
Evaluating GPGPU Memory Performance Through
the C-AMAT Model

Ning Zhang
Illinois Institute of Technology

Chicago, IL 60616
USA

nzhang23@hawk.iit.edu

Chuntao Jiang
Foshan University

Foshan, Guangdong 510000
China

chuntjiang@gmail.com

Xian-He Sun
Illinois Institute of Technology

Chicago, IL 60616
USA

sun@iit.edu

Shuaiwen (Leon) Song
Pacific Northwest National Lab

Richland, WA 99354
USA

shuaiwen.song@pnnl.gov

ABSTRACT
General 1 Purpose Graphics Processing Units (GPGPU) have
become a popular platform to accelerate high performance
applications. Although they provide exceptional computing
power, GPGPU impose significant pressure on the off-chip
memory system. Evaluating, understanding, and improving
GPGPU data access delay has become an important research topic
in high-performance computing. In this study, we utilize the
newly proposed GPGPU/C-AMAT (Concurrent Average Memory
Access Time) model to quantitatively evaluate GPGPU memory
performance. Specifically, we extend the current C-AMAT model
to include a GPGPU-specific modeling component and then
provide its evaluation results.

CCS CONCEPTS
• Computer systems organization → Architectures → Parallel
architectures → Single instruction, multiple data

KEYWORDS
GPGPU, Memory Performance Evaluation, C-AMAT

ACM Reference format:
N. Zhang, C. Jiang, X. Sun, and S. Song. 2017. Evaluating GPGPU
Memory Performance Through the C-AMAT Model. In Proceedings of
ACM SIGHPC MCHPC 2017, 1st International Workshop on Memory
Centric Programming for HPC, in conjunction with SC’17, Denver, CO
USA, November 2017 (MCHPC’17), 5 pages.
DOI: 10.1145/3145617.3158214

1 INTRODUCTION

© 2017 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
MCHPC'17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5131-7/17/11�$15.00
https://doi.org/10.1145/3145617.3158214

General Purpose Graphics Processing Units (GPGPU) are
increasingly important for high performance computing (HPC).
They have been widely used as accelerators for general purpose
computing. However, they suffer from performance variability on
non-graphic applications, and often provide single digit utilization
for scientific applications due to inefficient data access. To
mitigate the data access delay, understanding GPGPU memory
performance and its contributing factors is essential for efficiency
optimization. Since data access delay is typically application-
dependent, the knowledge about such delay is often difficult to
obtain due to GPGPU’ massive parallelism. Currently, using
GPGPU efficiently in scientific computing is labor intensive as
well as a trial and error process.
 We apply the C-AMAT (Concurrent Average Memory Access
Time) [1] model to GPGPU for a better understanding of their
memory system performance. Our GPGPU/C-AMAT model
considers warp-level data access as the basic unit operation
because warps are executed in a SIMD fashion. In other words, a
warp will stall if any of its threads stalls. By considering both data
access concurrency and locality, the GPGPU/C-AMAT model
provides a reliable metric that can accurately reflect the
performance of GPGPU memory system.
 The rest of this paper is organized as follows. Section 2
introduces the background which includes the basic C-AMAT
definition and formulation in GPGPU architecture. Section 3
introduces the evaluation methodology of C-AMAT for GPGPU.
In Section 4, we provide the evaluation details. Then, Section 5
presents related work. Finally, Section 6 gives the conclusion.

2 BACKGROUND
In this section, we first introduce the GPGPU architecture and
scheduling schemes. Then, we introduce the C-AMAT model and
its interpretation toward GPGPU.

2.1 The GPGPU Architecture
A GPGPU consists of many simple in-order cores, which are
typically organized under the “single-instruction, multiple-
threads” (SIMT) execution model with lanes of 8 to 32 [2][3]. As
shown in Fig. 1, a GPGPU has several SM (streaming
multiprocessor) cores, each SM core consists of 32 or 64 small

MCHPC’17, November 2017, Denver, CO USA N. Zhang et al.

2

cores, and several load/store units. Each SM core has a private L1
data cache, a read-only texture cache and a constant cache, along
with a low-latency shared memory. SM cores have direct access
to L2 cache and are clustered for organization. They have a share
Memory Controllers (MC) to access DRAM. The GPGPU
architecture employs the memory coalescing technique, where
nearby memory accesses are coalesced into a single cache line, so
that the total number of memory requests is reduced.

