
Quality of Service of Grid Computing: Resource Sharing

Xian-He Sun†‡, Ming Wu†
Illinois Institute of Technology, Chicago Illinois 60616 USA†

Fermi National Accelerator Laboratory, Batavia, IL 60510-0500‡
{sun, wuming}@iit.edu

Abstract

Rapid advancement of communication technology
has changed the landscape of computing. New models
of computing, such as business-on-demand, Web
services, peer-to-peer networks, and Grid computing
have emerged to harness distributed computing and
network resources to provide powerful services. The
non-deterministic characteristic of the resource
availability in these new computing platforms raises an
outstanding challenge: how to support Quality of
Service (QoS) to meet a user’s demand? In this study,
we conduct a thorough study of QoS of distributed
computing, especially on Grid computing where the
requirement of distributed sharing and coordination
goes to the extreme. We start at QoS policies, and then
focus on technical issues of the enforcement of the
policies and performance optimization under each
policy. This study provides a classification of existing
software system based on their underlying policies, a
systematic understanding of QoS, and a framework for
QoS of Grid computing.

1. Introduction

With the advance of network technology, many new
distributed computing models are being constructed to
harness geographically distributed computing and
communication resources, such as business-on-
demand, Web services, peer-to-peer networks, and
Grid computing [1]. Typical examples of these systems
include WebSphere, Gnutella, Skype, Seti@home,
Condor, PPLive (a P2P television network), and
Globus [2]. The system size of these systems scales
from hundreds of nodes to tens of thousands of nodes,
and even more. In these systems, resources are shared
and collaborated to provide services/functionalities
such as online shopping, online telephony and
television, teleimmersion, online control of scientific
instrumentation, and resource pooling. Much effort is
being made in the standardization of protocols and

interface for service orchestration and resource
collaboration in these environments. With the maturity
of these systems, with more and more users, Quality of
Service (QoS) of these newly-emerged computing
platforms is becoming more and more important.

Quality may mean different things for different
users under different environments. In general, quality
is a nonfunctional character such as performance, cost,
security, reliability, et al., or a combination of them. In
a shared network environment like Grid, there are
several new issues related to QoS support that do not
arise in a single computer system. The first issue is the
variation of resource availability. This variation may
be due to resource contention, dynamic system
configuration, software or hardware failures, and other
factors beyond the control of a user. The uncertainty of
resource availability has a big impact on application
quality. The second issue is parallel processing. The
total workload of a large scale application is often
partitioned into smaller pieces, called subtasks. These
subtasks are then allocated to resources in a distributed
system to be processed concurrently. The challenge of
parallel processing in a shared network environment
lies on that the computing resources may be
heterogeneous and have individual availability
patterns. The third issue is non-centralized control. In a
general Grid environment, the computing resources are
autonomous. Local schedulers schedule local jobs and
the Grid scheduler does not have the control of the
local jobs. These new QoS issues make supporting
QoS of Grid computing extremely challenge.

Because of these difficulties, in spite of recent
intensive attention, a suitable and broadly applicable
QoS solution has been elusive. This is especially true
for Grid computing, where computing resources cross
different virtual organizations and applications are
topically large in scale, requiring distributed
concurrent processing and frequent coordination. In
this study, we call the tasks scheduled by the Grid
scheduler Grid tasks and the other processes or jobs
running in the Grid environment local jobs. We focus
on studying the relation between the Grid tasks and the

local jobs and investigate the influence of resource
sharing on QoS. We assume that both the Grid system
and the local systems can work effectively. The study
is on the new QoS issues of Grid computing, especially
on the interaction between the two sides, the Grid tasks
and the local jobs. In recent years, some efforts have
been made to address the issues of sharing. But most
existing QoS support is built under certain tacit
assumptions. They often support QoS of one side in the
cost of sacrifice another without a good understanding
of the QoS issues between the two sides. For instance,
seti@home gives the priority to local jobs. The Grid
task executes only when no local jobs are running.
There is no QoS for Grid tasks. Resource reservation
has been proposed for Grid computing [3]. Resource
reservation reduces system utilization and may disturb
the normal operation of local jobs. The question, then,
is how much resources need to be reserved for how
long and on which resources. Currently the decision is
made based on the demand of the Grid task or let the
local scheduler to make the decision. Without a better
understanding of the impact of resource reservation on
QoS an appropriate decision cannot be made.

