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Abstract 
 

Rapid advancement of communication technology 
has changed the landscape of computing. New models 
of computing, such as business-on-demand, Web 
services, peer-to-peer networks, and Grid computing 
have emerged to harness distributed computing and 
network resources to provide powerful services. The 
non-deterministic characteristic of the resource 
availability in these new computing platforms raises an 
outstanding challenge: how to support Quality of 
Service (QoS) to meet a user’s demand? In this study, 
we conduct a thorough study of QoS of distributed 
computing, especially on Grid computing where the 
requirement of distributed sharing and coordination 
goes to the extreme. We start at QoS policies, and then 
focus on technical issues of the enforcement of the 
policies and performance optimization under each 
policy. This study provides a classification of existing 
software system based on their underlying policies, a 
systematic understanding of QoS, and a framework for 
QoS of Grid computing.  
 
1. Introduction 
 

With the advance of network technology, many new 
distributed computing models are being constructed to 
harness geographically distributed computing and 
communication resources, such as business-on-
demand, Web services, peer-to-peer networks, and 
Grid computing [1]. Typical examples of these systems 
include WebSphere, Gnutella, Skype, Seti@home, 
Condor, PPLive (a P2P television network), and 
Globus [2]. The system size of these systems scales 
from hundreds of nodes to tens of thousands of nodes, 
and even more.  In these systems, resources are shared 
and collaborated to provide services/functionalities 
such as online shopping, online telephony and 
television, teleimmersion, online control of scientific 
instrumentation, and resource pooling. Much effort is 
being made in the standardization of protocols and 

interface for service orchestration and resource 
collaboration in these environments. With the maturity 
of these systems, with more and more users, Quality of 
Service (QoS) of these newly-emerged computing 
platforms is becoming more and more important. 

Quality may mean different things for different 
users under different environments. In general, quality 
is a nonfunctional character such as performance, cost, 
security, reliability, et al., or a combination of them. In 
a shared network environment like Grid, there are 
several new issues related to QoS support that do not 
arise in a single computer system. The first issue is the 
variation of resource availability. This variation may 
be due to resource contention, dynamic system 
configuration, software or hardware failures, and other 
factors beyond the control of a user. The uncertainty of 
resource availability has a big impact on application 
quality.  The second issue is parallel processing. The 
total workload of a large scale application is often 
partitioned into smaller pieces, called subtasks. These 
subtasks are then allocated to resources in a distributed 
system to be processed concurrently. The challenge of 
parallel processing in a shared network environment 
lies on that the computing resources may be 
heterogeneous and have individual availability 
patterns. The third issue is non-centralized control. In a 
general Grid environment, the computing resources are 
autonomous. Local schedulers schedule local jobs and 
the Grid scheduler does not have the control of the 
local jobs. These new QoS issues make supporting 
QoS of Grid computing extremely challenge. 

Because of these difficulties, in spite of recent 
intensive attention, a suitable and broadly applicable 
QoS solution has been elusive. This is especially true 
for Grid computing, where computing resources cross 
different virtual organizations and applications are 
topically large in scale, requiring distributed 
concurrent processing and frequent coordination. In 
this study, we call the tasks scheduled by the Grid 
scheduler Grid tasks and the other processes or jobs 
running in the Grid environment local jobs. We focus 
on studying the relation between the Grid tasks and the 



local jobs and investigate the influence of resource 
sharing on QoS. We assume that both the Grid system 
and the local systems can work effectively. The study 
is on the new QoS issues of Grid computing, especially 
on the interaction between the two sides, the Grid tasks 
and the local jobs.  In recent years, some efforts have 
been made to address the issues of sharing. But most 
existing QoS support is built under certain tacit 
assumptions. They often support QoS of one side in the 
cost of sacrifice another without a good understanding 
of the QoS issues between the two sides. For instance, 
seti@home gives the priority to local jobs. The Grid 
task executes only when no local jobs are running. 
There is no QoS for Grid tasks. Resource reservation 
has been proposed for Grid computing [3]. Resource 
reservation reduces system utilization and may disturb 
the normal operation of local jobs. The question, then, 
is how much resources need to be reserved for how 
long and on which resources.  Currently the decision is 
made based on the demand of the Grid task or let the 
local scheduler to make the decision. Without a better 
understanding of the impact of resource reservation on 
QoS an appropriate decision cannot be made. 

