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ABSTRACT 
General 1 Purpose Graphics Processing Units (GPGPU) have 
become a popular platform to accelerate high performance 
applications. Although they provide exceptional computing 
power, GPGPU impose significant pressure on the off-chip 
memory system. Evaluating, understanding, and improving 
GPGPU data access delay has become an important research topic 
in high-performance computing. In this study, we utilize the 
newly proposed GPGPU/C-AMAT (Concurrent Average Memory 
Access Time) model to quantitatively evaluate GPGPU memory 
performance. Specifically, we extend the current C-AMAT model 
to include a GPGPU-specific modeling component and then 
provide its evaluation results.  

CCS CONCEPTS 
• Computer systems organization → Architectures → Parallel 
architectures → Single instruction, multiple data 
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General Purpose Graphics Processing Units (GPGPU) are 
increasingly important for high performance computing (HPC). 
They have been widely used as accelerators for general purpose 
computing. However, they suffer from performance variability on 
non-graphic applications, and often provide single digit utilization 
for scientific applications due to inefficient data access. To 
mitigate the data access delay, understanding GPGPU memory 
performance and its contributing factors is essential for efficiency 
optimization. Since data access delay is typically application-
dependent, the knowledge about such delay is often difficult to 
obtain due to GPGPU’ massive parallelism. Currently, using 
GPGPU efficiently in scientific computing is labor intensive as 
well as a trial and error process.  
    We apply the C-AMAT (Concurrent Average Memory Access 
Time) [1] model to GPGPU for a better understanding of their  
memory system performance. Our GPGPU/C-AMAT model 
considers warp-level data access as the basic unit operation 
because warps are executed in a SIMD fashion. In other words, a 
warp will stall if any of its threads stalls. By considering both data 
access concurrency and locality, the GPGPU/C-AMAT model 
provides a reliable metric that can accurately reflect the 
performance of GPGPU memory system. 
    The rest of this paper is organized as follows. Section 2 
introduces the background which includes the basic C-AMAT 
definition and formulation in GPGPU architecture. Section 3 
introduces the evaluation methodology of C-AMAT for GPGPU. 
In Section 4, we provide the evaluation details. Then, Section 5 
presents related work. Finally, Section 6 gives the conclusion. 

2   BACKGROUND 
In this section, we first introduce the GPGPU architecture and 
scheduling schemes. Then, we introduce the C-AMAT model and 
its interpretation toward GPGPU. 

2.1 The GPGPU Architecture 
A GPGPU consists of many simple in-order cores, which are 
typically organized under the “single-instruction, multiple-
threads” (SIMT) execution model with lanes of 8 to 32 [2][3]. As 
shown in Fig. 1, a GPGPU has several SM (streaming 
multiprocessor) cores, each SM core consists of 32 or 64 small 
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cores, and several load/store units. Each SM core has a private L1 
data cache, a read-only texture cache and a constant cache, along 
with a low-latency shared memory. SM cores have direct access 
to L2 cache and are clustered for organization. They have a share 
Memory Controllers (MC) to access DRAM. The GPGPU 
architecture employs the memory coalescing technique, where 
nearby memory accesses are coalesced into a single cache line, so 
that the total number of memory requests is reduced.  

  

Figure 1: Hardware Architecture of GPGPU 

     Fig. 2 shows the software hierarchy of a GPGPU application 
consisting of threads, warps, CTAs (Cooperative Thread Arrays), 
and kernels. A group of threads constitute a “CTA” or “thread 
block”. A CTA is essentially a batch of threads that can 
coordinate among each other by synchronizing their execution 
streams using barrier instructions. Since all the synchronization 
primitives are encapsulated in the CTA, execution of CTAs can be 
performed in any order [4][5]. This helps in maximizing the 
available parallelism and any core is free to schedule any CTA. 
Further, each kernel is associated with many CTAs, and one or 
multiple kernels form a GPGPU application. A “warp” or a 
“wavefront” is the granularity at which threads are scheduled to 
the pipeline, and is a group of 32 threads. Note that a warp is an 
architectural structure rather than a programming model concept.  