Figure 1: Hardware Architecture of GPGPU

 Fig. 2 shows the software hierarchy of a GPGPU application
consisting of threads, warps, CTAs (Cooperative Thread Arrays),
and kernels. A group of threads constitute a “CTA” or “thread
block”. A CTA is essentially a batch of threads that can
coordinate among each other by synchronizing their execution
streams using barrier instructions. Since all the synchronization
primitives are encapsulated in the CTA, execution of CTAs can be
performed in any order [4][5]. This helps in maximizing the
available parallelism and any core is free to schedule any CTA.
Further, each kernel is associated with many CTAs, and one or
multiple kernels form a GPGPU application. A “warp” or a
“wavefront” is the granularity at which threads are scheduled to
the pipeline, and is a group of 32 threads. Note that a warp is an
architectural structure rather than a programming model concept.

Figure 2: Software Architecture of GPGPU

 GPGPU performances are highly influenced by scheduling
[6][7][8]. Scheduling is typically a three-step process. First, a
kernel of an application is launched on the GPGPU. Generally,

only one kernel is active at a time. After launching the kernel, the
second step is that the global block (CTA) scheduler assigns
CTAs of the launched kernel to all the available cores. The CTA
assignment is done in a load-balanced round-robin fashion. If
there are enough CTAs, each core is assigned with at least one
CTA. Then, if a core can execute multiple CTAs, a second round
of assignment starts; if there are enough available CTAs, this
process continues until all CTAs have been assigned or all the
cores have been assigned with their maximum limit of CTAs.
Assuming there are enough CTAs to schedule, and the number of
concurrently executing CTAs in the system is equal to N. The
maximum CTAs (N) per-core is limited by core resources. Given
a baseline architecture, CTAs(N) may vary for a given kernel
depending on the resources needed by the CTAs. After the CTA
assignment, the third step is to schedule the warps, which are
associated with the launched CTA(s), on a core. The warps are
typically scheduled in different scheduling policies such as round-
robin and GTO (Greedy Then Oldest) to the SIMT lanes. Note
that warp is the smallest unit that can be scheduled on GPGPU
[9][10].

2.2 C-AMAT and its Interpretation on GPGPU
The C-AMAT (Concurrent-AMAT) memory performance model
[1] is an extension of the traditional AMAT (Average Memory
Access Time) model [11] to consider concurrent data access.
Quantitatively speaking, C-AMAT is equal to the total memory
access cycles divided by the total number of memory accesses
[12]. Let TMemCycle represent the total number of cycles executed
in which there is at least one outstanding memory reference; and
let CMemAcc represent the total number of memory accesses, then
we have,

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" − $%$& = &%()"*+,(
"%()$++

!!!!!!!!!!!!!! (1)

 In GPGPU, a warp cannot progress until all its threads have
fetched their data. In other words, if one thread has a cache miss,
then the while warp will be stalled. Therefore, different with CPU,
the C-AMAT model for GPGPU considers warp-level data
accesses instead of counting thread-level access. Therefore, in the
two-parameter C-AMAT definition Eq. (1), for GPGPU, CMemAcc

represents the total number of warp-level memory accesses. The
TMemCycle calculation for GPGPU is the same as that of CPU
without any change. An overlapping mode is adopted for counting
memory access cycles. That is when more than one warps access
memory at the same memory cycle, TMemCycle only increases by
one. Another important feature of TMemCycle is that it only counts
memory active cycles. That is if the memory is idle (here idle
means there is no ongoing data access under its memory branch),
then there is no TMemCycle counting.
 A five-parameter form of C-AMAT is shown in Equation (2)
[1], which is extremely useful for performance analysis.

!!!!!!!!!!!!!!!!" − $%$& = !!!!
-
"-

+ /%0×
/$%2
"%

!!!!!!!!!!!!!!!!!!!!! (2)

Evaluating GPGPU Memory Performance Through the C-AMAT
Model MCHPC’17, November 2017, Denver, CO USA

 3

 In Eq. (2), the first parameter CH represents the hit concurrency;
the second parameter CM represents the pure miss concurrency. In
modern cache design, multi-port cache, multi-banked cache or
pipelined cache structures could contribute to CH. Non-blocking
cache structure could contribute the CM. pMR (Pure Miss Ratio) in
Eq. (2) is the number of pure misses over the total number of
accesses. Pure miss is an important concept introduced by C-
AMAT [1]. It means that the miss contains at least one miss cycle
which does not have any hit access. pAMP (Average Pure Miss
Penalty) is the average number of pure miss cycles per pure miss