A good QoS solution requires a comprehensive
investigation of the complex interaction between
system characteristics, such as resource sharing, non-
centralized control, heterogeneity, and dynamics; and
application characteristics, such as parallel processing,
computation or communication, hard guarantee or soft
guarantee. To provide a uniformed QoS solution for
general Grid computing, we propose to develop a
software solution through increasing the fundamental
understanding of QoS of Grid computing. We
specifically study the relation between the QoS of Grid
tasks and the QoS of local jobs and investigate the
influence of resource reservation on local jobs. We
divide the fundamental understanding of QoS into two
stages: policymaking and optimization mechanisms.
Policymaking decides the QoS policy of resource
sharing among Grid tasks and local jobs. Optimization
mechanisms obtain an optimum QoS under each QoS
policy. Optimization mechanisms in turn consist of
advanced performance modeling, resources
management, and scheduling algorithms. The
interference of Grid tasks and local jobs are considered
in modeling. Task schedulers choose the best set of
resources to optimize the application QoS based on the
information provided by performance modeling.
Resource management collects application and
resource information, enforces the QoS policy, and
carries out the scheduling decisions. This top-down
study not only leads to a better understanding of QoS
between the Grid tasks and local jobs, it also gives a
constructive solution.

2. QoS policy

Grid computing requires the coordination of
distributed network resources to solve non-trivial
applications. The distributed resources may belong to
different virtual organizations, shared by Grid tasks
and local jobs, and are often autonomic controlled. A
Grid management system has no control over the usage
pattern of the shared resources. The uncertainty of
resources makes QoS of Grid computing hard to
achieve. QoS is a known technical hurdle preventing a
broader adoption of Grid computing. There has been
no well-conducted QoS study to balance the need of
Grid tasks and local jobs. Distributed systems, such as
Condor, NetSolve, Nimrod, and Globus [2], support
Grid computing and facilitate resource sharing and
collaboration. These systems adopt different QoS
policies, usually implicitly, and try to provide a
satisfactory QoS under their adopted policies. These
policies often support QoS for one side and sacrifice
that of the other – they perform well for certain
applications but do not provide a satisfactory solution
for general Grid computing. For example, in
SETI@home, Entropia, and Condor, a Grid task is
allowed to run only when no keyboard or mouse
activities are detected on local resources. This sharing
policy ensures that Grid tasks do not interfere with the
execution of local jobs, but the QoS of Grid tasks is at
the mercy of local users. We call this cycle-stealing
based QoS policy the best-effort service. In an opposite
direction, in Legion and Globus, resources can be
reserved for the execution of Grid tasks based on
service-level agreements [3]. Service-level agreement
is a great tool to enforce different QoS policies in a
Grid environment. However, due to the lack of
understanding of QoS, in current practice the resource
reservation is only used to ensure the QoS
requirements of Grid applications. The influence of
resource reservations on local jobs is not considered.
As a result, the QoS of local jobs could be severely
degraded, which in turn could lead to significant
reduction of the liability of the service-level
agreement. In fact, recent research [4] has shown that
local users often power cycle computers immediately if
uncomfortable machine slowness is observed. We call
this reservation based QoS policy the real-time service.
Real-time service is a preferred policy for real-time
Grid applications, but not others. Ideally, a set of
policies should be introduced to balance the QoS need
of both Grid tasks and local jobs and adjust the policies
dynamically under certain criteria for different
applications and computing environments. To lead a
better understanding of QoS, we first need to
understand the QoS policies.

