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Abstract—Log data is an incredible asset for troubleshooting
in large-scale systems. Nevertheless, due to the ever-growing
system scale, the volume of such data becomes overwhelming,
bringing enormous burdens on both data storage and data
analysis. To address this problem, we present a 2-dimensional
online filtering mechanism to remove redundant and noisy data
via feature selection and instance selection. The objective of this
work is two-fold: (i) to significantly reduce data volume without
losing important information, and (ii) to effectively promote data
analysis. We evaluate this new filtering mechanism by means of
real environmental data from the production supercomputers at
Oak Ridge National Laboratory and Sandia National Laboratory.
Our preliminary results demonstrate that our method can reduce
more than 85% disk space, thereby significantly reducing analysis
time. Moreover, it also facilitates better failure prediction and
diagnosis by more than 20%, as compared to the conventional
predictive approach relying on RAS (Reliability, Availability, and
Serviceability) events alone.

I. INTRODUCTION

As supercomputers continue to grow in size and complexity,

reliability becomes a major concern in the field of high per-

formance computing (HPC). Because of this, modern systems

are deployed with various monitoring and logging facilities

to track system health and status during operations [1, 2].

For example, the environmental monitors deployed on IBM

Blue Gene systems can collect data like temperatures, clock

frequency, fan speeds, and voltages, from the underlying hard-

ware devices [3]; the OVIS monitoring tool developed from

Sandia National Lab can collect various state variables (e.g.,

temperature, CPU utilization, fan speed) and user-specified

variables (e.g., aggregated memory errors over the life span of

a job) on various large-scale clusters [4]. Log data is a critical

asset to successfully operating large-scale systems. System

administrators typically examine these data to spot faults or

errors, and numerous technologies are presented to utilize log

data for fault prediction and root cause analysis [5, 6, 7, 8, 9].

Nevertheless, because of the scale of supercomputers and

the fine granularity of logging tools, an overwhelming amount

of data are often collected in a very short period of time and

enormous storage capacity is typically required for archiving

these log data. For example, OVIS collects ∼10 GB of data per

day when monitoring just the hardware of Sandia Glory cluster

of 288 servers with 16 cores each (4600 cores total) and data

taken on a 10 second interval [1]. For a larger system like the

new Japanese K machine containing 705K cores (150+ times

larger than Glory), it could collect ∼1.5TB/day of information.

Future machines are projected to have even more components,

thus archiving the raw environmental data is problematic and

how to save space becomes critical.

Given the huge amount of data collected, human operators

have to spend tremendous amount of time and effort to scan

through these data for useful information. Such manual pro-

cessing is time-consuming, error-prone, and impractical. In the

past, a number of analytical algorithms have been presented

which can be used to assist human to automatically diagnose

system behaviors. Nevertheless, the large data volume and

their complicated internal relations pose a major obstacle to

many data analysis methods, because an analytical algorithm

may take hours to extract important information from a large

amount of data. As a result, although log data are valuable

source, they often become useless files that just fill up disk

space simply because we have too little time to review too

much information. This raises the first key question: how to

significantly reduce the volume of log data like environmental

data without losing important information?

Due to the problems caused by the overwhelming amount of

data, many systems turn off their monitoring facilities or only

collect and archive critical events (e.g., RAS events or console

events). These events are often generated when abnormal

readings are encountered by environmental monitors, therefore

they are much smaller in size [3]. This leads to a common

practice, where most existing failure prediction and diagnosis

studies rely on critical events alone for analyzing system be-

haviors. For example, the commonly used prediction methods

(e.g., association rules, statistical rules, or combinations of

various basic learners) typically examine causal correlations

among fatal and non-fatal events to discover failure patterns

[7, 8, 10, 11, 9]. There are at least two limitations of these

studies. First, despite the great effort to improve prediction

accuracy, the best accuracy achieved by these approaches is

typically lower than 80%. Second, critical events generally

do not contain sufficient information regarding root causes of

failures. Together, these raise the second key question: can we

improve data analysis like prediction accuracy and diagnosis

accuracy by utilizing environmental data?

In this paper, we intend to answer the above two questions

by presenting a 2-dimensional online data filtering mechanism

to remove noisy and redundant data horizontally (via feature



selection) as well as vertically (via instance selection). Figure

1 gives an overview of our filtering design. Our design com-

prises three major components. First is data integration, where

various data streams from different sources are synchronized

and fed to a buffer in memory. Once the buffer is filled, the

data is moved out for further operations and the buffer is

vacated to receive new data. Second is feature selection, where

data filtering is conducted horizontally, meaning representative

features are selected and the rest is dropped. Third is instance

selection, where data filtering is performed vertically along

the time axis, meaning representative instances are selected

and the rest is dropped.

Fig. 1. An overview of our 2-dimensional online filtering mechanism.
The texts in red represent the major components of our design.

To truly make this filtering mechanism useful in realistic en-

vironments, our design intends to provide several key features.

First, our design provides online filtering of log data, inspired

by the idea of stream processing. Second, the design is general

and flexible, where a variety of selection techniques can be

integrated in this framework. Third, the design can be used

with data compression technologies for further data reduction.

To demonstrate the effectiveness of our filtering design, we

conduct case studies on two real environmental data collected

from the production supercomputers (an environmental log

from a Blue Gene/P system at Oak Ridge National Lab and an

OVIS log from a cluster at Sandia National Lab). We examine

the amount of disk storage that can be reduced by applying

our online filtering mechanism. We also compare the effects of

our filtering mechanism as against random filtering. Further,

we study whether the proposed filtering mechanism brings a

positive or negative impact on failure prediction and diagnosis.

The use of multiple data is to ensure the presented mechanism

is not biased to any specific system or log and thus is general

for providing filtering service for a variety of log data.