Figure 3: A C-AMAT Example

access. Fig. 3 provides a demonstration example to illustrate the
“hit”, “miss”, and “pure miss” cycle concept. There are 10
different memory accesses in Fig. 3. Each access contains 2 cycles
for cache hit operations. If it is a miss, additional miss penalty
cycles will be required. The number of miss penalty cycles is
uncertain because the miss will happen in different level caches.
From Fig. 1, access 1, 3, 5, 8 are hit accesses and access 2, 4, 6, 7,
9, 10 are miss accesses. Access 2, access 4, access 7 and access 10
both have 3-cycle miss penalty while both access 6 and 9 have 7-
cycle miss penalty. When considering the access concurrency and
the definition of pure miss, access 4 and 7 contain 1 pure miss
cycle; access 6 has 3 pure miss cycles; access 9 has 5 pure miss
cycles; access 10 has 3 pure miss cycles. There are three kinds of
phases in Fig. 3 which are Hit Phases, Hit/Miss Phases and Pure
Miss Phases. In Hit Phases, there are only hit cycles. In Pure Miss
Phases, there are only pure miss cycles and in Hit/Miss Phases
both miss cycles and hit cycles exist. The overlapping of hit and
miss access happens in Hit/Miss Phases. According to Eq. (1), C-
AMAT in Fig. 3 is 17 cycles out of 10 accesses or 1.7 cycle per
access. Another approach to calculate C-AMAT is to use hit and
miss concurrency factors. The critical question is how to obtain an
accurate average CH and CM. Here a weighted method is applied
to calculate the average value in [1]. As the example shown in
Fig. 3, there are 20 hits over 11 memory cycles. Therefore, CH =
20/11 = 1.82. And there are two pure miss phases, with totally 13
pure misses on 6 cycles. Therefore, CM = 13/6 = 2.17; pAMP =
13/5 =2.6; pMR = 5/10. Thus Eq. (2) is equal to

-
"6

+ /%0×/$%2"7
= 2
20/11 +

5
10×

13/5
13/6 = 1.7

The C-AMAT values calculated by Eq. (1) and Eq. (2) are the
same because these two equations are equivalent.
 In GPGPU, convert the data access at the warp level, the C-
AMAT parameters in Eq. (2) have their new meaning as follows.

•! Warp-level cache hit (H): when all threads of the warp have

a cache hit.
•! Warp-level cache miss (M): when one or more threads of the

warp has a cache miss.
•! Warp-level cache pure miss (pM): all warps cannot be

scheduled due to warp-level miss.
•! Average Warp-level hit concurrency (CH): accumulated

warp-level hit cycles / active warp-level hit cycles.
•! Average Warp-level pure miss concurrency (CM):

accumulated warp-level pure miss cycles / active warp-level
pure miss cycles.

 Under the wrap-level definitions, the GPGPU/C-AMAT model
is appropriate for GPGPU for the following reasons. Firstly, miss
and hit are defined at the warp-level. This is because warp is
executed under the SIMD execution model. One miss will stall the
whole wrap. Secondly, the pure miss concept introduced by the C-
AMAT model is also extended to the warp-level in GPGPU. This
is because GPGPU employs warp-level scheduling to increase
throughput and hiding data access latency. When one warp is
stalled due to miss, another warp in the waiting queue will be
scheduled into the pipeline for execution. This miss/fetch process
will continue until the waiting queue is empty. Therefore, a
GPGPU/C-AMAT pure miss is defined as all warps are stalled by
data misses. The warp-level pure misses of GPGPU/C-AMAT are
the misses causing a SM core idle. They provide a reliable
measurement that can accurately reflect the runtime data transfer
behaviors of GPGPU memory systems.

3 GPGPU/C-AMAT MEASUREMENT
To measure the C-AMAT value of the memory system in
GPGPU, only two parameters need to be measured as given by
Eq. (1). They are CMemAcc (Memory access) and TMemCycle
(Memory Active Cycles). To precisely measure these two
parameters, a C-AMAT Measurement Structure is designed in Fig.
4, which shows the design logic of measuring the C-AMAT of L1
Dcache in each SM core of GPGPU.
 There are several components on Fig.4, namely MSHR (Miss
Status Holding Register), Load/Store Unit and C-AMAT
Measurement Logic (CML), etc. MSHR is a structured table. It
records cache miss information, such as access type (load/store),
access address, and return register. When the MSHR table is
empty, there is no any outstanding cache miss. While the MSHR
table is not empty, it means the cache is actively waiting for data
return from the next level layer of the memory hierarchy. The
Load/Store Unit is a specialized execution unit responsible for
executing all load and store instructions and loading data from
memory or storing data back to memory from registers. When the
Load/Store Unit is busy, it means the L1 Dcache is also active
because Load/Store Unit is sending data access requests to L1

MCHPC’17, November 2017, Denver, CO USA N. Zhang et al.