Our study of QoS is based on the observation that
Grid environments do not have a central control and
the quality of service has to be supported on shared
resources. Recognizing that the sharing has two sides,
Grid tasks and local jobs, and the QoS concerns of the
two sides are quite different, we specifically study the
relationship between the QoS of Grid tasks and the
QoS of local jobs and intend to develop a system
solution to meet the need of both sides simultaneously,
or at least balance the requirements. In practice, there
are three resource sharing policies widely used in the
Grid computing community.
• The best-effort policy. In best-effort policy, local

jobs have higher priority than a Grid task. A Grid
task is allowed to execute only when there is no local
jobs running. During the execution of the Grid task,
if any local jobs arrive, the Grid task is either
suspended or terminated. In Grid computing, we are
more interested in the first scenario because Grid
tasks are usually stateful large-scale scientific
applications. In practice, the keyboard and mouse
activities are usually monitored to detect the local job
running status. The best-effort policy is adopted in
the Seti@home and Condor project.

• The real-time policy. In real-time policy, Grid tasks
have a higher priority over local jobs. According to
the Grid task QoS requirement, a certain computing
resources (CPU, Memory, I/O, network) are reserved
for the dedicated use of the Grid task. This
reservation is fixed during the execution of the Grid
task. The real-time policy is adopted in the GASA
project [3]. It is often used for resource allocation in
supercomputer centers, in which a number of nodes
in a cluster system or in a group of cluster are
reserved for the dedicated running of a scientific
application. This policy is best for test the potential
of Grid computing and within a virtual organization
where a priority can be defined globally.

• The competing policy. In the competing policy, a
Grid task competes for resources with local jobs. The
good part of the competing policy is that every one is
equal; no one has to sacrifice for another. The bad
part, on the other hand, is there is no guaranteed QoS
for any one. This policy is usually applied in public
domains, such as campus computing environments.
For example, Condor and AppLeS [5] project support
this policy so that workstations in their systems are
harvested to increase the computing throughput.

Besides the three existing QoS policy, we identify two
new resource sharing policies which has the potential
to be applied in a general distributed environment to
enrich the different relationship between local jobs and
Grid tasks in terms of their qualities.

• The constrained policy. In the constrained policy,
the QoS of Grid tasks or local jobs has to be
maintained at certain level. Meeting the predefined
QoS is the first priority of the constrained policy. For
instance, if the constrained is to maintain the local
job QoS at certain level, then resources only can be
reserved to Grid tasks when the reservation does not
reduce the local job QoS below the QoS level. In the
meantime, Grid scheduler should reserve as mush as
resources possible for its gains as long as the
constraint condition is not violated. This provides a
compromised resource sharing policy where a certain
part of a resource is dedicated to a Grid task under
the condition that local job QoS is affected within a
limitation.

• The balanced policy. In the balanced policy, both
the quality of Grid tasks and the quality of local jobs
are considered and measured with some given
criteria. The balanced policy can be viewed as a
further extension of the constrained policy. Instead of
enforcing QoS constraint on one side, the balanced
policy weighs the priorities of both sides. When there
is no enough resources to support QoS, both sides
will suffer together with predefined proportion.

The policy list is incomplete and is only an initial
point. The balanced policy, for instance, may lead to
different policies based on different tradeoffs and
concerns; different policies may need to be combined
and adopted at different time to support the QoS of a
given application. The competing policy may have
different QoS goals: optimizing the Grid task
performance, minimizing the slowdown of local jobs,
or some weighted combinations. In addition, the Grid
tasks, or local jobs, themselves may have different QoS
needs and should be treated separately..