For the Blue Gene/P environmental data, our method can

reduce ∼85.6% disk space without losing prediction accuracy

and root cause information. For the OVIS log, we can achieve

∼99.7% disk space saving without losing both prediction

accuracy and root cause information. To the best of our

knowledge, we are among the first to explore 2-dimensional

filtering (i.e., horizontally as well as vertically) for reducing

system logs like environmental data and utilize the filtered

data for better failure prediction and diagnosis on large-scale

systems.

While we compare prediction and diagnosis accuracy on

the filtered and the raw data in our experiments, the focus of

this work is not to compare different predictive or diagnostic

methods. Instead, our goal is to provide a general online

filtering framework for large-scale systems. We believe many

predictive and diagnostic methods can benefit from this work.

The organization of this paper is as follows. Section II

describes the system logs used in our case studies. Section III

presents the details of our 2-dimensional filtering mechanism.

Section IV presents our case studies using the 2-dimensional

filtering mechanism. Section V discusses related work. Finally,

Section VI summarizes this paper.

II. SYSTEM LOGS

As mentioned earlier, we will evaluate our filtering design

through two case studies. In this section we provide a back-

ground description of these logs used in our case studies. Table

I gives a summarization.

System Period Log Size

Eugene (2-rack

BlueGene/P)
3 months

RAS log 0.8 GB

Environmental log 6 GB

Glory (288 nodes,

4068-core cluster)
2 weeks

Console log 186 KB

OVIS log 11 GB

TABLE I
A SUMMARIZATION OF LOGS USED IN OUR CASE STUDIES.

A. Eugene and Its Environmental Data

Our first case study is based on a three-month environmental

log and its corresponding RAS log from the production

Blue Gene/P system named Eugene at Oak Ridge National

Laboratory. Eugene is a 2-rack Blue Gene/P system with the

standard Blue Gene/P configuration, in which the 2 racks are

laid in 2 rows (i.e., R0 to R1). The system consists of 8,192

compute nodes with a total number of 32,768 cores, offering

a peak performance of 27.9 TFlops [12]. On Blue Gene/P, the

environmental monitor reads status information from the cards

and stores these information in the environmental database.

The environmental monitor also generates RAS events when

abnormal readings are encountered [3].

In our study, the environmental data are categorized and

stored in 11 tables, each of which represents one of follow-

ing components in Eugene: BULKPOWER, FAN, CLOCK-

CARD, LINKCARD, LINKCARDPOWER, LINKCHIP, N-

ODECARD, NODECARDPOWER, NODE, SERVICECARD

and SERVICECARDPOWER. Each table has different number

of features such as voltage, current, temperature, etc., and

the total number of features is 3, 214. The RAS events

are used to label the system status that has four levels:

“INFO”,“WARN”,“ERROR” and “FATAL”, with increasing

severity. Table II gives an example of the environmental data

for a component and Table III gives an example of the RAS

events.



Time Location MaxTemp1 MinTemp1 ...

1.5856e8 R00-M0-N5 32 29 ...

1.7356e8 R00-M1-N1 30 27 ...

1.7356e8 R01-M1-N7 30 26 ...

TABLE II
ENVIRONMENTAL DATA FOR A COMPONENT FROM Eugene

Time Location Severity ...

1.4856e8 R00-B-P2 WARN ...

1.5356e8 R00-M0-A9 ERROR ...

1.5356e8 R01-M0-N1-J06 FATAL ...

TABLE III
RAS EVENTS FROM Eugene

B. Glory and Its OVIS Data

Our second case study is based on the OVIS data collected

from Glory at Sandia National Laboratories [4]. Glory is

a 288-node, 4068-core Opteron cluster with an Infiniband

interconnect. Similar to the environmental data in BlueGene/P,

the fundamental system data collected by OVIS are stored

separately into 51 tables, each of which represents a combi-

nation of component type and metric. For example, the table

name “MetricCnCPUTempValues” indicates the table stores

CPUTemp values of the component with type “cn”. In this

study, the 51 type-metric combinations are collected per node

based on a one-minute sampling rate and the total number of

features is 14,688. Also, the console records during the same

period are used to label the system status. Table IV gives an

example of the OVIS data for a type-metric combination and

Table V gives an example of the console records.

TableKey CompId Value Time

1 106 315536 2009-02-11 16:05:27

2 173 402619 2009-02-12 11:21:14

3 227 246136 2009-02-18 11:59:38

TABLE IV
OVIS DATA FOR A TYPE-METRIC COMBINATION FROM Glory

console.glory131:2009-02-11 15:42:38 Out of memory: ...

console.glory165:2009-02-27 02:04:03 APP4 invoked oom-killer: ...

console.glory181:2009-02-11 15:36:35 APP26 invoked oom-killer: ...

TABLE V
CONSOLE RECORDS FROM Glory

III. METHODOLOGY

As shown in Figure 1, our online filtering mechanism

consists of three major components: data integration, feature

selection and instance selection. The main reason of applying

feature selection before instance selection is to reduce runtime

overhead. We have tested different orderings and the effects

on data reduction and accuracy are trivial.

A. Data Integration

The function of data integration is to synchronize data

streams from various sources (sensors). Typically, monitoring

tools adopt a fixed sampling rate to collect environmental

data in the system. However, although collected at the same

time point, data from different sources are usually reported

with asynchronous timestamps and some of them are even

missed accidentally. In order to facilitate online filtering, data

integration works as a preprocess to guarantee a complete

snapshot at each sampling timestamp.

