal, the Access Per Cycle (APC)
metric is proposed following the design philosophy of In-
structions Per Cycle (IPC).

In this study, the definition of APC is introduced, methods
of determining the number of accesses and access cycles are
explored, methods of determining measurements at different

memory hierarchies of single-core or multi-core systems are
discussed, and a series of simulations are conducted to con-
firm that APC is significantly more appropriate than the
existingmemory performancemetrics. The statistical variable
correlation coefficient is used to demonstrate that for single-
core L1 APC has a 0.97 correlation coefficient value with the
overall computing performance in terms of IPC, and the value
formulti-core is 0.96,whereas conventionalmetrics have only
a 0.67 correlation in the best scenarios.

The rest of this paper is organized as follows. Section 2
defines APC, and describes its measurement. Section 3 in-
troduces the experiment methodology and setup. Section 4
compares APC with other conventional memory metrics in
both single-core and multi-core cases. Section 5 discusses the
applications of APC and presents a quantitative definition of
Data Intensiveness based on the concept of APC. Section 6
presents related works, and Section 7 concludes this study
and discusses future works.

2 APC DEFINITION AND MEASUREMENT
METHODOLOGY

Aftermore than thirty years of development, ILP andmemory
optimization technologies have many key features in com-
mon with modern computer systems. Based on this fact, we
mimic the definition of Instruction Per Cycle (IPC) to the
definition of Access Per Cycle (APC) metric. A formal defini-
tion is provided and an investigation is conducted into the
correct measurement of memory access cycles in advanced
non-blocking memory structures with data prefetching.

2.1 APC Definition
IPC (Instruction Per Cycle) has been widely used as a major
performance evaluation metric in the computer architecture
community. It reflects the overall performance in terms of the
number of executed instructions per cycle. As computer
systems evolve, the technologies adopted in Instruction Level
Parallelism and memory optimization tend to be similar.
Table 1 lists some common features existed in these
technologies.

Based on the similarity between processors and memory
systems, and inspired by the success of IPC, APC (Access Per
Cycle) is proposed to evaluate memory system performance.
APC measures the number of memory accesses per cycle. It
can be applied at each level of a memory hierarchy. In other
words, APC is the overall memory accesses requested at a
certain memory level (i.e., L1, L2, L3, Main Memory) divided
by the total number of memory active cycles at that level.
Please notice thatmemory active (access) cycle is not the same

TABLE 1
ILP and Memory Optimization Comparison

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1627

asCPU cycle. So,more accurately, APC can be calledAPMAC
(access per memory active cycle). Let M denote the total data
access (load/store) at a certainmemory level, andTdenote the
total cycles consumed by these accesses. According to the
definition of APC,

The definition is simple enough. However, because mod-
ern memory systems adopt many advanced optimizations,
such as pipelined cache, non-blocking cache, multi-banked
cache, and data prefetching, several outstanding memory
accesses may co-exist in thememory system at the same time.
Therefore, counting cycles, T, is not as simple as it looks. In the
APCdefinition, it is defined as the total cycle T to bemeasured
based on the overlapping mode, which means when there are
several memory accesses co-existing during the same cycle, T
only increases by one. For memory accesses, the non-over-
lappingmode is adopted. That is all thememory accesses issued
by CPU or prefetcher are counted, including all successful or
non-successful speculated memory accesses, all successful
and non-successful prefetching accesses, and all other con-
current accesses. The reason of including all kinds of memory
accesses is that no matter whether the value is used by CPU,
the memory access activities are carried out by the memory
system, they are the workload of the memory system. In the
non-overlappingmode, if there are twoL1 cache load requests
at the same time, M will increase by two.

Since APC carefully used memory active cycle in its defi-
nition, each memory level has its own memory active cycle
and its APC value. In this paper, the focus is on APC for L1
cache with some discussion of main memory APC. The APC
of L1 reflects the overall performance of the memory system,
while the main memory’s APC is important since it has the
longest access latency in the memory hierarchy without
considering and file systems. The study of these two
based on single/multi-core environments should be sufficient
in illustrating the APC concept and demonstrating its effec-
tiveness. To avoid confusion, the term is used for APC
of L1 data cache, which is the number of L1 data cache
accesses divided by the number of overall data cache access
cycles. Additionally, the term is used for L1 instruction
cache, which is the number of L1 instruction cache accesses
divided by the number of overall instruction cache access
cycles. Finally, main memory APC is denoted as ,
which is the number of off-chip accesses divided by the
number of overall main memory access cycles.

2.2 APC Measurement Methodology
To cooperate with modern CPU out-of-order speculation,
multi-issue, multi-threading, and multi-core technologies,
modern CPUs, such as Intel Core 2 [14], Itanium [15], and
IBM POWER3 [16], employ non-blocking cache heavily at
each level of amemory hierarchy in order to enhancememory
access parallelism. Non-blocking cache can continue supply-
ing data under a certain number of cache misses by adopting
Miss Status Holding Register (MSHR) [7]. MSHR is a struc-
tured table. It records cache miss information, such as access
type (load/store), access address, and return register. When
the MSHR table is empty, there are no outstanding cache
misses.When theMSHR is attached toLLC (Last LevelCache)

and empty, designates there are no outstanding main memo-
ry accesses. When the MSHR table is full, the cache cannot
queuemore cache accesses and theCPU'smemory accesses or
next-level memory accesses are blocked due to lack of MSHR
entries.

In order to further overcome the "memory wall" high-
latency problem, modern commercial CPUs adopt several
kinds of data prefetcheres, such as Tagged Prefetcher in HP
PA 7200 RISC [17], Sequential Prefetcher in IBM POWER3
[16], POWER4 [18], Stride Prefetcher [19] in Intel Core 2 [14],
Nehalem [20], and Double Stride Prefetch in AMD memory
controller [21]. To evaluate modern memory system perfor-
mance, non-blocking cache combined with data prefetcher
must be given consideration.

There are two cooperating modes between a Cache and
Prefetcher. The first one is referred to as unified mode. In the
unified mode, the cache and the related prefetcher have one
unified data buffer and one port connected with the lower
level cache. The prefetcher only observes miss pattern, and
generates prefetching requests through the unified port. The
prefetched cache block has no difference with normal cache
blocks. Theyboth follow the sameplacement and replacement
algorithms. The prefetcher itself does not have separate buff-
er. The complexity of cache read/write and cache coherence
problem are not aggravated by this prefetcher structure. The
implementation of unified mode is relatively simple, and
widely used in modern commercial general purpose CPUs,
for example IBM POWER4 [18], and Intel Core 2 [14] and
Nehalem [20]. The other cooperating mode is referred to as
separate mode. In the separate mode, the cache and the
prefetcher each has its own buffer and data port connected
to the lower level cache individually. The prefetcher observes
miss patterns, and directly sends memory prefetching re-
quests to the lower level cache through its own connection.
The returned cache block from the lower level cache will be
stored in the prefetcher buffer. The cachewill also examine the
prefetcher buffer when a cachemiss occurs. If themissed data
is available in the prefetcher buffer, the data will be migrated
into the cache buffer. The operation procedures of normal
cache read/write and cache coherence are dramatically chan-
ged in the separate mode. The cost of the separate mode
prevents its wide adoption inmodern general purpose CPUs.
For this reason, this study focuses on the non-blocking cache
structurewith a unified prefetcher, as shown in Fig. 1. There is
only one data buffer inside the cache. The cache will send its
miss accesses to both the Prefetcher and MSHR. The

Fig. 1. APC Measurement Structure (Black lines are for cache structure,
gray lines are for AML detecting logic).