3. Performance modeling

After a QoS policy is chosen, the next question is
how to achieve an optimum quality under the given
policy. Quality is often measured in terms of
performance. Improving quality then becomes an
optimization problem. For example, for the best-effort
service, we should partition and schedule the Grid task
in such a way to optimize its performance (QoS); for
the real-time service we should schedule the Grid task
appropriately to minimize the QoS degradation of local
jobs. A more complex task is to optimize the QoS of
both Grid tasks and local jobs under a balanced QoS
policy. The optimization mechanisms in turn rely on
advanced resource management, performance
modeling, and task scheduling. The factors of
computation, communication, and the interference of
Grid tasks and local jobs should be considered in

modeling the behavior of Grid and local tasks under
each QoS policy. A task scheduler then can choose the
best set of resources to optimize the application QoS
based on the information provided by performance
modeling. Notice that QoS modeling can be also used
in choosing an appropriate QoS policy for a given
application. Resource management collects application
and resource information, enforces the QoS policy, and
carries out the scheduling decisions. Here enforcing
QoS includes the enforcement of resource reservation
or other service-level agreements. Figure 1 presents the
relationship of QoS policies, optimization goals, and
optimization mechanisms in Grid computing. Due to
the sake of page limitation, we only present some
representative optimization issues of some selected
QoS policies in this study.

Computation modeling for best-effort service.

We have introduced a performance modeling for best-
effort service. The model predicts QoS, in terms of
completion time, of a Grid task [6], so a set of
appropriate resources can be chosen for optimal
execution time. It is derived from a combination of
rigorous stochastic analysis and intensive simulation
and designed for large-scale applications. The model
considers the heterogeneous machine utilization and
computing capacity, heterogeneous job arrival rate as
well as heterogeneous service distributions. The effects
of machine utilization, computing power, and local job
service and task allocation on the completion time of
Grid task are individually identified.

In the best-effort service, the Grid task is given a
lower priority than the local job so that the Grid task is
less intrusive. We suppose the execution of the Grid
task is interrupted by local jobs S times. Each busy
period for local jobs running is iY)1(Si ≤≤ . The
application completion time can be expressed as:

kSYYYwT ++++= .../ 21τ (1)

)1(ki SiY ≤≤ is the computing time consumed by
sequential jobs and kS is the number of interruption

due to local job arrivals on machine k. By defining





>+++
=

=
0,...
0,0

)(
21 kS

k
k SifYYY

Sif
SU

k

,

we can obtain the distribution of kT as





 ≥>−≤−+

=≤
−−

otherwise

wtifSwtSUee
tT kk

ww

,0

/0|/)(Pr()1(
)Pr(

// τττλτλ (2)

where the distribution of))(Pr(kSU can be appropriated
with Gamma distribution [6]. In parallel processing,
the completion time of a Grid task is the maximum of
each sub-task completion time. After the distribution of
the completion time of sub-task kw is identified, the
cumulative distribution function of the remote parallel
task completion time can be calculated as:






 ≥>−≤−+
=≤ ∏

=

−−

otherwise

tifSwtSUee
tT

n

k
kkkk

ww kkkkkk

,0

)]0|/)(Pr()1([
)Pr(max

1

// κττλτλ

where)/{max kkwMax τκ = . maxκ denotes the
maximum of the minimum execution time on each
machine km)1(nk ≤≤ .

Computation modeling for real-time service. In
real-time service, certain resources are reserved for
Grid tasks so their QoS can be guaranteed. This
reservation may degrade the QoS of local jobs. In
queuing systems, a commonly used QoS measure is the
mean waiting time, which is defined as the average
waiting time of local jobs [7]. To determine whether a
reservation is accepted or not, local users are naturally
concerned about how much the average waiting time is
affected. Let aW denote the mean waiting time of local
jobs with reservation and bW denote the mean waiting
time of local jobs without reservation. We introduce a
new metric, relative slowdown (RS) to measure the
impact of resource reservation on the QoS of local
jobs. It is defined as the ratio of the average waiting
time with reservation and the average waiting time
without reservation, ba WW / . The reason we don’t use

ba WW − to describe the change of the average waiting
time is that it reflects the absolute increased value of
the waiting time. It is more appropriate to use ba WW /
to gives the relative variation of the waiting time.