In this study, we use a simple method to synchronize data

streams from different sources. The time axis is divided into

consecutive intervals with equal length which is the same as

the sampling rate of the system. For example, if the monitoring

tool on the Blue Gene/P system collects environmental data

every five minutes, the length of the time interval is set to

five minutes as well. In each interval, if complete data are

obtained, they are used to form an instance and then added

to the buffer; otherwise, they are considered corrupted and

then dropped. In our case studies, the amount of incomplete

instances is very limited: less than 0.5% in the BlueGene/P

log and less than 1.5% in the OVIS log, hence removing them

hardly affects experimental results. Once buffer is filled, the

data in the buffer form a matrix, which is shown in the middle

of Figure 2. Each row of the matrix is a snapshot of all data

sources (sensors), while each column represents feature values

from a single source.

Fig. 2. An example of the matrix formed in the buffer, based on
which feature selection and instance selection are performed. Each
instance Xk has a timestamp Tk and a class label yk that can be
obtained from the RAS log or console log.

In our experiments, the logs were collected in an off-line

manner, data integration is simulated by simply moving a time

window, with the same length as the buffer, through the log

data. Since all the following steps rely on the matrix given in

Figure 2, we give the meanings of notations that will be used

in the rest of the paper. Let the m∗n matrix in the figure be X ,

where m is number of instances and n is number of features.

We use Xi (i = 1, ...n) to represent a feature (state variable),

where n is equal to the number of data sources (sensors) of

the monitoring facilities. Similarly, we use Xk (k = 1, ...m)
to represent an instance in the buffer, where the value of m
is determined by the size of the buffer and the sampling rate.

For example, if the buffer size is set to 100 minutes and the

system is based on a 5 minutes sampling rate, then the value

of m is 100/5=20, which means the reduction method runs



on only 20 instances each time. Additionally, each instance

Xk has a timestamp Tk (indicating its collected time) and a

class label yk (indicating corresponding system status).

B. Feature selection

Given the matrix from the buffer, feature selection is used

to filter out features which are less informative in depicting

system status while keeping more representative ones, thus

reducing the data volume. In this paper, we choose feature

ranking as the selection strategy because of its simplicity and

scalability. The basic idea of feature ranking is to compute a

scoring function for features and rank them in a decreasing

order of their scores. Features with higher scores are typically

considered more important than those with lower scores and

are selected.

The class label yk is needed for feature selection.

Specifically, we need to select Xis that are more informative

in depicting Y . Feature selection needs a training stage that

is performed offline. The class label yk can be obtained

by searching the event log (see Table III and V) using

the timestamps of instances. yk is either 1 for normal or 0

for abnormal. Two ranking functions are adopted in this study.

1) Pearson correlation based ranking: The first ranking

function is the square of Pearson correlation coefficient, which

is also called the coefficient of determination [13]. This scoring

function ranks features according to their correlations with the

class. Using the notations in Figure 2, it is defined as:

R2

i =
cov(Xi, Y )2

var(Xi)var(Y )
(1 ≤ i ≤ n),

where cov represents the covariance and var indicates the

variance. Given m instances, the estimate of R2

i can be

computed by:

R2

i =
(
∑m

k=1
(xi

k − xi)(yk − y))2∑m

k=1
(xi

k − xi)2
∑

k=1
(yk − y)2

, (1)

where xi =
∑m

k=1
xi
k / m and y =

∑m

k=1
yi / m.

2) Information gain based ranking: The second ranking

function is information gain, which is defined as the reduction

in uncertainty about the class Y when the feature Xi is

known [14]. Features with higher information gain contain

more information about the class Y than those with lower

information gain. The information gain of a feature Xi with

respect to the class Y is given as:

IGY (X
i) = H(Y )−H(Y |Xi) (2)

Using the notations in Figure 2, H(Y ), H(Y |Xi) can be

computed by:

H(Y ) = −
k=m∑

k=1

P (Y = yk)log2(P (Y = yk))

H(Y |Xi) = −
k=m∑

k=1

P (Xi = xi
k)H(Y |Xi = xi

k))

Note the above formulas require discrete variables. In our

study, as the environmental variables (e.g., voltage, current and

temperature) are usually continuous, they need a discretization

process before being introduced into the above formulas.

Based on the two ranking functions described above, we

develop Algorithm 1 for feature selection. Instead of selecting

features from the entire feature space, it picks the top Nf

features where Nf is in proportion to the fraction of fea-

tures in that component. The component here refers to the

environmental component for BlueGene/P and the type-metric

combination for OVIS (See Section II). Since this algorithm

selects at least one feature from each component arbitrarily, it

may not be optimal in terms of space saving, but it ensures

that the filtered data will preserve information from every

component which is critical for maintaining similar or higher

prediction and diagnosis accuracy.

Algorithm 1 Feature Selection

Let q be the number of features to be selected

S ← ∅
ni ← number of features in each component

wi ←
ni∑
n

i=1
ni

for each component C do

Rank features in C using Equation (1) or (2)

S ← S
⋃

top Nf features in C with Nf = q · wi

end for

C. Instance selection

Similar to feature selection, the goal of instance selection

is to choose instances that are more informative toward

analyzing system behaviors. In particular, the instances are

categorized into two groups: the one representing normal

system status and the one indicating anomalies. It is obvious

that the abnormal status related instances are more informative

than the normal ones in terms of system behavioral analysis.

For example, during a period of time, 100 instances are

generated by the system, all of which are related to normal

status. To record system status at this period, one out of

100 instances might be sufficient. If we rule out the rest

99 instances in this period, we get a 99% storage space

reduction. On the contrary, we do not want to miss any

instances related to abnormal system status; otherwise, we

lose important information for system behavioral analysis. In

this study, we examine two methods for instance selection.