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

Prefetcher uses the miss pattern to generate prefetching re-
quests, which are also sent to the MSHR. The MSHR will
register these miss accesses to support non-blocking access,
and send miss accesses to the lower level cache. The MSHR is
the only way requests are sent to the lower level cache. Also
when data is retrieved from the lower level cache, a registra-
tion cancellation procedure is activated inside the MSHR.

Calculating an accurate number of overall memory access
cycles in a non-blocking cache with unified prefetcher struc-
ture is not simple. There are two reasons. First, unlike IPC, not
every clock cycle has memory access; therefore, anymeasure-
ment scheme requires some form of access detection. Second-
ly, many different memory accesses can be overlapping with
each other. When counting memory access cycles, it is not
based on single memory access, but based on memory access
detection structure of modern cache at every cycle. Only one
clock cycle can be counted into the total memory access cycles
even if there are several different memory accesses occurring
at the same time. In practice, there could be many different
ways to measure the clock cycles in the overlapping mode. In
this study, a memory access cycle counting methodology and
measurement logic (shown in Fig. 1) is proposed which is
suitable for amodernmemory hierarchy, utilizing non-block-
ing cache with a prefetcher.

To avoid overlapping memory accesses to be counted
multiple times in an access cycle, the APC Measurement
Logic (AML) simultaneously detectsmemory access activities
from CPU, Prefetcher, Cache and MSHR. If at least one
memory access activity exists in the CPU/Cache interface
bus, Prefetcher/MSHR bus, or inside the Cache, or if out-
standing cache miss/misses are registered in the MSHR, this
clock cycle is counted as one memory access cycle. With this
structure, it is possible to calculate totalmemory access cycles,
referred to as in Equation (1). Additionally, the AML will
count the number of CPU load/store accesses by detecting
CPU/Cache bus requests, and count the number of Prefetcher
load accesses by detecting Prefetcher/MSHR bus requests.
The total number of these two kinds of accesses added
together is referred to as in Equation (1). If there are several
memory requests at the same time from the two kinds of
buses, all are counted. With the number of total accesses
and the totalmemory access cycle ,APC canbe evaluated for
this level of cache. The pseudo code of memory access count-
ing logic of on-chip caches including L1, L2, or even L3 caches,
is shown in Table 2. For L2 andL3 caches,while the logic is the
same, the implementation may need to detect multiple buses
between upper level caches and itself.

In general, memory access cycles consist of three different
timing stages, namely Bus Transferring Cycles, Cache Cycles,

and MSHR Cycles. The three parts are mutually exclusive.
TheMSHRcycles is the time spent inMSHR, it reflects thenext
level of the memory hierarchies ability to supply data. Only
when there is noMSHRcycle counted, should theCacheCycle
be examined. Cache Cycles are the time spent in the cache
determining if a hit or miss has occurred. It reflects the local
caches ability to provide data and is heavily dependent on
local cache organization, such as cache capacity, associativity,
etc. If both MSHR and cache are not active, Bus Transferring
Cycles should be examined. Bus Transferring Cycles involve
twokinds of buses, one is theCPU/Cache bus, and the other is
the Prefetcher/MSHR bus. A CPU/Cache Bus Transferring
Cycle is the time consumed by the CPU and Cache in trans-
ferring requests or data. A Prefetcher/MSHR Bus Transfer-
ring Cycle is the time consumed by the Prefetcher andMSHR
in transferring data load requests.

The APCMeasurement Logic (AML) in Fig. 1 only needs
two long-bit sized registers (e.g., 64-bit register is sufficient
for most computer systems) and some detecting logic. One
register counts the total number of memory access cycles;
the other counts memory accesses. While a memory ac-
cesses count is already provided by existing CPU perfor-
mance counters, some detecting logic for counting the
number of memory access cycles must be added. The de-
tecting logic include CPU/Cache interface detecting logic,
Prefetcher/MSHR interface detecting logic, cache detecting
logic, and MSHR detecting logic. For MSHR, the detecting
logic only needs to detect whether theMSHR table is empty,
thus only one status bit is required. Modern caches adopt
pipelined structures for data access where a typical pipeline
structure consists of Decode, Compare Tags, Data,
andDriveOut stages [22]. For the cache detecting logic, only
one bit for each stage is needed. Thus if the length of the
pipeline stage is four, then the width of the cache detecting
status register is four bits. For CPU/Cache interface detect-
ing logic, the command and/or data bus need to be de-
tected. The total bit-width of the command and data buses is
usually less than 512 bits [3]. Therefore, the length of the
CPU/Cache interface detecting logic should be less than or
equal to 512 bits, assuming using one bit to detect one bit
line of the bus. For Prefetcher/MSHR interface, it is only
necessary to detect the command bus changes, which
should require less area than the interface
detecting logic. Including all the detecting logic and the
two registers, the total cost of AML is less than 1K bits,
which is negligible when compared with modern transistor
sizes in a CPU.

The biggest difference for AML between single core CPU
and multi-core CPU is detecting the shared Last Level Cache
(LLC). For multi-core version, the LLC is shared by many
different cores. Therefore,multiple buseswhich are connected
to the upper level private caches must be monitored simulta-
neously. The total number of memory accesses to the shared
LLC is the summary of all bus requests. The data requests and
transferring cycles existing in multiple buses at the same time
must be measured in overlapping mode, which means only
one cycle is added into total access cycles. If the shared LLC is
L2 cache, private L1 Data Caches (DCache) and Instruction
Caches (ICache) will have a common bus connected to the L2
cache. Therefore, for n-core two-level cache CPU, there are n
buses must be monitored simultaneously for measuring

TABLE 2
Pseudo Code for Memory Access Cycle Counting Logic

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1629

(L2 APC) value. In this study, L2 as the shared LLC is
examined. Therefore,

The AML for main memory requires the least hardware.
When measuring main memory , only main memory
access count and LLCMSHR Cycles need to be detected. The
former can be found in CPU performance counters; and the
latter, only requires 1 bit to detect whether the MSHR table is
empty or not. As a result, there is almost no extra hardware
cost to measure the . Therefore,

Our AML design is only one possible way to measure
APC. It may not be the best design, but it is good enough to
demonstrate that with a minor modification of current cache
structures theAPCs of all cache levels can bemeasured easily.