A good QoS solution requires a comprehensive 
investigation of the complex interaction between 
system characteristics, such as resource sharing, non-
centralized control, heterogeneity, and dynamics; and 
application characteristics, such as parallel processing, 
computation or communication, hard guarantee or soft 
guarantee. To provide a uniformed QoS solution for 
general Grid computing, we propose to develop a 
software solution through increasing the fundamental 
understanding of QoS of Grid computing. We 
specifically study the relation between the QoS of Grid 
tasks and the QoS of local jobs and investigate the 
influence of resource reservation on local jobs. We 
divide the fundamental understanding of QoS into two 
stages: policymaking and optimization mechanisms. 
Policymaking decides the QoS policy of resource 
sharing among Grid tasks and local jobs. Optimization 
mechanisms obtain an optimum QoS under each QoS 
policy. Optimization mechanisms in turn consist of 
advanced performance modeling, resources 
management, and scheduling algorithms. The 
interference of Grid tasks and local jobs are considered 
in modeling. Task schedulers choose the best set of 
resources to optimize the application QoS based on the 
information provided by performance modeling. 
Resource management collects application and 
resource information, enforces the QoS policy, and 
carries out the scheduling decisions. This top-down 
study not only leads to a better understanding of QoS 
between the Grid tasks and local jobs, it also gives a 
constructive solution. 
 

2. QoS policy 
 

Grid computing requires the coordination of 
distributed network resources to solve non-trivial 
applications. The distributed resources may belong to 
different virtual organizations, shared by Grid tasks 
and local jobs, and are often autonomic controlled. A 
Grid management system has no control over the usage 
pattern of the shared resources. The uncertainty of 
resources makes QoS of Grid computing hard to 
achieve. QoS is a known technical hurdle preventing a 
broader adoption of Grid computing. There has been 
no well-conducted QoS study to balance the need of 
Grid tasks and local jobs.  Distributed systems, such as 
Condor, NetSolve, Nimrod, and Globus [2], support 
Grid computing and facilitate resource sharing and 
collaboration. These systems adopt different QoS 
policies, usually implicitly, and try to provide a 
satisfactory QoS under their adopted policies. These 
policies often support QoS for one side and sacrifice 
that of the other – they perform well for certain 
applications but do not provide a satisfactory solution 
for general Grid computing. For example, in 
SETI@home, Entropia, and Condor, a Grid task is 
allowed to run only when no keyboard or mouse 
activities are detected on local resources. This sharing 
policy ensures that Grid tasks do not interfere with the 
execution of local jobs, but the QoS of Grid tasks is at 
the mercy of local users. We call this cycle-stealing 
based QoS policy the best-effort service. In an opposite 
direction, in Legion and Globus, resources can be 
reserved for the execution of Grid tasks based on 
service-level agreements [3]. Service-level agreement 
is a great tool to enforce different QoS policies in a 
Grid environment. However, due to the lack of 
understanding of QoS, in current practice the resource 
reservation is only used to ensure the QoS 
requirements of Grid applications. The influence of 
resource reservations on local jobs is not considered. 
As a result, the QoS of local jobs could be severely 
degraded, which in turn could lead to significant 
reduction of the liability of the service-level 
agreement. In fact, recent research [4] has shown that 
local users often power cycle computers immediately if 
uncomfortable machine slowness is observed. We call 
this reservation based QoS policy the real-time service. 
Real-time service is a preferred policy for real-time 
Grid applications, but not others. Ideally, a set of 
policies should be introduced to balance the QoS need 
of both Grid tasks and local jobs and adjust the policies 
dynamically under certain criteria for different 
applications and computing environments. To lead a 
better understanding of QoS, we first need to 
understand the QoS policies. 