 

Figure 2: Software Architecture of GPGPU 

    GPGPU performances are highly influenced by scheduling 
[6][7][8]. Scheduling is typically a three-step process. First, a 
kernel of an application is launched on the GPGPU. Generally, 

only one kernel is active at a time. After launching the kernel, the 
second step is that the global block (CTA) scheduler assigns 
CTAs of the launched kernel to all the available cores. The CTA 
assignment is done in a load-balanced round-robin fashion. If 
there are enough CTAs, each core is assigned with at least one 
CTA. Then, if a core can execute multiple CTAs, a second round 
of assignment starts; if there are enough available CTAs, this 
process continues until all CTAs have been assigned or all the 
cores have been assigned with their maximum limit of CTAs. 
Assuming there are enough CTAs to schedule, and the number of 
concurrently executing CTAs in the system is equal to N. The 
maximum CTAs (N) per-core is limited by core resources. Given 
a baseline architecture, CTAs(N) may vary for a given kernel 
depending on the resources needed by the CTAs. After the CTA 
assignment, the third step is to schedule the warps, which are 
associated with the launched CTA(s), on a core. The warps are 
typically scheduled in different scheduling policies such as round-
robin and GTO (Greedy Then Oldest) to the SIMT lanes. Note 
that warp is the smallest unit that can be scheduled on GPGPU 
[9][10]. 

2.2 C-AMAT and its Interpretation on GPGPU 
The C-AMAT (Concurrent-AMAT) memory performance model 
[1] is an extension of the traditional AMAT (Average Memory 
Access Time) model [11] to consider concurrent data access. 
Quantitatively speaking, C-AMAT is equal to the total memory 
access cycles divided by the total number of memory accesses 
[12].  Let TMemCycle represent the total number of cycles executed 
in which there is at least one outstanding memory reference; and 
let CMemAcc represent the total number of memory accesses, then 
we have,  
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     In GPGPU, a warp cannot progress until all its threads have 
fetched their data. In other words, if one thread has a cache miss, 
then the while warp will be stalled. Therefore, different with CPU, 
the C-AMAT model for GPGPU considers warp-level data 
accesses instead of counting thread-level access. Therefore, in the 
two-parameter C-AMAT definition Eq. (1), for GPGPU, CMemAcc 

represents the total number of warp-level memory accesses. The 
TMemCycle calculation for GPGPU is the same as that of CPU 
without any change. An overlapping mode is adopted for counting 
memory access cycles. That is when more than one warps access 
memory at the same memory cycle, TMemCycle only increases by 
one. Another important feature of TMemCycle is that it only counts 
memory active cycles. That is if the memory is idle (here idle 
means there is no ongoing data access under its memory branch), 
then there is no TMemCycle counting.  
     A five-parameter form of C-AMAT is shown in Equation (2) 
[1], which is extremely useful for performance analysis. 
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    In Eq. (2), the first parameter CH represents the hit concurrency; 
the second parameter CM represents the pure miss concurrency. In 
modern cache design, multi-port cache, multi-banked cache or 
pipelined cache structures could contribute to CH. Non-blocking 
cache structure could contribute the CM. pMR (Pure Miss Ratio) in 
Eq. (2) is the number of pure misses over the total number of 
accesses. Pure miss is an important concept introduced by C-
AMAT [1]. It means that the miss contains at least one miss cycle 
which does not have any hit access. pAMP (Average Pure Miss 
Penalty) is the average number of pure miss cycles per pure miss 

  

Figure 3: A C-AMAT Example 

access. Fig. 3 provides a demonstration example to illustrate the 
“hit”, “miss”, and “pure miss” cycle concept. There are 10 
different memory accesses in Fig. 3. Each access contains 2 cycles 
for cache hit operations. If it is a miss, additional miss penalty 
cycles will be required. The number of miss penalty cycles is 
uncertain because the miss will happen in different level caches. 
From Fig. 1, access 1, 3, 5, 8 are hit accesses and access 2, 4, 6, 7, 
9, 10 are miss accesses. Access 2, access 4, access 7 and access 10 
both have 3-cycle miss penalty while both access 6 and 9 have 7-
cycle miss penalty. When considering the access concurrency and 
the definition of pure miss, access 4 and 7 contain 1 pure miss 
cycle; access 6 has 3 pure miss cycles; access 9 has 5 pure miss 
cycles; access 10 has 3 pure miss cycles. There are three kinds of 
phases in Fig. 3 which are Hit Phases, Hit/Miss Phases and Pure 
Miss Phases. In Hit Phases, there are only hit cycles. In Pure Miss 
Phases, there are only pure miss cycles and in Hit/Miss Phases 
both miss cycles and hit cycles exist. The overlapping of hit and 
miss access happens in Hit/Miss Phases. According to Eq. (1), C-
AMAT in Fig. 3 is 17 cycles out of 10 accesses or 1.7 cycle per 
access. Another approach to calculate C-AMAT is to use hit and 
miss concurrency factors. The critical question is how to obtain an 
accurate average CH and CM. Here a weighted method is applied 
to calculate the average value in [1]. As the example shown in 
Fig. 3, there are 20 hits over 11 memory cycles. Therefore, CH = 
20/11 = 1.82. And there are two pure miss phases, with totally 13 
pure misses on 6 cycles. Therefore, CM = 13/6 = 2.17; pAMP = 
13/5 =2.6; pMR = 5/10. Thus Eq. (2) is equal to 

-
"6

+ /%0×/$%2"7
= 2
20/11 +

5
10×

13/5
13/6 = 1.7 

The C-AMAT values calculated by Eq. (1) and Eq. (2) are the 
same because these two equations are equivalent.  
     In GPGPU, convert the data access at the warp level, the C-
AMAT parameters in Eq. (2) have their new meaning as follows.  
 