3 EXPERIMENTS METHODOLOGY AND SETUP

It iswidely accepted thatmemory systems have become a key
performance factor of overall application performance. Thus,
the overall memory performance should influence and corre-
late to the overall application performance. An appropriate
memory metric should reflect this correlation relation. The
mathematical concept of correlation coefficient is used to
describe the variation similarity between two variables.
Therefore, it is expected that thememorymetric with a higher
correlation value is a more appropriate metric in measuring
modern memory systems. This correlation relation should
maintain even formost advancedmemory optimizations. The
correlation relation simply says if yourmemorymeasurement
shows that you have optimized your memory performance,
and then your application performance should improve as
well, or at least not decrease.

In this section, the mathematical concept of correlation
coefficient is introduced and its reflection of the relation
between the two factors is described. With correlation coeffi-
cient as the proximitymeasurement, a series of experiments of
utilizing single core andmulti-core systemsare executed,with
changes to the hardware configurations, such as L1, L2 cache
size and/or set associativity,mainmemory access latency, and
the number of MSHR entries. In next section, the M5 (also
known as GEM5) simulator is used to compare different
memoryperformancemetrics basedon their correlation to IPC.

3.1 Introduction to Correlation Coefficient
The motivation of memory evaluation is due to the fact that
thefinal system computing performance is heavily influenced
by memory system performance. Therefore, an appropriate
memory metric should reflect the system performance. In
other words, the system performance should correlate with
memory performance. Mathematically, correlation is mea-
sured by the statistic variable correlation coefficient (CC).
The correlation coefficient describes the proximity between
two variables' changing trends from a statistics viewpoint.
The mathematic definition of correlation coefficient is shown

in Equation (2). In the equation, array and are the
sampling points for two variables.

The correlation coefficient is a number between and 1.
The higher the absolute value of correlation coefficient is, the
closer the relation between the two variables is. If it is 1 or ,
the two variables trends are perfectly match to each other; if it
is 0, then there is no relation between the two variables.
Generally speaking, if the absolute value is greater than
0.8, then it is believed the two variables have a strong relation;
if greater than 0.9, it is a dominant relation; otherwise if less
than 0.5, it is aweak relation. Also if the correlation coefficient
value is larger than 0, it is a positive relation. Thatmeans if one
increases, the other also increases; otherwise if it is less than 0,
it is a negative relation between two variables. That means if
one increases, the other decreases [23].

3.2 Experiment Setup
Adetailed out-of-order speculative superscalar CPUmodel in
the M5 simulator [24] was adopted, which models an Alpha
21264-like CPU. Unless stated otherwise, the experiments
assume the following default processor and cache configura-
tion showing in Table 3. Furthermore, the multi-core simula-
tion is nearly identical to the default simulation except the L2
cache is share by the four cores.

Each experimental configuration is based on the default
and only changes one or two parameter of the simulation. The
detailed experimental configurations are shown in Table 4.
Each configuration is simulated in single core and multi-core
simulation environments.

There are three groups of configurations. The first group,
including configuration , are the basic cache/
memory configurations, which only change the cache size,

Table 3
Default Simulation Configuration

1630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

associativity, or memory latency. These basic configurations
have 10 MSHR entries each. are advanced cache
configurations, which consider the effect of non-blocking
cache and prefetcher structures. , which compose
the second group, add Stride Prefetcher to L1 data cache with
different prefetching degrees of 1, 2 and 4, respectively. The
third group, which consists of configuration ,
changes memory access parallelism by changing the number
ofMSHRentries. C21 changes the cachemodel into a blocking
cache structure by changing the number ofMSHR entries to 1.
C22 andC23 increase the number ofMSHRentries to 2 and 16,
respectively. By changing the memory system configuration,
it is possible to observememory performance variation trends
and IPC variation trends, and examine whichmemorymetric

has a performance trend that best matches IPC in both in
single-core and multi-core environments.

The simulations for single core were conducted with 26
benchmarks from the SPEC CPU2006 suite [25]. Five bench-
marks in the set were omitted because of compatibility issues
with the simulator. For multi-core simulations, an additional
three benchmarks were omitted because the simulator cannot
supportmemory space larger than16GB.Thebenchmarkswere
compiled using GCC 4.3.2 with optimization. The test
input sizes provided by the benchmark suite were adopted for
all benchmarks. For each benchmark, up to one billion instruc-
tions were simulated to collect statistics, or all executed instruc-
tions if the benchmark finished before one billion instructions.

4 EVALUATION AND EVALUATION RESULTS

We use correlation to system performance, in terms of IPC, to
verify the correctness of APC. The argument is that system
performance should correlate with memory performance, and
if amemoryperformancemetric doesnot correlatewith system
performance then it must miss some important characteristics
of memory system. For instance, given that the sale of Ford’s
cars correlateswith thequalityof its cars. If someone claims that
basedonhis/hermeasurement improving thequalityof Ford’s
cars, while all the other factors, such as cost, are unchanged,
will hurt Ford’s sale; then his/her measurement of quality is
probablywrong.Ourmeasurementswill focus on concurrency
measurement. Additionally, it will be shown that existing
memory performance metrics, which are designed to measure
the characteristic of memory hierarchy, lack of the ability to
catch the concurrency complexity ofmodernmemory systems.

Based on the above simulation configurations, the M5
simulator is used to collect different memory metrics. Each
memory metric is then correlated against the IPC from two
approaches. First, based on one configuration, each applica-
tion's memory metric is correlated with its IPC. Second, we
focus on one application, while changing memory configura-
tions, the variation similarity between each memory metric
and IPC is observed. The first approach tests the correctness of
each memory performance metric. The second method tests
the sensitivity of each memory performance metric. The com-
bination of these two provides a solid foundation to determine
the appropriateness of a metric. The results show that APC
always correlates with IPC, and has the highest correlation
value as well, while others are not. It is a clear winner.

4.1 Proximity of APC and IPC in Different
Applications

Different memorymetrics are compared. Thememorymetrics
compared include, Access Per Cycle (APC), Hit Rate (HR, the
counterpart of Miss rate), Hits Per 1K Instruction (HP1K, the
counterpart of Misses per 1K instructions), Average Miss
Penalty (AMP), and Average Memory Access Time (AMAT)
[26]. ForAPC,HR,andHP1K, there shouldbeapositive relation
with IPC; for AMP and AMAT, there should be a negative
relation with IPC. All metrics are compared at the L1 level.

To show the proximity of different memorymetrics to IPC,
SPEC CPU2006 is run for all configurations () in
single core mode with different L1 cache, L2 cache, main
memory, prefetcher, and MSHR configuration parameters.

Table 4
A Series of Simulation Configurations

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1631

The correlation coefficient for each memory metric against
IPC is calculated and shown in Fig. 2. From Fig. 2 it can be
observed that APC has the strongest correlation with IPC,
whose average CC value is 0.871. This strong correlation
between APC and IPC reflects the fact that the final system
performance largely depends on the performance of the
memory hierarchy.