The actual waiting time depends on the underlying
CPU scheduling. We have modeled the relative
slowdown on two widely used CPU scheduling: first-
come-first-serve (FCFS) and round-robin (RR) [8]. In
FCFS, jobs are served in the order of their arrival. RR
is a FCFS with a fixed quantum of time. If a job cannot
finish within the time quantum it is put at the end of
the waiting queue to wait for its turn again. Let κ be
the reservation ratio. We have shown in an M/G/1

Figure 1. QoS policy and optimization
mechanisms

FCFS queuing system, the mean waiting time after
reservation and the relative slowdown, are

1)1,,,(
1

1 −−
−

= λκσρλϕ
κaW

)
)1,,,(

)1,,,((
)1(

1
σρλϕ

κσρλϕ
κ

−
−

=RS , (3)

respectively, where
)(2

),,,(
222

ρ
σλρρσρλϕ

−
++=
c

c .

µλρ /= is machine utilization and σ is the service

time standard deviation. In an M/G/1 RR queuing
system, the mean waiting time after reservation and the
relative slowdown, are

)1(ρκλ
ρ

−−
=aW , and

)1(
1

ρκ
ρ
−−

−=RS . (4)

Please note that 01 >>− κρ holds in the above
equation..

4. Task scheduling and allocation

Most task scheduling systems, including LSF, PBS
Pro, Sun Grid Engine/CODINE, and Maui Scheduler
[9], are designed for dedicated and stable computing
environments. The Condor system provides a
matchmaking mechanism for distributed computing to
allocate resources with a publish/request framework. It
is aimed to match the software and hardware needs of
the application, and not design to solve QoS tradeoff
issues. In the PEGASUS and CHIMERA workflow
management systems and in the AppLeS scheduling
system [2], scheduling decisions are made based on the
deterministic estimation of resource availability
provided by NWS [5]. These systems assume that Grid
applications and local jobs compete for resources.
From the QoS point of view, these systems intend to
optimize the QoS of Grid tasks under the competing
QoS policy. GASA (Grid Advance Reservation API)
[3], a subsystem of Globus project, provides
mechanism for resource reservation so that
applications can receive a certain level of service.
Virtual Application Service (VAS), a deadline-bound
system, makes scheduling decision based on resource
reservation [10]. In these systems, a scheduling
decision is made only based on the QoS requirement of
the Grid application. From the QoS point of view,
these systems adopt the real-time service policy
without considering the impact of reservation on the
QoS of local jobs.

The process of task scheduling partitions a Grid task
(service) into sub-tasks (service instances) and assigns
each sub-task to a selected set of resources based on

the pre-developed performance model to optimize the
QoS. The task partition can be achieved through either
partitioning or grouping. Partitioning divides a parallel
program into subtasks. Grouping joins independent
tasks of a meta-task or workflow into groups and takes
each group as a subtask for task allocation. The
measure of scheduling is determined by the underlying
QoS policy. For the best-effort service, the task
scheduling is designed to optimize the performance of
the Grid task. We use makespan-minimization
scheduling to minimize the completion time of a Grid
task. A mean-time task partition algorithm can be used
to distribute the workload of a parallel program to each
resource so that the difference of the mean of expected
execution times of the sub-tasks is minimal. A detailed
description of task partition with respect to CPU,
memory, network resource heterogeneity and resource
sharing is given in [2]. For the real-time service, we
propose two minimization scheduling algorithms to
optimize local job quality and Grid task quality
respectively. For local jobs, the quantity is the relative
slowdown and scheduling is done to minimize the QoS
degradation of local jobs. We have proposed an equal
slowdown strategy to distribute the workload of Grid
tasks in order to reduce the global (maximum) relative
slowdown. A failure-minimization algorithm is
proposed to minimize the reservation failure
probability in meeting the performance (deadline)
requirement of a Grid task [8]. The scheduling
concerns of the competing service are similar with that
of the best-effort service. The scheduling of the
constrained service and balanced service, however,
become much more demanding. For the constrained
service where the goal is to optimize the QoS of the
Grid task while maintaining the QoS of local jobs at a
certain level, we approach a scheduling algorithm by
using the relative slowdown to measure a QoS
degradation constraint, and using a QoS-constraint
partition strategy to distribute the workload of a Grid
task onto each resource as much as possible under its
QoS degradation constraint. Optimal scheduling
algorithms are often too costly to be used in practice.
In these cases, heuristic scheduling algorithms are used
to find a near optimal solution within a reasonable cost.
Figure 2 gives a general form of heuristic scheduling
algorithms. The basic idea is that machines are sorted
first based on their potential contributions to the
optimization goal. Then a local optimal can be found
quickly based on this ordering. Notice that different
optimization criteria could be used in finding the local
optimal.