•! Warp-level cache hit (H): when all threads of the warp have 

a cache hit. 
•! Warp-level cache miss (M): when one or more threads of the 

warp has a cache miss. 
•! Warp-level cache pure miss (pM): all warps cannot be 

scheduled due to warp-level miss. 
•! Average Warp-level hit concurrency (CH): accumulated 

warp-level hit cycles / active warp-level hit cycles. 
•! Average Warp-level pure miss concurrency (CM): 

accumulated warp-level pure miss cycles / active warp-level 
pure miss cycles. 
 

     Under the wrap-level definitions, the GPGPU/C-AMAT model 
is appropriate for GPGPU for the following reasons. Firstly, miss 
and hit are defined at the warp-level. This is because warp is 
executed under the SIMD execution model. One miss will stall the 
whole wrap. Secondly, the pure miss concept introduced by the C-
AMAT model is also extended to the warp-level in GPGPU. This 
is because GPGPU employs warp-level scheduling to increase 
throughput and hiding data access latency. When one warp is 
stalled due to miss, another warp in the waiting queue will be 
scheduled into the pipeline for execution. This miss/fetch process 
will continue until the waiting queue is empty. Therefore, a 
GPGPU/C-AMAT pure miss is defined as all warps are stalled by 
data misses. The warp-level pure misses of GPGPU/C-AMAT are 
the misses causing a SM core idle. They provide a reliable 
measurement that can accurately reflect the runtime data transfer 
behaviors of GPGPU memory systems. 

3  GPGPU/C-AMAT MEASUREMENT  
To measure the C-AMAT value of the memory system in 
GPGPU, only two parameters need to be measured as given by 
Eq. (1). They are CMemAcc (Memory access) and TMemCycle 
(Memory Active Cycles). To precisely measure these two 
parameters, a C-AMAT Measurement Structure is designed in Fig. 
4, which shows the design logic of measuring the C-AMAT of L1 
Dcache in each SM core of GPGPU.  
    There are several components on Fig.4, namely MSHR (Miss 
Status Holding Register), Load/Store Unit and C-AMAT 
Measurement Logic (CML), etc.  MSHR is a structured table. It 
records cache miss information, such as access type (load/store), 
access address, and return register. When the MSHR table is 
empty, there is no any outstanding cache miss. While the MSHR 
table is not empty, it means the cache is actively waiting for data 
return from the next level layer of the memory hierarchy. The 
Load/Store Unit is a specialized execution unit responsible for 
executing all load and store instructions and loading data from 
memory or storing data back to memory from registers. When the 
Load/Store Unit is busy, it means the L1 Dcache is also active 
because Load/Store Unit is sending data access requests to L1 
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Dcache or waiting for the response from L1 Dcache. So CML can 

 

Figure 4: C-AMAT Measurement Structure  

count the L1 Dcache active cycles through AS (Active Signal) 
from Load/Store Unit and MSHR. One SM have many Load/Store 
Units and if only one of Load/Store Units is busy, the AS will be 
valid. We set CML’s clock be the same as that of SM to make 
time synchronized to count the L1 Dcache active cycles. The 
active cycle counting logic of L1 Dcache is shown in Table 1. 
 

Table 1: L1 Dcache Active Cycle Counting Logic 
 

Pseudo Code for Counting L1 Dcache Active Cycles 
If (MSHR table is not empty) // having pending cache miss 
       Active_cycle ++; 
Else if (Load/Store Unit is busy) //cache is accessing  
       Active_cycle ++; 
Else 
       Active_cycle does not change              

 
    The CML only needs two long-bit sized registers (e.g., 64-bit 
register is sufficient for most computer systems) and some 
detecting logic. One register counts the total number of memory 
access cycles; the other counts memory accesses. While a memory 
accesses counter is already provided by existing GPGPU 
performance counters, the CML just reads this count and does the 
C-AMAT calculation with these two counters as Eq. (1) shows. 

4 EXPERIMENTAL SETUP AND RESULTS 
A detailed simulation model of GPGPU in GPGPU-Sim simulator 
was adopted, which simulates NVIDIA's Fermi and GT200 
architectures. This simulator also includes an integrated and 
validated energy model, GPUWattch. The intention of GPGPU-
Sim is to provide a substrate for architecture research rather than 
to exactly model any commercial GPU. 