Among other metrics, AMAT is the best with an average
CC value of . This is most likely because it considers
both hit latency and miss penalty. Compared with AMAT,
APC improves the correlation value by 30.0%. Also, it is
interesting to note that the simple metric HR has approxi-
mately the same correlation value asAMAT. This is likely due
to the performance gap between CPU and memory growing
larger and larger, say CPU cycles; therefore, AMAT
is dominated by miss penalty and miss penalty is largely
determined from the miss rate. Fig. 2 also shows that using
HP1Kas a formof hit rate topredict overall performance is not
a smart choice as it has the smallest correlation value.

Please notice that a metric with a low average CC value
means the metric may have missed certain characteristics of
the memory system. In Section 4.2, it is shown that existing
metrics have largely omitted the concurrency complexity of
modern memory systems.

4.1.1 Why Memory Dominates Overall Performance
After examining all kinds of instructions issued by the pro-
cessorwhen running SPECCPU2006 on theM5 simulator, the
proportion of each type of instruction is collected in Fig. 3. For
CPU2006 applications, integer ALU has the largest propor-
tion, which accounts for 55.3% of instructions on average. But
integer ALU execution latency is fixed and small, only one
clock cycle for each ALU operation. Load and store instruc-
tions occupy 34.0% of all instructions, and are second largest
in percentage. With a two-cycle hit latency to L1 cache (the
same latency as the execution of Float Add, Float Compare,
and Float Convert instructions, the average proportion of
these three kinds of instruction is only 5.93%), 12-cycle of hit
latency for L2 cache (the same latency with execution of Float
Divide instruction, the average proportion is only 0.2%), and
200-cycle of main memory access latency, memory accesses
are themost time-consuming portion of thewhole operations.
Therefore, at the L1 level, memory system is a determine
factor of system performance, IPC. In other word, when
changing the memory configurations, the memory metric
variation and IPC variation should be closely correlated to

each other. This simple analysis further confirms the correct-
ness of APC in providing the highest average CC value.

4.1.2 Instruction Cache Influence
In the Von Neumann architecture, memory access includes
two parts, data access and instruction access. No matter
whether an instruction is a memory access or not, the instruc-
tion must be read into CPU. Also, no matter what advanced
technologies that are adopted for instruction execution, if
there are not enough instructions fetched intoCPU, then these
technologies are useless. Thus, instruction access as well as
data access should be considered in the measurement of
memory systems.

To optimize the accuracy of APC, the L1 instruction cache
APC, is introduced. is definedas the number of L1
instruction cache accesses divide by the number of overall
instruction cache access cycles. Let be the L1 data cache
APC, then we have , which equals , is
the APC for the overall memory performance including both
data and instruction access. The formula is
derived by the conditional dependence. Data access requests
are triggered by instructions. The correlation coefficient of

under the default configuration (C1 in Table 4) im-
proves by 2.18%. For all configurations () the aver-
age CC value of is 0.897, and is an improvement of
2.91% on average compared to alone. Such a small
improvement is observed due to most applications having
nearly perfect instruction accesses. Only a very small number
of applications, such as gcc, GemsFDTD, and h264ref, have
high instructionmiss rates. For these applications, can
add more accurate adjustments. The normalized ,

, and IPC of the default configuration (C1) are
shown in Fig. 4. The normalization is based on themagnitude
of each metric.

From Fig. 4, each configuration has almost the same
variation trends for and IPC. Fig. 4 confirms that
overall application performance is largely determined by the
memory performance as is expressed by the APC metric.

4.2 Proximity of APC and IPC by Different
Configurations

In this section, we focus on each application, to observe the
impact of memory configuration on performance and corre-
lation. Three groups of 23 simulation configurations are run in
both single core and multi-core modes. The first group
(in Table 4) changes basic cache/memory config-
urations, the second group () adds a stride pre-
fetcher to L1 caches with different prefetching degrees, and
the third group (, in Table 4) examines non-block-
ing cache ability by altering the number of MSHR entries.

Firstly, each group is examined in single coremode step by
step. Due to the similarities between multi-core and single
core applications, all the three groups in multi-core mode are
considered together at once. The simulation results of the first
group in single core mode are presented below. In sec-
tion 4.2.2, we analyze simulations with prefetcher changing.
In section 4.2.3, simulations with all groups for single core
mode are conducted. Finally, simulations of all groups for
multi-core mode are conducted in section 4.2.4. Again, the
correlation coefficient is used to evaluate themerits. APC,HR,

Fig. 2. Correlation coefficient of different memory metrics under different
configurations.

1632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

andHP1Kshouldhaveapositive correlation coefficient value.
AMP and AMAT should have a negative correlation coeffi-
cient value.

To clearly show the difference, and , are
compared against the other four memory metrics from Fig. 5
through Fig. 8. Similar to APC which has two measures

, , every conventional memory metric also has
two measures which represent data cache performance only
and comprehensive cache performance (data cache and in-
struction cache combined performance). For example, when
comparing AMAT, is used to describe data cache
AMAT, and (equal to) is used to
describe comprehensive cache AMAT.

From Figs. 5 to 8, the first and second bars are APC’s
correlation values, the remaining bars of each benchmark
belong to the corresponding memory metrics’ correlation
value. In Figs. 5 to 8 it is shown that, when the basic
cache/memory configuration (in Table 4) of mem-
ory hierarchy is changed, while AMAT correlates with IPC
well, has the highest correlation coefficient valuewith
IPC at an average value of 0.9632. Of the other memory
metrics, takes second place with an average value
of . This shows AMAT is quite a good metric for
reflecting conventional memory hierarchy performance vari-
ation. However, other metrics show some non-correlation
instances. For example, Hit Rate should have positive coeffi-
cient values, but for several applications its coefficient values
are negative or approximate to zero.One of the reasons for the
divergence is that HR does not explicitly include a lower level

cache performance factor, such as miss latency information
(where as APC and AMAT do consider lower level cache
performance). So, when L2 cache size increases, or main
memory latency decreases, IPC will increase, even though
the Hit Rate has not changed. For instance, the benchmark
sjenghas theHRcorrelation value of 0.058. This poorCCvalue
is due to changing L2 and main memory parameters (size,
associativity, and latency, experiment configuration ID,

) which have little influence on the hit ratio of data
cache and instruction cache and remain almost consistent at
0.8084 and 0.9671, respectively. However, the IPC changes
from 0.677 to 0.872. In the benchmark zeusmp, when HR
increases from 0.879 to 0.883, the IPC unexpectedly drops
from 0.664 to 0.645 when simulation configuration changes
from C2 to C3. The main reason for this mismatch is believed
to be speculation mechanisms. When the cache associativity
increases, not only doesmiss count decreases, the execution of
mis-speculated instructions also decreases; thus, the memory
access count will decrease as well. As stated earlier, not all
mis-speculated memory accesses are harmful. APC, on the
contrary, is highly immune to speculation, because when
counting access cycles, the overlapping mode is used, and
mis-speculated memory accesses are overlapped with cor-
rectly speculatedmemory accesses. In contrast,HRandHR1K
which miss information on lower level cache structure, AMP
only considers lower level cache miss accesses. When L1
data/instruction cache size increases or associativity in-
creases, the number of miss access decreases, but the miss

Fig. 4. Normalized IPC, , , and . Fig. 5. Comparisons between APC and Hit Rate Correlation Coefficient.