1) Statistic based selection: The basic idea of statistic

based selection is derived from the assumption that instances

associated with abnormal system status usually diverge from

those related to normal status. This method compares a set

of randomly selected features in each instance in the current

buffer to their statistics from the last buffer. Figure 3 shows

an illustration for the statistics of features. Here, statistics

could be mean, variance, and many others (we use mean for

simplicity in this study). Only those instances whose features

deviate far from the statistics in the last buffer are selected.

Using the notations in Figure 2 and Figure 3, the statistic based

instance selection method is shown in Algorithm 2.

Fig. 3. An illustration for the statistics of features.

Algorithm 2 Statistic based Instance Selection

Let X be the m ∗ n matrix in the current buffer

Let T 1

st be the number of features for comparison

Let T 2

st be the maximal statistical deviation

Let T 3

st be the maximal number of deviated features

F ← randomly select T 1

st features from X
Si be the statistic of F i (i = 1, ..., T 1

st) in the last buffer

A ← ∅
for each Xk (k = 1, ...,m) in current buffer do

count ← 0

for each F i
k and Si (i = 1, ..., T 1

st) do

if ‖ F i
k-Si ‖ ≥ T 2

st then

count = count + 1;

end if

end for

if count≥ T 3

st then

A ← A
⋃

Xk

end if

end for

2) KD-tree based selection: A KD-tree is an index structure

which has been used for fast nearest neighbor search [15]. It

stems from the simple binary search tree. The KD-tree, instead

of splitting 1-dimensional instances, segments instances in a

multi-dimensional space, with each cut focusing on only one

direction of the feature space. The root of the tree represents

all the instances. Each interior node is associated with a

splitting feature Xi and a splitting value V i (1 ≤ i ≤ n).
Those instances with Xi greater than V i are put into the

left child while the others are put to the right child. To

apply KD-tree for instance selection, we first set the maximal

number of instances contained by each tree leaf, and then

cut recursively till this predefined value is reached, finally a

portion of instances in each leaf are selected based on the

comparison between the statistics of current buffer and the

last buffer.

Unlike the statistic based selection that compares each

instance in the current buffer against the statistics of the last

buffer, KD-tree based selection compares the current buffer as

a whole. We use an adaptive selection rate to control the num-

ber of instances selected from each tree leaf. If the statistics

of the current buffer deviate far from the previous one, the

selection rate is set to a high value; otherwise, it is set to a

low value. As the buffer with exceptional statistics is assumed

to contain more abnormal instances, by using the adaptive

selection rate, we can avoid missing informative instances

effectively. Also, the statistics used may vary depending on

the characteristics of log data. Using the notations in Figure 2,

our KD-tree based instance selection method is shown in

Algorithm 3.

Algorithm 3 KD-tree based Instance Selection

Let X be the m ∗ n matrix in current buffer

Let T 1

kd be the maximal leaf size

Let T 2

kd be the selection rate

R ← Xk (k = 1, ...,m)
A ← ∅
Build the KD-tree K using R as the root

for each leaf L of K do

A’ ← randomly select T 2

kd instances from L

A ← A
⋃

A’

end for

IV. EXPERIMENTS

A. Evaluation Metrics

The goal of our online filtering mechanism is to significantly

reduce data volume without losing important information for

failure prediction or diagnosis. Hence, we choose following

metrics to evaluate our filtering mechanism.

1) Space Savings: To measure to what extent the data has

been reduced by our method, we use the metric called space

savings that is defined as below:

Space Savings (S) = 1−
Filtered Size

Raw Size

= 1− ISR ∗ FSR

Since our method reduce data both horizontally and verti-

cally, ISR (Instance Selection Ratio) is defined as the ratio

of number of instances after instance selection to the number

of instances before the selection, indicating to what extent

the data has been reduced vertically. FSR (Feature Selection

Ratio) is defined in the same manner for feature selection.



2) Prediction Accuracy: We evaluate whether our filtering

mechanism can improve data analysis in two aspects. First, we

compare prediction accuracy on the filtered data as against that

on the raw data. In our experiments, failure prediction uses

the following model: a predictive method analyzes the data

occurring during an observation window, and aims to predict

whether a failure will occur after a lead time [16]. Lead time

is the time interval preceding the time of failure occurrence.

To be practical, lead time is supposed to be long enough

to perform a desired proactive fault prevention. Prediction

Accuracy is defined as

Prediction Accuracy (A) =
2TP

2TP + FP + FN

Note the prediction accuracy here is actually F measure,

a commonly used metric to evaluate prediction methods [17],

where True Positive (TP ) is the number of correctly

predicted abnormal instances; False Positive (FP ) is the

number of normal instances that are predicted as abnormal;

and False Negative (FN) is the number of abnormal

instances that are predicted as normal.

Three predictive methods are evaluated, including Logistic

Regression, MLP (Multilayer Perceptron) and SVM (Support

Vector Machine) [18]. A logistic regression classifier provides

conditional probability classifications of input data based on

the logistic regression model; an MLP generates a nonlinear

mapping between the input data and the output for decision

making; a SVM model represents the data as points, which

are mapped to a space so that the points belonging to separate

classes are divided by a gap as wide as possible. While

these classifiers differ in their classification mechanisms, they

provide similar prediction results in our case studies. Hence,

in the rest of the paper, we only present experimental results

by using SVM.

3) Diagnosis Accuracy: We also assess our filtering method

by examining whether it misses important information with

regards to root cause analysis. In general, the exact failure

occurrence time and location are two key information for

failure diagnosis [19]. As a result, the filtering method is

effective only if the filtered data preserve these information.