Our study of QoS is based on the observation that 
Grid environments do not have a central control and 
the quality of service has to be supported on shared 
resources. Recognizing that the sharing has two sides, 
Grid tasks and local jobs, and the QoS concerns of the 
two sides are quite different, we specifically study the 
relationship between the QoS of Grid tasks and the 
QoS of local jobs and intend to develop a system 
solution to meet the need of both sides simultaneously, 
or at least balance the requirements. In practice, there 
are three resource sharing policies widely used in the 
Grid computing community. 
• The best-effort policy. In best-effort policy, local 

jobs have higher priority than a Grid task. A Grid 
task is allowed to execute only when there is no local 
jobs running. During the execution of the Grid task, 
if any local jobs arrive, the Grid task is either 
suspended or terminated. In Grid computing, we are 
more interested in the first scenario because Grid 
tasks are usually stateful large-scale scientific 
applications. In practice, the keyboard and mouse 
activities are usually monitored to detect the local job 
running status. The best-effort policy is adopted in 
the Seti@home and Condor project. 

• The real-time policy. In real-time policy, Grid tasks 
have a higher priority over local jobs. According to 
the Grid task QoS requirement, a certain computing 
resources (CPU, Memory, I/O, network) are reserved 
for the dedicated use of the Grid task. This 
reservation is fixed during the execution of the Grid 
task. The real-time policy is adopted in the GASA 
project [3]. It is often used for resource allocation in 
supercomputer centers, in which a number of nodes 
in a cluster system or in a group of cluster are 
reserved for the dedicated running of a scientific 
application. This policy is best for test the potential 
of Grid computing and within a virtual organization 
where a priority can be defined globally. 

• The competing policy. In the competing policy, a 
Grid task competes for resources with local jobs. The 
good part of the competing policy is that every one is 
equal; no one has to sacrifice for another. The bad 
part, on the other hand, is there is no guaranteed QoS 
for any one. This policy is usually applied in public 
domains, such as campus computing environments. 
For example, Condor and AppLeS [5] project support 
this policy so that workstations in their systems are 
harvested to increase the computing throughput. 

Besides the three existing QoS policy, we identify two 
new resource sharing policies which has the potential 
to be applied in a general distributed environment to 
enrich the different relationship between local jobs and 
Grid tasks in terms of their qualities. 

• The constrained policy. In the constrained policy, 
the QoS of Grid tasks or local jobs has to be 
maintained at certain level. Meeting the predefined 
QoS is the first priority of the constrained policy. For 
instance, if the constrained is to maintain the local 
job QoS at certain level, then resources only can be 
reserved to Grid tasks when the reservation does not 
reduce the local job QoS below the QoS level. In the 
meantime, Grid scheduler should reserve as mush as 
resources possible for its gains as long as the 
constraint condition is not violated. This provides a 
compromised resource sharing policy where a certain 
part of a resource is dedicated to a Grid task under 
the condition that local job QoS is affected within a 
limitation. 

• The balanced policy. In the balanced policy, both 
the quality of Grid tasks and the quality of local jobs 
are considered and measured with some given 
criteria. The balanced policy can be viewed as a 
further extension of the constrained policy. Instead of 
enforcing QoS constraint on one side, the balanced 
policy weighs the priorities of both sides. When there 
is no enough resources to support QoS, both sides 
will suffer together with predefined proportion. 

The policy list is incomplete and is only an initial 
point. The balanced policy, for instance, may lead to 
different policies based on different tradeoffs and 
concerns; different policies may need to be combined 
and adopted at different time to support the QoS of a 
given application. The competing policy may have 
different QoS goals: optimizing the Grid task 
performance, minimizing the slowdown of local jobs, 
or some weighted combinations. In addition, the Grid 
tasks, or local jobs, themselves may have different QoS 
needs and should be treated separately.. 

 
3. Performance modeling 
 

After a QoS policy is chosen, the next question is 
how to achieve an optimum quality under the given 
policy. Quality is often measured in terms of 
performance. Improving quality then becomes an 
optimization problem. For example, for the best-effort 
service, we should partition and schedule the Grid task 
in such a way to optimize its performance (QoS); for 
the real-time service we should schedule the Grid task 
appropriately to minimize the QoS degradation of local 
jobs. A more complex task is to optimize the QoS of 
both Grid tasks and local jobs under a balanced QoS 
policy. The optimization mechanisms in turn rely on 
advanced resource management, performance 
modeling, and task scheduling. The factors of 
computation, communication, and the interference of 
Grid tasks and local jobs should be considered in 



modeling the behavior of Grid and local tasks under 
each QoS policy. A task scheduler then can choose the 
best set of resources to optimize the application QoS 
based on the information provided by performance 
modeling. Notice that QoS modeling can be also used 
in choosing an appropriate QoS policy for a given 
application. Resource management collects application 
and resource information, enforces the QoS policy, and 
carries out the scheduling decisions. Here enforcing 
QoS includes the enforcement of resource reservation 
or other service-level agreements. Figure 1 presents the 
relationship of QoS policies, optimization goals, and 
optimization mechanisms in Grid computing. Due to 
the sake of page limitation, we only present some 
representative optimization issues of some selected 
QoS policies in this study. 