Fig. 3. The proportion of different kinds of instruction.

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1633

latency for each miss may not change. In summary, compo-
nent-basedmemory evaluationmetrics, suchasHRandAMP,
could mislead designers even in a simple component-based
system.

4.2.1 Analysis of Low Correlation with IPC
The lowest APC correlation value is 0.733. It is a good value in
comparison to other metrics for that particular benchmark.
But, let’s take the opportunity to give a closer investigation in
order to better understand the limitations of APC. There are
only twoapplications havingAPCcorrelationvalues less than
0.8. One is dealIIwith value of 0.742; the other is calculixwith
value of 0.733. The reasons for the low correlations are: firstly,
these two applications have very limited memory operations
among all kinds of instructions, e.g., dealII has the smallest
proportion (20.5%) of memory access among all SPEC appli-
cations; calculix has the 3rd smallest proportion (25.7%) of
memory access among all SPEC applications; secondly, both
have a high proportion of floating point calculations, which
make these twoapplications' performancemuchmore bound-
ed by computation, not memory access. Another interesting
observation is that the benchmark application zeusmp has the
2nd smallest proportion (24.6%) of memory access and the
2nd largest proportion (36.9%) of floating point calculations,
which seems more like a computing intensive application,
and should have an even smaller APC value than calculix.
However, the APC value of zeusmp is 0.995, a considerably
high and dominating correlationwith IPC. The reason for this

contradiction is that even though zeusmp has such little
proportion of memory accesses, these memory accesses are
highly related to main memory, the L2 cache miss rate of
zeusmp is as high as % under different simulation
configurations. This phenomenon can be better explained by
the value of zeusmpwhich has a high correlation value
with IPCof (0.932). Thismeans zeusmpperformance is directly
determined by main memory, not L1 and L2 caches. The
relationships between the APCs of L1, L2 cache and main
memory () are discussed in section 5. Also, please note
that other memory metrics have about the same CC value
with IPC for the benchmark dealII and calculix.

4.2.2 Adding Prefetcher to L1 Caches
To examine the prefetching effect on memory metrics, simu-
lation configurations are combined together to
generate a correlation coefficient with IPC. Because APC and
AMAT have a strong correlation with IPC according to the
results of the basic configuration experiments and other
memory metrics have misleading indications, this section
only compares APC and AMAT. The simulation results of
correlation coefficient are shown in Fig. 9.

By adding a prefetcher to the L1 data cache, APC and
AMAT still have similar average correlation coefficients of
0.957 and -0.925, respectively. These two CC values are both
slightly lower than their own basic configurations CC values.
A possible reason is the prefetcher generates some useless

Fig. 7. Comparisons between APC and AMP Correlation Coefficient.

Fig. 8. Comparisons between APC and AMAT Correlation Coefficient.

Fig. 9. Comparison between APC and AMATCorrelation Coefficient with
prefetching degree changes.

Fig. 6. Comparison between APC and Hit Rate per 1K instruction
Correlation Coefficient.

1634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

memory load requests. The useless accesses burden themem-
ory hierarchy, but may increasememory performance and do
not harm the overall application performance, since they only
affect the cache capacity and memory bandwidth. Therefore,
the CC valueswith a prefetcher are slightly lower than the CC
values of the basic configurations. Also please note even
though prefetchers can improve concurrency of lower mem-
ory accesses, the number of MSHR entries does not change,
thus the maximum parallelism of lower cache hardware does
not change. In this case, AMAT can still be an accurate
memory metric to reflect memory performance.

4.2.3 Changing Access Parallelism in Cache Structure
APC and AMAT have very high correlation with IPC when
changing basic cache/memory configurations and adding
prefetching to caches. When the number of MSHR entries is
altered to examinewhether the twomemorymetrics still have
a similar relation with IPC, the concurrency of data access is
changed. Fig. 10 shows the correlation coefficient of APC and
AMAT for all the 23 configurations listed in Table 4.

Fig. 10 shows that APC still has the same average correla-
tion value of 0.9656. However, AMAT becomes problematic
and can not catch the concurrency changes in the memory
system. When the number of MSHR entries is increased
(memory concurrency increases), the change should, and did,
give a positive impact to IPC performance. APC correctly
reflects this change and correlates with IPC well. However,
AMAT does not understand the concurrency changes at all.
About half of the benchmarks go to one direction and the rest
go to the other direction. AMAT is a metric designed to catch
the hierarchical characteristics of memory system and lacks
the ability to catch the concurrency complexity of modern
memory systems.

In technical terms when there are not enough MSHR
entries, the CPUwill be blocked by the memory system. APC
can record the CPU blocked cycles, whereas AMAT cannot.
Additionally, contention increases with the number ofMSHR
entries; therefore, the individual data access time, AMAT,
increases as well.

Fig. 11 shows the variation normalized IPC, APC and
AMAT of bzip2, when the number of MSHR entry is in-
creased. The normalization is based on themagnitude of each
metric. From Fig. 11 it can be observed that when the number

of MSHR entries increases, the memory access parallelism is
improved, thus the overallmemoryperformance is enhanced,
and the final application performance IPC is also increased.
The variation of IPC and APC correlate well with each other.
However, AMAT gives a false indication about memory
system performance.

4.2.4 Simulations in Multi-core mode
To further validatewhetherAPC is themost accuratememory
metric in describing the overall memory performance in
multi-core mode, three groups of 23 configurations are simu-
lated with a 4-core structure. Each core has a private split L1
caches, and only one shared L2 cache. In multi-core mode,
each core's memory metrics are correlated with its own IPC
value. To clearly show the difference, is compared
against the other four comprehensive memory metrics from
Figs. 12 to 15.

In Figs. 12 to 15, the first four bars are APC’s correlation
values, the remaining bars of each benchmark belong to the
correspondentmemorymetrics’ correlation values. Figs. 12 to
15 show that still has the highest correlation coefficient
value with IPC at an average value for all applications of
0.9613, and is almost the same value with single core condi-
tion. All of the other memory metrics have misleading in-
stances. The inherent shortcomings of existing memory me-
trics are already discussed in the single core studies. We will
not repeat this analysis here.