Since data filtering is conducted along two directions, it

takes the risk of losing root cause information along both di-

rections. First, if an instance referring to an abnormal status is

ruled out during instance selection, we lose the corresponding

time information. Second, if the feature reporting the failure is

removed during feature selection, we lose the location infor-

mation about the failure. Hence we define the metric Diagnosis

Accuracy to evaluate whether our filtering mechanism holds

important information (i.e., time and location):

Diagnosis Accuracy

= T ime Info Preservation

∗ Location Info Preservation

Time Info Preservation is the ratio of the number of abnor-

mal instances (i.e., instance labeled abnormal status) in the

filtered data to the number in the raw data, Location Info

Preservation is defined as the ratio of abnormal locations

(i.e., sensors that report abnormal status) covered by the

selected features to those covered by all features. A 100%
Diagnosis Accuracy means the filtering method can preserve

all important information. Note that abnormal locations can

be obtained from the RAS log or the console log in our case

studies.

B. Case Study 1: Blue Gene/P Log

We conducted four sets of experiments on the Blue Gene/P

log. In the first set, we study different combinations of in-

stance selection and feature selection methods and analyze the

best achievable Space Savings, along with the corresponding

prediction accuracy values. In the second set, we evaluate

prediction accuracy with varying Space Savingss and compare

different combinations of selection methods in terms of predic-

tion accuracy. In the third set, we focus on diagnosis accuracy

with different instance selection and feature selection ratios.

In the last set, we compare our selection methods as against

random selection. Together, these extensive sets of experiments

intend to provide us a clear picture of the effectiveness of

online filtering.

Instance Selection

Kd-tree Statistic None

F
ea

tu
re

S
el

ec
ti

o
n Info gain

99.83% (S)

96.64% (A)

99.84% (S)

94.75% (A)

99.57% (S)

95.35% (A)

Pearson
99.83% (S)

96.64% (A)

99.84% (S)

94.75% (A)

99.57% (S)

95.35% (A)

None
59.88% (S)

95.91% (A)

62.27% (S)

95.35% (A)

0.0% (S)

93.24% (A)

TABLE VI
Space Savings (S) & Prediction Accuracy (A) ON THE BLUE

GENE/P DATA. HERE, THE “NONE” COLUMN (OR ROW) LISTS THE

RESULTS WITHOUT INSTANCE (OR FEATURE) SELECTION.

In the first set of experiments, we set lead time to 10 minutes

and use failure prediction accuracy on the raw data as the base-

line. We aim to identify the best achievable Space Savings of

filtering when prediction accuracy is no less than the baseline.

From the experimental results shown in Table VI, we can make

two important observations. First, the 2-dimensional filtering

can significantly reduce storage requirement (over 99% of

Space Savings). Further, by comparing the reduction effects,

for this system log, the majority of reduction is achieved by

feature selection. For example, using instance selection alone,

we can only achieve about 60% Space Savings, compared to

more than 99% Space Savings using feature selection alone.

This is caused by the nature of log data collected from Blue

Gene/P. On one hand, a number of ERROR and FATAL events

are reported in three months, so our filtering method needs to

keep a plenty of instances to cover all anomaly related ones.



On the other hand, most ERROR and FATAL events occur in

a small number of components, therefore only 0.8% of the

features are sufficient to represent the abnormal status.

Next, the table clearly shows that prediction based on

environmental data can achieve high accuracy (with F-measure

higher than 93%). According to our literature survey [8, 7, 5]

as well as previous experience [9, 20, 21], the best prediction

accuracy achieved by failure prediction using RAS events

is typically lower than 80%. The main reason is that RAS

logs only contain limited information about the underlying

system and its operating environment [6]. For example, in Blue

Gene systems, RAS logs only contain limited environmental

information based on the results from environmental monitor

[3]. Environmental data logs contain more information about

the underlying system, which significantly help failure pre-

dictor to capture a variety of fault symptoms. In addition, the

filtering process can remove redundant and noisy data, thereby

improving prediction accuracy further. In summary, this set

of experiments indicates that the presented 2-dimensional

filtering can not only significantly reduce log size (over 99%
of Space Savings), but also substantially improve prediction

accuracy (with F-measure higher than 94.75%).

In the second set of experiments, we study prediction

accuracy with varying Space Savings and compare different

combinations of selection methods in terms of prediction

accuracy. In Figure 4, we plot a 3D figure to illustrate the trend

of prediction accuracy with different instance selection ratios

and feature selection ratios, where prediction lead time is set to

10 minutes. Due to space limit, we only present the plot using

statistic based instance selection and information gain based

feature selection. In Figure 5, we present prediction accuracy

under different Space Savings (from 99.88% to 0%). The plot

contains four curves, representing different combinations of

instance selection and feature selection methods.
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Fig. 4. Prediction accuracy on the Blue Gene/P data with differ-
ent combinations of instance selection ratios (using statistic based
selection) and feature selection ratios (using information gain based
selection). Note the 100% ISR (FSR) indicates no filtering on the
instances (features).

There are several interesting observations from Figure 4. On

one hand, given the same instance selection ratio, when feature

selection ratio is very small (e.g., when we remove 99.8%
of the features), prediction accuracy is lower than that using
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Fig. 5. Prediction accuracy with different Space Savings on the Blue
Gene/P data. There are four curves in the plot, indicating different
combinations of instance selection methods and feature selection
methods. Note the 0% Space Savings indicates no filtering on the
data.

the original data. This indicates that if we carelessly remove

too many features, we may get rid of important information

for failure prediction. Nevertheless, prediction accuracy can

improve dramatically when we keep a little bit more features.

For instance, as long as we preserve 0.4% or higher amount

of the features, we can achieve better prediction accuracy as

comparing to the case without applying feature selection. Also,

F-measure starts to drop slowly when FSR grows beyond

0.8%. This observation implies that the filtering process can

remove noisy data from the raw log, thereby improving

prediction accuracy. As the number of selected features in-

creases, more noises are included in the data and consequently

deteriorate prediction accuracy. On the other hand, given the

same feature selection ratio, the impact of instance selection

ratio on prediction accuracy is not significant. This is because

the removing of redundant instances does not substantially

change the the abnormal patterns.