 
Computation modeling for best-effort service. 

We have introduced a performance modeling for best-
effort service. The model predicts QoS, in terms of 
completion time, of a Grid task [6], so a set of 
appropriate resources can be chosen for optimal 
execution time. It is derived from a combination of 
rigorous stochastic analysis and intensive simulation 
and designed for large-scale applications. The model 
considers the heterogeneous machine utilization and 
computing capacity, heterogeneous job arrival rate as 
well as heterogeneous service distributions. The effects 
of machine utilization, computing power, and local job 
service and task allocation on the completion time of 
Grid task are individually identified. 

In the best-effort service, the Grid task is given a 
lower priority than the local job so that the Grid task is 
less intrusive. We suppose the execution of the Grid 
task is interrupted by local jobs S  times. Each busy 
period for local jobs running is iY  )1( Si ≤≤  . The 
application completion time can be expressed as: 

kSYYYwT ++++= .../ 21τ  (1) 
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where the distribution of ))(Pr( kSU  can be appropriated 
with Gamma distribution [6]. In parallel processing, 
the completion time of a Grid task is the maximum of 
each sub-task completion time. After the distribution of 
the completion time of sub-task kw  is identified, the 
cumulative distribution function of the remote parallel 
task completion time can be calculated as: 
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where )/{max kkwMax τκ = . maxκ  denotes the 
maximum of the minimum execution time on each 
machine km  )1( nk ≤≤ . 

Computation modeling for real-time service. In 
real-time service, certain resources are reserved for 
Grid tasks so their QoS can be guaranteed. This 
reservation may degrade the QoS of local jobs. In 
queuing systems, a commonly used QoS measure is the 
mean waiting time, which is defined as the average 
waiting time of local jobs [7]. To determine whether a 
reservation is accepted or not, local users are naturally 
concerned about how much the average waiting time is 
affected. Let aW  denote the mean waiting time of local 
jobs with reservation and bW  denote the mean waiting 
time of local jobs without reservation. We introduce a 
new metric, relative slowdown ( RS ) to measure the 
impact of resource reservation on the QoS of local 
jobs. It is defined as the ratio of the average waiting 
time with reservation and the average waiting time 
without reservation, ba WW / . The reason we don’t use 

ba WW −  to describe the change of the average waiting 
time is that it reflects the absolute increased value of 
the waiting time. It is more appropriate to use ba WW /  
to gives the relative variation of the waiting time.  

The actual waiting time depends on the underlying 
CPU scheduling. We have modeled the relative 
slowdown on two widely used CPU scheduling: first-
come-first-serve (FCFS) and round-robin (RR) [8]. In 
FCFS, jobs are served in the order of their arrival. RR 
is a FCFS with a fixed quantum of time. If a job cannot 
finish within the time quantum it is put at the end of 
the waiting queue to wait for its turn again. Let κ  be 
the reservation ratio. We have shown in an M/G/1 

Figure 1. QoS policy and optimization 
mechanisms 



FCFS queuing system, the mean waiting time after 
reservation and the relative slowdown, are 
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µλρ /=  is machine utilization and σ  is the service 

time standard deviation. In an M/G/1 RR queuing 
system, the mean waiting time after reservation and the 
relative slowdown, are 
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Please note that 01 >>− κρ  holds in the above 
equation.. 