Through the above simulation and analyses, we have
demonstrated that under different applications, different
configurations, different advanced cache optimizations, and
single-core ormulti-core conditions, APC alwaysworks effec-
tively. APC directly correlates to overall system performance

Fig. 10. Comparison between APC and AMAT Correlation Coefficient
with MSHR changes.

Fig. 11. IPC, APC and AMAT variation when increase MSHR entry.

Fig. 12. Comparisons between APC and Hit Rate Correlation Coefficient
in multi-core mode.

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1635

in all the testing. In contrast, other existing memory metrics
cannot accurately reflect the system performance, and are
sometimes misleading about performance. The unique merit
of APC is its ability to catch the concurrency characteristics of
modernmemory systems. It is the onlymemorymetric which
can correctly and accurately reflect the overall performance of
modern hierarchical memory systems. APC is the most ap-
propriate metric to characterize modern memory system
performance.

5 DISCUSSION

Throughout the last section analyses, APC proved to be the
best memory performance metric, and is able to most accu-
rately represent the modern multi-level overall performance
of memory systems. In this section, some key values of APC
which help to understanding application behaviors are dis-
cussed. Also, an important quantitative definition of data
intensive applications based on the APC concept are given.

Please recall APC can be applied to different levels of a
memory hierarchy for performance evaluation.We have used
L1APC in verifying the correctness ofAPC in Section 4. In this
section,wewill extendourdiscussion toAPCof other levels of
amemory hierarchy in order to fully explore the full potential
of APC.

5.1 A Quantitative Analyses of Instruction Cache
Effect

Seven out of 26 benchmark applications have % dif-
ference between their and correlation values.

only reflects the data cache contribution to the overall
application performance. considers both data and
instruction cache effects together. These variations reflect the
importance of instruction cache in the application execution.
The bigger the difference, themore prominent the effect of the
instruction cache on overall performance. This could give us a
hit in optimizing memory systems. For example, Fig. 16
shows the , , and value of six benchmarks
(from gcc to sphinx3) which have large variations; whereas the
other four benchmarks bzip2, gobmk, dealII, and gromacs have a
similar value for and . For the latter four appli-
cations, the overall performance is directly dominated bydata
cache performance, where instruction cache with good code
stream locality has very little affect (their correlation value of

are relatively small). For the applications with big
differences, data and instruction caches may both be impor-
tant, e.g., gcc, h264refor the instruction cache alonemayhave a
large impact on overall application performance, e.g., namd,
GemsFDTD, sphinx3. With this information, a more appropri-
ate choice for memory configuration can be made.

5.2 Bottleneck Inside Memory System
From Figs. 5 through 10, with the dominating correlation
between APC and IPC, it is clear that the overall performance

Fig. 16. Comparison between , , and Correlation
Coefficient values

Fig. 13. Comparison between APC and Hit Rate per 1K instruction
Correlation Coefficient in multi-core mode.

Fig. 15. Comparisons between APC and AMATCorrelation Coefficient in
multi-core mode.

Fig. 14. Comparisons between APC and AMP Correlation Coefficient in
multi-core mode.

1636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

is now determined by memory system performance. There-
fore, an important question is at which level of the memory
system is the actual performance bottleneck. According to the
APC's definition, each level of the memory hierarchy has its
own APC values: L1 data and instruction caches have
and respectively; L2 cache has ; and main mem-
ory has . However, the APC of each level not only
represents the performance of its memory level, but also
includes all the lower levels of the memory hierarchy. For
example, the value of represents the memory perfor-
mance of L1 data cache, L2 cache and main memory; and

represents the memory performance of L2 cache and
main memory. Only , which is the lowest level in the
memory hierarchy, represents main memory itself when disk
storage is not considered. Therefore, by correlating IPC with
APC at each level, one can find the lowest level that has a
dominating correlation with IPC and can quantitatively de-
tect the performance bottlenecks inside the memory system.
Fig. 17 shows the correlation value of each level of APC for 26
benchmarks. For example, benchmark , which
simply generates a sequence of pseudorandom numbers
starting with a known seed, is computation intensive instead
of data intensive. The miss rate of L1 cache for specrand_i
applications is as low as 0.0018% in our simulation results.
Therefore, only L1 cache performance has great influence on
IPC for the application. L2 and other lower level
caches in the memory hierarchy do not affect the
application performance, which is correctly reflected by the
first bar set of Fig. 17. For benchmark mcf, both and

have a dominant relation to IPC, but its does
not. That means the performance of the mcf application is
determined by its L2 cache performance, and has a good
locality. More evidences to support this observation are from
Fig. 18. Fig. 18 is the L2 cachemiss rates ofmcf and lbm.When
increasing L2 cache size from 2 MB to 8 MB with a fixed L1
cache configuration (in Table 4). According to
Fig. 18, the L2 cache miss rate of mcf suddenly drops from
34.0% to 4.8%. That means, when L2 cache size is equal to or
larger than 8 MB, the benchmark mcfmainly accesses data in
L2 cache. The main memory is not a bottleneck; and the
overall performance of mcf is mainly determined by L2 cache
performance. This observation is again correctly reflected in
APC measurement as seen from Fig. 17. For benchmark lbm,
according to Fig. 17, since all levels of APC have dominating
correlationwith IPC, the performance of lbm is determined by

the performance of the lowest level, namely themainmemory
level. This result is supported by Fig. 18 which shows that the
L2 miss rates of lbm are approximately unchanged when
increasing L2 cache size. The miss rates are all above 70%.

5.3 A Quantitative Definition of Data Intensive
Application

The term "Data-intensive Applications" and “Data-intensive
Computing” are widely-used terms in describing application
or computingwhere datamovement, instead of computing, is
the dominate factor. However, there is neither a commonly
accepted definition of “data-intensive computing” nor a
quantitative measurement of “data intensiveness”. As APC
characterizes the overall memory performance, the IPC and
APC correlation values provides a quantitative definition of
data intensiveness. The idea is simple: if dominates IPC
performance, then the application is data intensive and the
degree of the domination provides a measurement of data
intensiveness. The correlation value of is used to
quantify the degree of data intensive. There are three reasons
to use instead of tomeasuredata intensive. First,
due to the "memory-wall" problem, main memory latency
becomes a vital performance bottleneck in the memory hier-
archy and dramatically degrades CPU speed. Next, data re-
use is not counted as part of data-intensiveness unless it has to
be read from main memory again. Finally, according to the
definition of APC, if has a dominate relation with IPC,
then and will have adominate relationwith IPC
too. In otherwords, the cache hit influence is ignored, sincewe
are interested in data movement, not usage, in considering
data intensiveness. Also please note that the hardware cost for
measuring is almost zero.