Further, as shown in Figure 5, two feature selection methods

perform similarly, whereas the two instance selection meth-

ods do not. Initially when Space Savings is high, Statistic

based instance selection outperforms KD-tree based instance

selection. As Space Savings decreases, KD-tree based instance

selection exceeds Statistic based instance selection and finally

they perform similarly when Space Savings is smaller than

98.08%. Nevertheless, we shall point out the difference be-

tween different selection methods is generally less than 3% in

terms of prediction accuracy.

In the third set of experiments, we examine diagnosis

accuracy under different instance selection ratios and features

selection ratios (see Figure 6). As stated in the previous

subsection, diagnosis accuracy measures whether our filtering

can preserve important information like time and location for

root cause analysis. A good filtering engine should achieve a

high value (close to 1.0).

Although the two feature selection methods do not make

much difference in terms of prediction accuracy, they perform

differently in terms of diagnosis accuracy. The Information

gain based selection always outperforms the Pearson based
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Fig. 6. Diagnosis accuracy on the Blue Gene/P data with different combinations of instance selection ratios and feature selection ratios.
Note the 100% ISR indicates no filtering on the instances.

selection. Next, when comparing the two instance selection

methods, we can see that statistic based method can preserve

important time and location information with lower FSR.

This indicates that statistic based method can remove more

instances (i.e., providing higher Space Savings), without losing

diagnosis accuracy, as compared to KD-tree based method.

Moreover, when we compare the results shown here and that

in Figure 4, we can see that root cause diagnosis put more

restriction than failure prediction with regards to data filtering.

For the Blue Gene/P data, we can achieve about 85.6% Space

Savings without losing important information for root cause

analysis, whereas we can obtain about 99.84% Space Savings

without losing important information for failure prediction.

In the fourth set of experiments, we compare our selection

methods as against random selection. According to previous

experiments, since feature selection plays the major role in

terms of data reduction (as shown in Table VI), we give

the comparison of our feature selection methods and the

random feature selection based on both prediction accuracy

and diagnosis accuracy (Figure 7). Note that feature selection

only filters out features, which only removes the location

information without influencing the time information.

As shown in Figure 7, the two feature selection methods

outperform the random feature selection in terms of both

prediction accuracy and diagnosis accuracy. Using prediction

accuracy as the metric, neither our feature selection methods

nor the random feature selection performs well when the

number of selected features is small (see Figure 7(a)). This

is because too much information is missed. As the number of

selected features increases, the two feature selection methods

outperform the random one significantly (e.g., with 0.6% FSR
or higher). It indicates that our feature selection methods

can effectively select features that are strongly correlated

with the system symptoms. Based on diagnosis accuracy,

the disparity between our features selection methods and the

random selection is more distinct. As FSR increases from

0.3% to 1.5%, the randomly selected features can hardly

capture any abnormal locations (see Figure 7(b)). On the

contrary, the two feature selection methods can cover more

than 90% abnormal locations with only 0.3% FSR, suggesting

their high diagnosis accuracy. Comparing Figure 7(a) with

7(b), we can see diagnosis accuracy is more sensitive to feature

selection strategies than prediction accuracy.

C. Case Study 2: OVIS Log

In the second case study, we apply our filtering mechanism

to the OVIS data and examine whether it can obtain similar

benefits observed on the Blue Gene/P log. We also conduct

four sets of experiments, similar to those conducted on the

Blue Gene/P data.

In the first set of experiments, we also set lead time to

10 minutes and use prediction accuracy on the raw data

as the baseline. Table VII shows the best achievable Space

Savings using different combinations of selection methods.



0.3% 0.6% 0.9% 1.2% 1.5% 100%

0.75

0.80

0.85

0.90

0.95

1.00

FSR

P
re

di
ct

io
n 

A
cc

ur
ac

y

 

 

Information gain

Pearson

Random

(a)

0.3% 0.6% 0.9% 1.2% 1.5% 100%

0.00

0.20

0.40

0.60

0.80

1.00

FSR

D
ia

gn
os

is
 A

cc
ur

ac
y

 

 

Information gain

Pearson

Random

(b)

Fig. 7. Comparison of feature selection methods with random selection on the Blue Gene/P data. Note the 100% FSR indicates no filtering
on the features.

By comparing Table VII with Table VI, we have a key

observation. That is, unlike the Blue Gene/P data where feature

selection plays a major role in terms of Space Savings, both

instance selection and feature selection can greatly reduce data

volume on the OVIS data. For example, on the Blue Gene/P

data, instance selection can achieve about 62.27% of Space

Savings without losing prediction accuracy; on the OVIS data,

removing 97.32% of the instances (i.e., 2.68% of ISR) can

still achieve even higher prediction accuracy. We guess this is

because the number of abnormal instances in the OVIS data

is limited and these instances occur in a burst manner. Thus a

substantial amount of instances related to normal system status

are filtered out by instance selection.

Instance Selection

Kd-tree Statistic None

F
ea

tu
re

S
el

ec
ti

o
n Info gain

99.95% (S)

100% (A)

99.81% (S)

96.43% (A)

93.88% (S)

95.08% (A)

Pearson
99.95% (S)

100% (A)

99.51% (S)

95.08% (A)

87.76% (S)

95.08% (A)

None
97.32% (S)

100% (A)

91.12% (S)

95.08% (A)

0.0% (S)

95.08% (A)

TABLE VII
Space Savings (S) & Prediction Accuracy (A) ON THE OVIS DATA.