 
4. Task scheduling and allocation 
 

Most task scheduling systems, including LSF, PBS 
Pro, Sun Grid Engine/CODINE, and Maui Scheduler 
[9], are designed for dedicated and stable computing 
environments. The Condor system provides a 
matchmaking mechanism for distributed computing to 
allocate resources with a publish/request framework. It 
is aimed to match the software and hardware needs of 
the application, and not design to solve QoS tradeoff 
issues. In the PEGASUS and CHIMERA workflow 
management systems and in the AppLeS scheduling 
system [2], scheduling decisions are made based on the 
deterministic estimation of resource availability 
provided by NWS [5]. These systems assume that Grid 
applications and local jobs compete for resources. 
From the QoS point of view, these systems intend to 
optimize the QoS of Grid tasks under the competing 
QoS policy. GASA (Grid Advance Reservation API) 
[3], a subsystem of Globus project, provides 
mechanism for resource reservation so that 
applications can receive a certain level of service. 
Virtual Application Service (VAS), a deadline-bound 
system, makes scheduling decision based on resource 
reservation [10]. In these systems, a scheduling 
decision is made only based on the QoS requirement of 
the Grid application. From the QoS point of view, 
these systems adopt the real-time service policy 
without considering the impact of reservation on the 
QoS of local jobs. 

The process of task scheduling partitions a Grid task 
(service) into sub-tasks (service instances) and assigns 
each sub-task to a selected set of resources based on 

the pre-developed performance model to optimize the 
QoS. The task partition can be achieved through either 
partitioning or grouping. Partitioning divides a parallel 
program into subtasks. Grouping joins independent 
tasks of a meta-task or workflow into groups and takes 
each group as a subtask for task allocation. The 
measure of scheduling is determined by the underlying 
QoS policy. For the best-effort service, the task 
scheduling is designed to optimize the performance of 
the Grid task. We use makespan-minimization 
scheduling to minimize the completion time of a Grid 
task. A mean-time task partition algorithm can be used 
to distribute the workload of a parallel program to each 
resource so that the difference of the mean of expected 
execution times of the sub-tasks is minimal. A detailed 
description of task partition with respect to CPU, 
memory, network resource heterogeneity and resource 
sharing is given in [2]. For the real-time service, we 
propose two minimization scheduling algorithms to 
optimize local job quality and Grid task quality 
respectively. For local jobs, the quantity is the relative 
slowdown and scheduling is done to minimize the QoS 
degradation of local jobs. We have proposed an equal 
slowdown strategy to distribute the workload of Grid 
tasks in order to reduce the global (maximum) relative 
slowdown. A failure-minimization algorithm is 
proposed to minimize the reservation failure 
probability in meeting the performance (deadline) 
requirement of a Grid task [8]. The scheduling 
concerns of the competing service are similar with that 
of the best-effort service. The scheduling of the 
constrained service and balanced service, however, 
become much more demanding.  For the constrained 
service where the goal is to optimize the QoS of the 
Grid task while maintaining the QoS of local jobs at a 
certain level, we approach a scheduling algorithm by 
using the relative slowdown to measure a QoS 
degradation constraint, and using a QoS-constraint 
partition strategy to distribute the workload of a Grid 
task onto each resource as much as possible under its 
QoS degradation constraint. Optimal scheduling 
algorithms are often too costly to be used in practice. 
In these cases, heuristic scheduling algorithms are used 
to find a near optimal solution within a reasonable cost. 
Figure 2 gives a general form of heuristic scheduling 
algorithms. The basic idea is that machines are sorted 
first based on their potential contributions to the 
optimization goal. Then a local optimal can be found 
quickly based on this ordering. Notice that different 
optimization criteria could be used in finding the local 
optimal.  



Different QoS models, task scheduling algorithms, 
and resource management mechanisms are needed for 
each resource sharing policy and application QoS 
requirement. A unified QoS system should be 
developed to provide system support of QoS delivery 
for different needs. While this is an extremely 
challenging task, we have developed a QoS testbed 
system based on QoS framework given in Figure 1. In 
the resource management, current software systems 
already support three resource sharing policies: real-
time, competing, and best-effort. For example, Condor 
and Seti@home support best-effort QoS policy. They 
can detect resource availability by monitoring local 
users’ activities on mouse and keyboard. In Globus and 
VAS [10], DSRT and classic cluster resource 
management system such as PBS are used to provide 
time-sharing/space-sharing resource reservation. 
Notice that, with the support of our proposed 
reservation-based QoS models, these resource 
management tools can be further extended to support 
the constrained policy and the balanced policy. In 
AppLeS project, the default process scheduling in OS 
on local resources is used to support the competing 
policy. In the PEGASUS and CHIMERA workflow 
management systems and in the AppLeS and GHS 
scheduling system [5, 9], current scheduling system 
can be extended by introducing the QoS-oriented task 
scheduling algorithms discussed in this section. The 
UUCS (Understanding User Comfort System) can be 
used for measuring performance degradation of local 
jobs and user comfort with resource reservation [11]. 
We have extended the GHS system [9] to support 
different QoS policies and to serve as a QoS testbed 
system.  
 