Fig. 17 is sorted according to correlation values in
ascending order (the farther to the left, the smaller the value of

). The correlation value of is divided into three
intervals, that is (, 0.3), [0.3, 0.9), and [0.9, 1). Thirteen
applications counted from the left side (from to
gromacs) fall into the first interval. According to the three APC
values used in Fig. 17, it can be concluded that the application
performance of these 13 applications are dominated by the L1
cache, not L2 or main memory because the correlation values
of and of these applications are negative or very
small. As the correlation value of increases, the effect of
mainmemory to the overall application becomes increasingly
important. Therefore, some applications' performance in the
second interval (from mcf to sjeng) is dominated by the L2
caches, e.g., mcf, milc. However, other applications, such as
bzip2, require both L2 andmainmemory equally. For the third

Fig. 17. Comparison between , , and Correlation
Coefficient values.

Fig. 18. L2 cache miss rate variations for mcf and lbm.

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1637

interval, the applications' performances are determined by
main memory performance. This observation motivates us to
define an application as data intensive if its correlation coeffi-
cient of and IPC is equal to or larger than 0.9. Another
reason for picking 0.9 as the threshold is according to
the mathematical definition of a correlation coefficient, when
the correlation value of two variables is equal to or larger than
0.9, then the two variables have a dominant relation. There-
fore, herewe define that an application as data intensive if and
only if

and the value of the correlation provides a quantitative
measurement of the data-intensiveness.

6 RELATED WORK

Miss Rate (MR), Miss Per Kilo Instructions (MPKI), Average
Miss Penalty (AMP), and Average Memory Access Time
(AMAT) are some commonly used performance metrics in
evaluatingmemory systems [26].MR isdefinedas {thenumber
of miss memory accesses} over {the number of total memory
accesses}. Similarly, MPKI is defined as {

} over {the number of total committed
Instructions}.AMPequals {the summaryof singlemiss latency}
over {the number of miss memory accesses}. Finally,

. MR and MPKI only reflect
the proportion of the data in or out of the cache; they don't
reflect the penalty of the miss access. AMP only catches the
penalty of the cache miss access; it doesn't show the hit in
performance. Also for AMP, the single miss latency is counted
based on single miss access, assuming there is not any other
memory access present. AMAT is a comprehensive memory
metric, but it is still based on the single data access point of
view. It is the averageperiodbetween start timeandfinish time
of a single memory access and does not consider the memory
access overlapping and parallelism. There have been several
studies on Memory Level Parallelism (MLP) [27] in recent
years. MLP is a common memory metric and is the average
number of long-latency main memory outstanding accesses
when there is at least one such outstanding access [28]. So

isMLP value at clock cycle . The meaning of total
memory access cycles in Equation (3) is the same as the APC
definition. Sorin’s parameter [29] has a similar definition to
theMLP in [27]. Sorin’s considers allmainmemory accesses,
while Chou [28] only considers useful long-latency main
memory access. Here, useful means that the data fetched by
main memory access is finally used by CPU. In the APC
approach, , which is defined as the total number of
off-chip access divided by the number of total main memory
access cycles, reflects main memory access performance.

Assuming each off-chip memory access has a constant
latency, say cycles, then each memory access will count

times when calculating different , so we have
. Thatmeans is directly proportional

to MLP. Any indication fromMLP on CPUmicro-architecture
could also be obtained from . A known limitation of
MLP is it only focuses on off-chipmemory access based on the
epoch memory access mode for some commercial or database
workloads [27]. These kinds of applications usuallyhavemuch
more L1 and L2 cache misses, and their overall performances
are heavily determined by main memory access. However
some traditional CPU intensive applications, which only con-
sidering main memory access is far from enough. In addition,
advanced process technology, such as EDRAM used in IBM
POWER7, dramatically increase on-chip cache sizes up to
32 MB [30]. Using 3D integration technologies, one could
implement a multi-layer CPU with one layer full of on-chip
cache [31]. In contrast, APC not only can be used to analyze
commercial applications, but also to analyze traditional scien-
tific applications, so it has amuchwider applicability. APC is a
rethinking ofmemoryperformance fromadata-centric view. It
ismuch simple inmeasurement and can be applied to in-depth
memory performance analysis. Nevertheless, MLP is a new
metric drawingmuch attention for data-intensive applications.
Being a superset ofMLPdemonstrates the preeminence ofAPC
from another angle. In fact, it makes APC and MLP mutually
supporting to each other.

7 CONCLUSION AND FUTURE WORK

In this paper we propose a new memory metric APC, give its
measurement methodology, and demonstrate that APC has a
unique ability to catch the complexity, especially the concur-
rency complexity, ofmodernmemory systems.APC is defined
asmemoryAccess Per Cycle. Here the cycle is the parallel data
access cycle and ismeasured in the overlappingmode. For this
reason, APC also can be accurately called APMAC (access per
memory active cycle). Where overlapping is defined where
concurrent memory accesses only increase the cycle count by
one. An APC measurement logic (AML) is designed to mea-
sure APC. The application of APC and the APC of different
levels of a memory hierarchy are discussed. Mathematical
correlation is used to demonstrate the correctness and effec-
tiveness of APC. Intensive simulations are conducted with a
modern computer systemsimulator,M5, toverify thepotential
of APC and compare it with existing memory performance
metrics. As a side result, we have shown that the conventional
memorymetricAMATis agoodmetric to catch thevariationof
simple configuration changes of hierarchicalmemory systems,
but inadequate to capture the concurrency complexity of
modern memory systems. Other existing memory metrics,
such as miss ratio, can be misleading even for a simple
component configuration change inmodernmemory systems.
Simulation and statistical results show that APC is a signifi-
cantly more appropriate memory metric than other existing
memory metrics for overall performance of a memory system.
APCcanbeapplied todifferent levelsof amemoryhierarchyas
well.With the ability tomeasure performance at each level of a
memory hierarchy, it can be clearly understood which com-
ponent in amemory systemshouldbe enhancedfirst, reducing
the cache miss ratio or increasing the bus bandwidth, for
instance. It can better understand the matching of processor
andmemory and the matching of application andmemory. In
addition, the correlationofAPCofmemoryand IPCprovides a
quantitative measurement of the data-intensiveness of an

1638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014

application. In this way, it provides a measurement of data-
centric computing that could have profound impact in future
data-centric algorithm design and system development. APC
is shown to be a superset ofMLP [28], a newly proposedmetric
aimed for main memory access and data-intensive applica-
tions. The recent interest onMLP further confirms the practical
value of APC. In the future, APC will be extended to IO and
network systems. Also based on the current available CPU
performance counter, the validation of on a real ma-
chine will be evaluated. Based on the insights of these studies,
newmemorymicroarchitecture ideas for further improvement
in APC will be investigated.

ACKNOWLEDGMENT

The authors are grateful to anonymous reviewers for their
valuable comments and suggestions. This research was sup-
ported in part by National Science Foundation under NSF
grant CCF-0621435 and CCF-0937877.

REFERENCES

[1] X.-H. Sun and L. Ni, “Another view on parallel speedup,” in Proc.
IEEE Supercomput., Nov. 1990, pp. 324–333.