4

Dcache or waiting for the response from L1 Dcache. So CML can

Figure 4: C-AMAT Measurement Structure

count the L1 Dcache active cycles through AS (Active Signal)
from Load/Store Unit and MSHR. One SM have many Load/Store
Units and if only one of Load/Store Units is busy, the AS will be
valid. We set CML’s clock be the same as that of SM to make
time synchronized to count the L1 Dcache active cycles. The
active cycle counting logic of L1 Dcache is shown in Table 1.

Table 1: L1 Dcache Active Cycle Counting Logic

Pseudo Code for Counting L1 Dcache Active Cycles
If (MSHR table is not empty) // having pending cache miss
 Active_cycle ++;
Else if (Load/Store Unit is busy) //cache is accessing
 Active_cycle ++;
Else
 Active_cycle does not change

 The CML only needs two long-bit sized registers (e.g., 64-bit
register is sufficient for most computer systems) and some
detecting logic. One register counts the total number of memory
access cycles; the other counts memory accesses. While a memory
accesses counter is already provided by existing GPGPU
performance counters, the CML just reads this count and does the
C-AMAT calculation with these two counters as Eq. (1) shows.

4 EXPERIMENTAL SETUP AND RESULTS
A detailed simulation model of GPGPU in GPGPU-Sim simulator
was adopted, which simulates NVIDIA's Fermi and GT200
architectures. This simulator also includes an integrated and
validated energy model, GPUWattch. The intention of GPGPU-
Sim is to provide a substrate for architecture research rather than
to exactly model any commercial GPU.

In our experiments, we use GPGPU-Sim version 3.1.0, a
cycle-level version that focuses on "GPU computing" (general
purpose computation on GPU). Table 2 shows the details of the
key simulation configuration parameters and their values. We
simulate GPGPU architecture with 15 processing clusters, and 1
SM core per cluster. The employed warp scheduler uses GTO
(Greedy Then Oldest) scheduling policy. There are 16 register

banks. The number of warp scheduler per core is one. In one SM
core, the maximum number of concurrent CTAs is 8. In fact, we
configure the parameters in our experiment following the Fermi
microarchitecture developed by NVIDIA. We deploy our
experiments on this mature architecture to get more reasonable
results.

 Table 2: GPGPU-Sim Simulation Configuration Parameters

Parameter Value
Processing clusters 15
SM core per cluster 1

Warp scheduler GTO
Number of register banks 16

Number of warp schedulers per core 2
Maximum number of concurrent CTAs per SM 8

 The C-AMAT value for L1 Dcache in simulated GPGPU
architecture is measured in our experiments. The two-parameter
C-AMAT measurement methodology is employed, which
measures TMemCycle and CMemAcc. Fig. 5 and Fig. 6 show the L1 C-
AMAT values of 15 SM cores for B+Tree and Particular Filter
applications, respectively. We can observe two phenomena
through the figures. One phenomenon is that L1 Dcache C-AMAT
values vary largely for different CUDA applications. For example,
the average L1 cache C-AMAT value is about 10 for B+Tree, but
for Particular Filter it is about 40 which means the L1 Dcahe
performance of Particular Filter is four times worse than that of
B+Tree. It is because B+Tree is cache friendly application while
Particular Filter is cache unfriendly application. This implies that

Figure 5: L1 Dcache C-AMAT values of 15 SM cores for
B+Tree

different applications have different types of data requests,
leading to totally different data access pressure on GPGPU
memory hierarchy (L1 Dcache in this example). Therefore, we
need to adjust the data requests and the data supply to make them
match each other, to achieve an optimized performance. Another

Evaluating GPGPU Memory Performance Through the C-AMAT
Model MCHPC’17, November 2017, Denver, CO USA

 5

phenomenon we have observed is that even for the same
application, the L1 cache C-AMAT value for different SM cores
are also different. For example, in B+Tree application, the
smallest C-AMAT value is about 9, but the biggest C-AMAT
value is about 11.5; in the Particular Filter application, the
smallest C-AMAT value is about 38, but the biggest C-AMAT
value is up to 48. This implies that different SM cores have
different data requests. Therefore, the optimization work is also
needed at SM core level to balance the workloads between SM
cores. Please notice here the balance is on data accesses, which is
not necessarily the same as operation count.