5. Experimental results 
 

We have partially implemented and tested the 
presented QoS policies and mechanisms. We 
demonstrate some testing results here in terms of 
performance modeling, task scheduling, and resource 
management for different QoS policies.  For modeling, 
we present the results of the modeling of the best-effort 
service and real-time service. For task scheduling, we 
test the efficiency of the scheduling algorithms of the 
real-time service. We also carry out experiments on an 
actual Grid application under the real-time policy with 
the updated DSRT [12]. 

The test platforms used in our experiments are the 
Sunwulf cluster and the DOT Grid Testbed. Sunwulf is 
a heterogeneous 84-node Sun ComputeFarm at IIT. 
The DOT connects clusters at ANL, NCSA, NU, UC, 
UIC, and IIT via the advanced "I-Wire" network. Each 
cluster is composed of one sever and multiple 
computing nodes. Local jobs on each resource in these 
test platforms are simulated with different job arrival 
rates and service rates, which follows the observation 
of over one million real-life processes generated from 
different academic workloads in Berkeley [9], as well 
as the machine usage pattern observation by 
researchers at Wisconsin-Madison, Maryland, 
Carnegie Mellon, et al [9]. 

Performance Modeling. The computation model 
for the best-effort service is designed to identify the 
effect of resource sharing on Grid tasks, in terms of 
execution time. We use the percentage prediction error 
to measure the prediction error. We have tested the 
parallel version of Cactus application on the DOT Grid 
Testbed. Cactus, a numerical simulation of a 3D scalar 
field produced by two orbiting astrophysical sources, is 
used as our test application. In the experiments, we use 
one server and one node from the IIT cluster, three 
nodes from the ANL cluster, and three nodes from the 
UC cluster. Two factors influence the accuracy of this 
kind actual testing, workload determination and system 
software interference. As a user we only can estimate 
the workload of Cactus based on its iteration number 
and input values ¨C which is error prone.  Also the 
underlying DOT management system may take CPUs 

Assumption: A divisible grid task is partitioned and 
sub-tasks are assigned to machines appropriately for a 
better performance  
Objective: Scheduling a grid task heuristically to reach 
a semi-optimal performance 
------------------------------------------------------------------ 
List a set of idle machines that are lightly loaded over an 
observed time period. 
Sort the list of idle machines in a decreasing order with
their potential contributions to the optimization goal. 
Generate a list of machine set by gradually adding a 
machine from the sorted machine list until all machines 
is included in a machine set 
Using the binary search to find the machine set with the 
best value of the optimization criteria. 
Assign tasks to this machine set accordingly. 

Figure 2. Heuristic task scheduling algorithm

Figure 3. Mean and variance of prediction 
error of Cactus’s execution time 
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away from time to time. Nevertheless, Figure 3 shows 
the model working well even with these two factors. 

A simulator of an M/G/1 queuing system is built to 
test the model for real-time service. The simulator is 
composed of a local job generator, a waiting queue, a 
scheduler, and a server. Both FCFS and RR queuing 
disciplines are supported in the simulator. The 
proposed model is tested with the bounded Pareto job 
lifetime distribution [8] as suggested by Harchol-Balter 
and Downey. Figure 4 plots the mean of percentage 
prediction error with different reservation periods from 
2000 seconds to 10000 seconds when the reservation 
ratio is 0.2 and the utilization is 0.15. The predicted 
value is the calculated relative slowdown given by 
formula (3) and (4) derived from the proposed model 
and the measured value is the QoS degradation of local 
jobs collected from simulation results. We observe that 
the mean of prediction error is very small. The 
maximum prediction error observed in simulation is 
1.15%. The mean of the prediction error tends to be 
smaller with the increase of the reservation period. 
These simulation results demonstrate that the 
computation model for real-time service can accurately 
capture the effect of reservation on the QoS 
degradation of local jobs [8]. 