[2] W. Wulf and S. McKee, “Hitting the wall: Implications of the
obvious,” in Proc ACM SIGArch Comput. Archit. News, Mar. 1995,
pp. 20–24.

[3] M. E. Thomadakis, “The architecture of the Nehalem processor and
Nehalem-EP SMP platforms,” A research report of Texas A&M
University, 2010 [Online]. Available: http://sc.tamu.edu/
systems/eos/nehalem.pdf

[4] R. Fiedler, “Blue waters architecture,” Great lakes consortium for
Petascale Computation, Oct. 2010.

[5] D. M. Tullsen, S. J. Eggers, J. S. Emer et al., “Exploiting choice:
Instruction fetch and issue on an implementable simultaneous
multithreading processor,” in Proc. 23rd Annu. Int. Symp. Comput.
Archit., May 1996, pp. 191–202.

[6] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded SPARC processor,” IEEE Micro, Mar./Apr. 2005,
pp. 21–29.

[7] D. Kroft, “ Lockup-free instruction fetch/prefetch cache organiza-
tion,” in Proc. ISCA’81, 1981, pp. 81–87.

[8] A. Agarwal, K. Roy, and T. N. Vijaykumar, “Exploring high band-
width pipelined cache architecture for scaled technology,” in Proc.
DATE, 2003, pp. 10778–10783.

[9] J. A. Rivers, G. S. Tyson, E. S. Davidson et al., “On high-bandwidth
data cache design formulti-issue processors,” inProc. 30th Int. Symp.
Microarchit. (Micro-30), Dec. 1–3, 1997, pp. 46–56.

[10] S. Byna, Y. Chen, and X.-H. Sun, “Taxonomy of data prefetching
for multicore processors,” J. Comput. Sci. Technol., vol. 24, no. 3,
pp. 405–417, May 2009.

[11] B. Sinharoy, R. Kalla, W. J. Starke et al., “IBM POWER7 multicore
server processor,” IBM J. Res. Develop., vol. 55, no. 3, pp. 1:1–1:29,
May/Jun. 2011.

[12] ARM Processor Introduction. (2011, Dec.) Cortex-A15 MPCore
Processor [Online]. Available: http://www.arm.com/products/
processors/cortex-a/cortex-a15.php.

[13] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execu-
tion: An alternative to very large instruction windows for out-of-
order processors,” in Proc. 9th Int. Symp. High-Perform. Comput.
Archit. (HPCA), Feb. 2003, pp. 129–140.

[14] Intel. Inside Intel CoreMicroarchitecture and SmartMemoryAccess. Intel,
White Paper, 2006.

[15] Intel. (2011, Apr.) Introduction to Microarchitectural Optimization
for Itanium® 2 Processors. Reference Manual [Online]. Available:
http://developer.intel.com.

[16] S.Andersson,R. Bell, J.Hague et al. (2011,Apr.)RS/6000Scientific and
Technical Computing: POWER3 Introduction and Tuning Guide
[Online]. Available: http://www.redbooks.ibm.com.

[17] K. K. Chan, C. C.Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher,
and J. Zheng, “Design of the HP PA 7200CPU,” Hewlett-Packard
J. Tech. Inf. Laboratories Hewlett-Packard Company, vol. 47, no. 1,
pp. 25–33, 1996.

[18] S. Fields, J. M. Tendler, and S. Dodson, “Power4 system microarch-
itecture,” IBM, Tech. White Paper, 2001.

[19] T. F.Chenand J. L. Baer, “Effective hardware-baseddataprefetching
for highperformanceprocessors,” IEEETrans.Comput., vol. 44, no. 5,
pp. 609–623, 1995.

[20] First the Tick, “Now the tock: Next generation Intel® microarchi-
tecture (Nehalem),” Intel, White Paper, 2008.

[21] J. Owen and M. Steinman, “Northbridge architecture of AMD’s
Griffinmicroprocessor family,” IEEEMicro, vol. 28, no. 2, pp. 10–18,
2008.

[22] A. Aggarwal, “Reducing latencies of pipelined cache accesses
through set prediction,” in Proc. 19th Annu. Int. Conf. Supercomput.
(ICS’05), Jun. 2005, pp. 2–9.

[23] J. Higgins. (2011, Apr.) “The radical statistician: A practical guide to
unleashing the power of applied statistics in the real world,” Biddle
Consulting Group [Online]. Available: http://www.biddle.com/
documents/bcg_comp_chapter2.pdf.

[24] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt,
“The M5 simulator: Modeling networked systems,” IEEE Micro,
vol. 26, no. 4, pp. 52–60, Jul./Aug. 2006.

[25] C. D. Spradling, “SPEC CPU2006 benchmark tools,” in Proc. ACM
SIGARCH Comput. Archit. News, 2007, pp. 130–134.

[26] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. San Mateo, CA, USA: Morgan Kaufmann,
Sep. 2006.

[27] A. Glew, “MLP yes! ILP no!” in Proc. ASPLOS Wild and Crazy Idea a
workshop Session‘98, Oct. 1998.

[28] Y.Chou, B. Fahs, and S.Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proc. 31st Int. Symp.
Comput. Archit. (ISCA’04), Jun. 2004, pp. 76–89.

[29] D. Sorin Vijay, S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood,
“Analytic evaluation of shared-memory systems with ILP proces-
sors,” in Proc. 25th Int. Symp. Comput. Archit., 1998, pp. 166–180.

[30] W. Starke, “POWER7: IBM's next generation balanced POWER
server chip,” in Proc. Hotchip, 2009, p. 21.

[31] Y.-F. Tsai, F. Wang, and Y. Xie, “Design space exploration for 3-D
cache,” in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2008,
pp. 444–455.

DaweiWang received the PhD degree in comput-
er science at the Institute of Computing Technolo-
gy, Chinese Academy of Sciences, Beijing, China,
in 2009. He is now a postdoctoral researcher at the
Scalable Computing Software laboratory in Illinois
Institute of Technology, Chicago. His research
interests include computer architecture, large
scale interconnection networks, and architectural
simulation & emulation. He is currently working on
multi-core memory scheduling and prefetching ar-
ea to improve multi-core memory access band-

width utilization and minimize access latency.

Xian-He Sun is a distinguished professor of com-
puter science and the chairmanof theDepartment
of Computer Science, the Illinois Institute of Tech-
nology (IIT), Chicago. He is the director of the
Scalable Computing Software laboratory at IIT,
and is a guest faculty in the Mathematics and
Computer Science Division at the Argonne Na-
tional Laboratory, Lemont. Before joining IIT, he
worked at DoE Ames National Laboratory, at
ICASE, NASA Langley Research Center, and at
LouisianaStateUniversity, BatonRouge.He is an

IEEE fellow. His research interests include parallel and distributed pro-
cessing, memory and I/O systems, software systems, and performance
evaluation and optimization.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG AND SUN: APC: A NOVEL MEMORY METRIC AND MEASUREMENT METHODOLOGY 1639