HERE, THE “NONE” COLUMN (OR ROW) LISTS THE RESULTS

WITHOUT INSTANCE (OR FEATURE) SELECTION.

In the second set of experiments, we examine prediction

accuracy with varying selection ratios. Figure 8 shows the

results, using a 10 minutes lead time. By comparing it with

Figure 4, we find that feature selection reduces significantly

less ratio of data on the OVIS log than on the Blue Gene/P log

(i.e., 4% FSR versus 0.4% FSR) without losing prediction

accuracy. This is partially caused by the weighted feature

selection mechanism described in Algorithm 1, according

to which a larger portion of features is selected from the

OVIS data than from the Blue Gene/P data. Note that since

the different combinations of selection methods show similar

trends in terms of prediction accuracy as observed on the Blue

Gene/P data, we do not show the results here due to the space

limit. Overall speaking, our filtering mechanism can obtain

more than 99.7% Space Savings without losing both prediction

and diagnosis accuracy on the OVIS data (using Statistic based

instance selection & Information gain based feature selection).

2%
4%

6%
8%

100%

2%
4%

6%
8%

100%
0.80

0.85

0.90

0.95

1.00

FSR

Statistic & Information gain

ISR

P
re

di
ct

io
n 

A
cc

ur
ac

y

Fig. 8. Prediction accuracy on the OVIS data with different combina-
tions of instance selection ratios (using statistic based selection) and
feature selection ratios (using information gain based selection). Note
the 100% ISR (FSR) indicates no filtering on the instances (features).

In the third set of experiments, diagnosis accuracy under

different selection ratios is examined. Due to space limit,

we only show one combination of instance selection method

and feature selection method in Figure 9. An interesting

observation can be made by comparing Figure 9 with Figure

6(c). On the OVIS data, 6% ISR and 4% FSR can achieve

100% diagnosis accuracy, as compared to 80% ISR and 18%
FSR on the Blue Gene/P data. A possible explanation is that

the OVIS log contains much less noise than the Blue Gene/P

log, hence our filtering mechanism can obtain better coverage

of faulty locations.

In the fourth set of experiments, the comparison of our

selection methods with random selection shows similar results

as obtained on the Blue Gene/P data. Due to limited space, we

only show the comparison of our instance selection methods

with the random instance selection in terms of diagnosis

accuracy in Figure 10. Again, our instance selection methods

have proven to be much more effective than the random
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Fig. 9. Diagnosis accuracy on the OVIS data with different combina-
tions of instance selection ratios (using statistic based selection) and
feature selection ratios (using information gain based selection). Note
the 100% ISR (FSR) indicates no filtering on the instances (features).

selection. Both methods can achieve 100% diagnosis accuracy

with 6% ISR.
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Fig. 10. Comparison of instance selection methods with random
selection on the OVIS data. Note the 100% ISR indicates no filtering
on the instances.

D. Analysis Time Reduction

To further demonstrate the benefits brought by our filtering

mechanism, in this additional set of experiments, we run four

commonly used analytic algorithms on the filtered data as

well as on the raw data. The goal is to assess time savings

that we can achieve by filtering data. SVM and Logistic

are two predictive methods that have been widely used to

find failure patterns in the dataset. They have been used in

our case studies to measure prediction accuracy (described in

Section IV-A as “SVM” and “Logistic Regression”). Subset

evaluation is usually used to select useful features among

the dataset [14]. Unlike the feature selection methods used

in our case studies (i.e., Pearson based and Information gain

based feature selection), it evaluates the worth of a subset of

features by considering the individual predictive ability of each

feature along with the degree of redundancy between them. K-

Means is a commonly used method for data clustering, through

which similar features in the dataset can be grouped for better

diagnosis [18]. All the results given in this set of experiments

are based on a platform that installs a Intel Quad 2.83GHz

processor with 8GB memory, running windows 7 professional

64-bit operating system.

System

Logs

Analytic algorithms

SVM Logistic Subset K-Means

BG/P

Tf 158.6 40.1 20.5 18.9

Tu 675.5 171.2 189.8 335.7

(Tu-Tf )/Tu 76.5% 76.6% 89.2% 94.4%

OVIS

Tf 0.6 3.2 2.3 2.6

Tu 4.8 34.6 105.7 243.8

(Tu-Tf )/Tu 87.5% 90.8% 97.8% 98.9%

TABLE VIII
THE RUNNING TIME (IN SECONDS) OF ANALYTIC ALGORITHMS

ON THE FILTERED DATA (Tf ) AND ON THE UNFILTERED DATA (Tu)
AND THE RELATIVE TIME REDUCTION. THE FILTERED BLUE

GENE/P DATA HAS 85.6% Space Savings AND THE FILTERED OVIS
DATA HAS 99.7% Space Savings.

Table VIII gives the comparison of running time (in sec-

onds) and the relative time reduction. The Space Savings of

the filtered data are 85.6% (Blue Gene/P) and 99.7% (OVIS)

respectively, meaning the highest achievable value without

losing both prediction and diagnosis accuracy. The results

show that our filter mechanism makes big gain in terms of

running time of analytic algorithms. An interesting observation

is that all algorithms have significantly shorter running time

on the OVIS data than on the Blue Gene/P data, although the

OVIS data is larger in size.

All of these four algorithms are based on iterative refine-

ment technologies, hence the time reduction on the filtered

data comes from two aspects. First, the time for each iteration

shortens as the data is reduced in size. Second, the number

of iterations decreases because of the removing of noisy and

redundant information, meaning a faster convergence of the

algorithm. This also explains why these algorithms run faster

on the OVIS data although it is larger in size.