In our experiments, we use GPGPU-Sim version 3.1.0, a 
cycle-level version that focuses on "GPU computing" (general 
purpose computation on GPU). Table 2 shows the details of the 
key simulation configuration parameters and their values. We 
simulate GPGPU architecture with 15 processing clusters, and 1 
SM core per cluster. The employed warp scheduler uses GTO 
(Greedy Then Oldest) scheduling policy. There are 16 register 

banks. The number of warp scheduler per core is one. In one SM 
core, the maximum number of concurrent CTAs is 8. In fact, we 
configure the parameters in our experiment following the Fermi 
microarchitecture developed by NVIDIA. We deploy our 
experiments on this mature architecture to get more reasonable 
results. 

 Table 2: GPGPU-Sim Simulation Configuration Parameters  

Parameter Value 
Processing clusters 15 
SM core per cluster 1 

Warp scheduler GTO 
Number of register banks 16 

Number of warp schedulers per core 2 
Maximum number of concurrent CTAs per SM 8 

 
     The C-AMAT value for L1 Dcache in simulated GPGPU 
architecture is measured in our experiments. The two-parameter 
C-AMAT measurement methodology is employed, which 
measures TMemCycle and CMemAcc. Fig. 5 and Fig. 6 show the L1 C-
AMAT values of 15 SM cores for B+Tree and Particular Filter 
applications, respectively. We can observe two phenomena 
through the figures. One phenomenon is that L1 Dcache C-AMAT 
values vary largely for different CUDA applications. For example, 
the average L1 cache C-AMAT value is about 10 for B+Tree, but 
for Particular Filter it is about 40 which means the L1 Dcahe 
performance of Particular Filter is four times worse than that of 
B+Tree. It is because B+Tree is cache friendly application while 
Particular Filter is cache unfriendly application. This implies that 

  

Figure 5: L1 Dcache C-AMAT values of 15 SM cores for 
B+Tree 

different applications have different types of data requests, 
leading to totally different data access pressure on GPGPU 
memory hierarchy (L1 Dcache in this example). Therefore, we 
need to adjust the data requests and the data supply to make them 
match each other, to achieve an optimized performance. Another 
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phenomenon we have observed is that even for the same 
application, the L1 cache C-AMAT value for different SM cores 
are also different. For example, in B+Tree application, the 
smallest C-AMAT value is about 9, but the biggest C-AMAT 
value is about 11.5; in the Particular Filter application, the 
smallest C-AMAT value is about 38, but the biggest C-AMAT 
value is up to 48. This implies that different SM cores have 
different data requests. Therefore, the optimization work is also 
needed at SM core level to balance the workloads between SM 
cores. Please notice here the balance is on data accesses, which is 
not necessarily the same as operation count. 

Figure 6: L1 Dcache C-AMAT values of 15 SM cores for 
Particular Filter 

       
Through the experimental results, we can see that the GPGPU/C-
AMAT model can accurately indicate the performance of GPGPU 
memory systems and data access behaviors. An unbalanced data 
access behavior at warp level will hinder applications from fully 
utilizing the GPGPU computing power. In the future, we plan to 
apply our  GPGPU/C-AMAT measurement to guide GPGPU 
memory system optimizations, e.g. to balance data access requests 
among SM cores via CTA scheduling. 

5    RELATED WORK 
Sun et al. [1] firstly proposed C-AMAT for modeling memory 
systems in a general CPU environment. Govindaraju et al. [13] 
presented a memory model to improve the performance of 
applications (SGEMM, FFT) by improving texture cache usage. 
The work by Liu et al [14] modeled the performance of bio-
sequence alignment applications written in GLSL (OpenGL 
Shading Language) [15]. Compared with the C-AMAT model in 
GPGPU, these models are simplified for specific applications 
where the C-AMAT model in GPGPU is generic to all GPGPU 
applications. 

6 CONCLUSIONS 
In this paper we have applied the general C-AMAT Model on 
GPGPU memory systems. Based on the characteristics of 
GPGPU, the parameters of C-AMAT are redefined for the 

application domain. We have also designed a C-AMAT 
measurement methodology for GPGPU. Based on the design of 
measurement, the C-AMAT values of the L1 Dcache of GPGPU 
are measured and studied. The modern GPGPU system simulator, 
GPGPU-Sim, is enhanced for the C-AMAT measurement. 
Through experimental results, we can see that the L1 Dcache 
performances of GPGPU are very different among different 
applications and among different SM cores, which lead to future 
performance optimizations for GPGPU memory systems. 
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