Figure 6: L1 Dcache C-AMAT values of 15 SM cores for
Particular Filter

Through the experimental results, we can see that the GPGPU/C-
AMAT model can accurately indicate the performance of GPGPU
memory systems and data access behaviors. An unbalanced data
access behavior at warp level will hinder applications from fully
utilizing the GPGPU computing power. In the future, we plan to
apply our GPGPU/C-AMAT measurement to guide GPGPU
memory system optimizations, e.g. to balance data access requests
among SM cores via CTA scheduling.

5 RELATED WORK
Sun et al. [1] firstly proposed C-AMAT for modeling memory
systems in a general CPU environment. Govindaraju et al. [13]
presented a memory model to improve the performance of
applications (SGEMM, FFT) by improving texture cache usage.
The work by Liu et al [14] modeled the performance of bio-
sequence alignment applications written in GLSL (OpenGL
Shading Language) [15]. Compared with the C-AMAT model in
GPGPU, these models are simplified for specific applications
where the C-AMAT model in GPGPU is generic to all GPGPU
applications.

6 CONCLUSIONS
In this paper we have applied the general C-AMAT Model on
GPGPU memory systems. Based on the characteristics of
GPGPU, the parameters of C-AMAT are redefined for the

application domain. We have also designed a C-AMAT
measurement methodology for GPGPU. Based on the design of
measurement, the C-AMAT values of the L1 Dcache of GPGPU
are measured and studied. The modern GPGPU system simulator,
GPGPU-Sim, is enhanced for the C-AMAT measurement.
Through experimental results, we can see that the L1 Dcache
performances of GPGPU are very different among different
applications and among different SM cores, which lead to future
performance optimizations for GPGPU memory systems.

ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation, under grant CCF-1536079, CNS-1338078, and the
Chameleon Cloud.

 REFERENCES
[1] X.-H. Sun and D. Wang, “Concurrent Average Memory Access

Time,” Computer, vol. 47, no. 5, pp. 74–80, 2014.
[2] A. Jog, O. Kayiran, N.C. Nachiappan, and et al. “OWL: Cooperative

Thread Array Aware Scheduling Techniques for Improving GPGPU
Performance,” SIGPLAN Vol.48, pp. 395-406, 2013.

[3] M. Lee et al., “Improving GPGPU Resource Utilization through
Alternative Thread Block Scheduling,” IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA),
Orlando, FL, pp. 260-271, 2014.

[4] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in gpus:
Characterization, impact, and mitigation,” in Proceedings of 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA-20), 2014.

[5] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for gpgpus,” in Proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT’13), 2013.

[6] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving gpgpu resource utilization through alternative thread block
scheduling,” in Proceedings of 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA-20),
2014.

[7] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “Cawa: coordinated warp
scheduling and cache prioritization for critical warp acceleration of
gpgpu workloads,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA-42), 2015.

[8] J. Wang and S. Yalamanchili, “Characterization and analysis of
dynamic parallelism in unstructured gpu applications,” in Proceedings
of 2014 IEEE International Symposium on Workload Characterization
(IISWC’14), 2014.

[9] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic
thread block launch: A lightweight execution mechanism to support
irregular applications on gpus,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecuture (ISCA-42),
2015.

[10] G. Chen and X. Shen, “Free launch: Optimizing gpu dynamic kernel
launches through thread reuse,” in Proceedings of the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-
48), 2015.

[11] Wulf, W. A. and Mckee, S. A. 1995. Hitting the Memory Wall:
Implications of the Obvious. ACM SIGARCH computer architecture
news 23, 1, 20-24.

[12] X.-H. Sun, “Concurrent-AMAT: A Mathematical Model for Big Data
access,” HPC Magazine, 2014.

[13] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory
model for scientific algorithms on graphics processors. In SC, 2006

[14] S. B. Weiguo Liu, Muller-Wittig. Performance predictions for general-
purpose computation on gpus. 2007.

[15] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL shading
language. http://www.opengl.org/documentation.