We do not include algorithms whose running time rely only

on the size of data in this set of experiments because their

time reductions are easy to estimate. For example, the time

reduction of an O(n) algorithm will have a linear relation with

the Space Savings of the filtered data.

E. Result Summary

How Much Runtime Overhead Is Introduced? The

overhead mainly comes from training, which is offline. After

constructing selection rules, the actual runtime selection pro-

cess is trivial: feature selection is instantaneous with almost

no delay; instance selection is dependent on the buffer that

typically contains dozens of instances, and thus the cost is

normally within a couple of seconds.

Feature Selection or Instance Selection? While instance

selection and feature selection may have different impact on

different log data, we believe both methods are necessary for

removing redundant and noisy data.

KD-tree or Statistic? The former usually results in better

prediction accuracy, while the later is preferred for time



information preservation.

Information gain or Pearson? They are comparable in

terms of prediction accuracy, but the former works better for

location information preservation.

V. RELATED WORK

Data reduction. Data reduction technologies have been

widely used for system performance monitoring and analysis.

Existing studies can be broadly classified as instance based

methods and feature based methods. On one hand, instance-

based methods generally identify representative instances and

discard the instances with redundant information. Considerable

research on instance-based methods has been performed on

system log analysis in large-scale systems. Buckley Reed et.

al presented Tupling methods to coalesce related events [22];

Liang et. al adopted temporal and spatial filtering to remove

redundant records of RAS logs [23]; Reed et. al used event

throttling to prevent the generation of large data volumes

from parallel computer systems [24]; Zheng et. al presented

a causality-related filtering method to pinpoint the sets of

fatal events co-occurring frequently and filter them together

[25]. On the other hand, feature-based methods aim to select

or extract a subset of relevant features for robust learning.

Yang et. al conducted a two-stage selection strategy to identify

subsets of system metrics and showed that only 20% of the

metrics is sufficient to describe application behavior [26];

Zhang et. al proposed a method to predict compliance using

an ensemble of Bayesian network models in a dynamic envi-

ronment, in which feature selection was used to select subset

of metrics most closely related to model data relations [19];

Mendes and Reed applied dynamic clustering and statistical

sampling methods to select subsets of processors or metrics

[27]; Lan et. al adopted PCA (principal component analysis)

ICA (and independent component analysis) to extract fault

related features for anomaly identification [16].

While many data reduction techniques have been presented

to date, to the best of our knowledge there is no known

effort on building a systematic support for effectively reducing

environmental data on HPC systems for significant storage

saving and improved data analysis. Furthermore, our work

distinguishes from the above studies at two key aspects. First,

our work aims to reduce log data through both directions

feature selection and instance selection. Second, we propose

a general framework for online filtering of log data on HPC

systems, which can be easily extended with various feature

selection and instance selection techniques.

Failure prediction and root cause diagnosis. Recognizing

the importance of reliability on HPC systems, considerable

studies have been conducted on failure prediction and root

cause analysis. Sahoo et al. applied association rules to predict

failure events in a IBM cluster [7]; Liang et al. examined

several data mining and machine learning techniques for

failure forecasting in a Blue Gene/L system [8]; Zhang et. al

explored three different prediction methods and evaluated them

on Blue Gene/L [5]; Zheng et. al explored a dynamic meta-

learning prediction engine in large-scale systems [9]. Most of

existing studies mainly focused on analyzing RAS events for

failure prediction and/or root cause analysis.

Nevertheless, RAS logs only contain limited information

about the underlying system and its operating environment,

which is inadequate in understanding failures and system be-

haviors [6]. Unlike these studies, this work discusses online fil-

tering of environmental logs containing data like temperatures,

clock frequency, fan speeds, and voltages, from the running

hardware devices. These logs contain more information about

the underlying system, yet they can easily overwhelm us with

data. Our proposed methods can significantly reduce the size

of environmental logs without losing important information for

failure prediction and root cause analysis. Hence, this work not

only motivates the long-term archive of filtered environmental

data, but also stimulates the research of using environmental

data for improved failure prediction and root cause analysis.

Feature and instance selection have been integrated for text

classification in [28]. Our work is inspired by the Huan’s work

[29] and Thompson’s work [30]. In [29], a KD-tree based

sampling method was proposed for informative instance selec-

tion. In this paper, we modify the KD-tree algorithm to rule

out instances irrelevant to abnormal states. In [30], Thompson

utilized two feature extraction methods on numeric data for

failure prediction in the Blue Gene/P system, which was based

on the same dataset in our first case study. However, their study

was only on the feature level, which was insufficient for data

reduction. Meanwhile, their extraction methods could lead to

information loss for root cause diagnosis.

VI. CONCLUSION

In this paper we have presented an online filtering frame-

work for environmental logs containing the data like tem-

peratures, clock frequency, fan speeds, and voltages. These

logs contain abundant information about the underlying system

status, yet they can easily overwhelm us with data. The

goal of our work is to remove redundant and noisy data

from these logs both horizontally (via feature selection) and

vertically (via instance selection). Our filtering mechanism

can not only significantly save disk space without losing

important information for failure prediction and diagnosis,

but also open doors for more analysis algorithms that are

suitable for large-scale systems like the TOP500 machines

[31]. Our case studies, by means of real environmental logs

from the production supercomputers, have demonstrated that

the proposed filtering framework can achieve more than 85%
storage Space Savings. Moreover, it also facilitates better fail-

ure prediction and diagnosis by up to 20%, as compared to the

conventional predictive approach relying on RAS events alone.

We are currently working on integrating this framework with

the OVIS monitoring tool [4]. We believe the development of

such a filtering mechanism will motivate the long-term archive

of environmental data at HPC centers and open doors for

more analytic algorithms that are suitable for future exascale

systems. It will further promote failure prediction and root

cause analysis in the field as well.
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