We have also conducted experiments to measure the 
local job QoS degradation with the updated resource 
reservation tool, DSRT, on the DOT Grid Testbed. 
Two Grid applications are used in the experiments. 
One application is a meta-task, which consists of a set 
of independent indivisible computation intensive 
subtasks. Another application is the Cactus parallel 
application. In the experiment, the server and three 
nodes, iit01, iit02, and iit03 are used. The utilization on 
these machines is set as 0.2 and the reservation ratio as 
0.2. FCFS queuing discipline is enforced on each 
resource. Table 1 gives the actual CPU part occupied 
by Grid tasks and the measured relative slowdown of 
local jobs. It shows that the measurements match the 
analytical result well (the calculated relative slowdown 
is 1.33). The small differences can be contributed to 
the system overhead such as synchronization and 
communication among processes. 

Task scheduling. Task scheduling partitions and 
schedules a Grid task onto appropriate resources to 
achieve the best quality under a given policy. To test 
the effectiveness of the newly proposed mechanisms, a 
Grid environment simulator is built for the testing of 
scheduling under each service. The simulated Grid 
environment is composed of a number of machines, 
which can be scaled from dozens of resources to 
thousands of resources. We set different job arrival 
rates and service rates for these machines to simulate 
heterogeneous machine usage patterns in a Grid 
environment. Using the simulated Grid environment, 

we conducted simulations to test the efficiency of a 
proposed heuristic minimization scheduling algorithms 
for the real-time service. We simulated systems of 20, 
30, and 40 machines and utilized the Weibull 
distribution to describe the failure probability, while 
our scheduling can be applied with any empirical 
failure probability distributions. Because local users of 
different machines may have different tolerances to a 
relative slowdown of local jobs, we differentiate the 
shape and scale parameters of Weibull distribution at 
each machine to reflect this heterogeneity by randomly 
generating these parameters in a certain range. We 
calculate the failure probabilities based on our 
computation model for the real-time service under five 
scheduling strategies: heuristic, random, fast-speed, 
light-load. Fast-speed and light-load scheduling means 
that machines are selected based on their speeds and 
loads respectively. For example, Fast5 represents the 
first 5 fastest machines are selected for task allocation. 
Figure 5 gives the 5th, 50th, and 95th percentiles of 
failure rate over 100 simulations for each scheduling 
policy. We can observe that not only the average 
reservation failure rate with heuristic scheduling is 
much lower than those with other scheduling 
algorithms, but also the variation of the failure rate 
with heuristic scheduling is rather smaller than others 
[8]. 

 
6. Conclusion and future work 
 

Quality of service of Grid computing is a 
challenging but timely important problem. While 
intensive research has been conducted in QoS in recent 
years, most existing results are ad hoc and there is no 
taxonomy or a systematic understanding of the QoS 
under resource sharing. In this study, we conduct a 
thorough research to increase the fundamental 
understanding of QoS of Grid computing and promote 
system software to support QoS of Grid computing 
automatically. Our QoS is focused on the resource 
sharing of the Grid tasks and local jobs. We first 
introduce a QoS taxonomy based on QoS policies. The 
corresponding optimization issues of each QoS policies 

Figure 4. The mean of prediction error with 
different reservation periods 
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are identified next. Performance modeling and task 
scheduling algorithms are then presented to illustrate 
the solutions of selected optimization issues. Finally, 
some experimental results are given to confirm the 
feasibility and functionality of the proposed solutions. 
The QoS taxonomy and its associated optimization 
mechanisms form a framework whereas an automatic 
system support of QoS of Grid computing can be 
developed upon. In the future, we plan to further 
increase the fundamental understanding of quality of 
service of Grid computing. This may include 
identifying new QoS policies; in-depth understanding 
of existing policies; automatic policy deployment for 
choosing an appropriate policy under a given scenario; 
dynamic policy adjustment where different policies 
may be adopted at different time for the best fit. We 
plan to provide a prototype system which can 
automatic choose an appropriate policy, and automatic 
adjust QoS parameters at runtime to optimize the 
quality of services. 
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