Different QoS models, task scheduling algorithms,
and resource management mechanisms are needed for
each resource sharing policy and application QoS
requirement. A unified QoS system should be
developed to provide system support of QoS delivery
for different needs. While this is an extremely
challenging task, we have developed a QoS testbed
system based on QoS framework given in Figure 1. In
the resource management, current software systems
already support three resource sharing policies: real-
time, competing, and best-effort. For example, Condor
and Seti@home support best-effort QoS policy. They
can detect resource availability by monitoring local
users’ activities on mouse and keyboard. In Globus and
VAS [10], DSRT and classic cluster resource
management system such as PBS are used to provide
time-sharing/space-sharing resource reservation.
Notice that, with the support of our proposed
reservation-based QoS models, these resource
management tools can be further extended to support
the constrained policy and the balanced policy. In
AppLeS project, the default process scheduling in OS
on local resources is used to support the competing
policy. In the PEGASUS and CHIMERA workflow
management systems and in the AppLeS and GHS
scheduling system [5, 9], current scheduling system
can be extended by introducing the QoS-oriented task
scheduling algorithms discussed in this section. The
UUCS (Understanding User Comfort System) can be
used for measuring performance degradation of local
jobs and user comfort with resource reservation [11].
We have extended the GHS system [9] to support
different QoS policies and to serve as a QoS testbed
system.

5. Experimental results

We have partially implemented and tested the
presented QoS policies and mechanisms. We
demonstrate some testing results here in terms of
performance modeling, task scheduling, and resource
management for different QoS policies. For modeling,
we present the results of the modeling of the best-effort
service and real-time service. For task scheduling, we
test the efficiency of the scheduling algorithms of the
real-time service. We also carry out experiments on an
actual Grid application under the real-time policy with
the updated DSRT [12].

The test platforms used in our experiments are the
Sunwulf cluster and the DOT Grid Testbed. Sunwulf is
a heterogeneous 84-node Sun ComputeFarm at IIT.
The DOT connects clusters at ANL, NCSA, NU, UC,
UIC, and IIT via the advanced "I-Wire" network. Each
cluster is composed of one sever and multiple
computing nodes. Local jobs on each resource in these
test platforms are simulated with different job arrival
rates and service rates, which follows the observation
of over one million real-life processes generated from
different academic workloads in Berkeley [9], as well
as the machine usage pattern observation by
researchers at Wisconsin-Madison, Maryland,
Carnegie Mellon, et al [9].

Performance Modeling. The computation model
for the best-effort service is designed to identify the
effect of resource sharing on Grid tasks, in terms of
execution time. We use the percentage prediction error
to measure the prediction error. We have tested the
parallel version of Cactus application on the DOT Grid
Testbed. Cactus, a numerical simulation of a 3D scalar
field produced by two orbiting astrophysical sources, is
used as our test application. In the experiments, we use
one server and one node from the IIT cluster, three
nodes from the ANL cluster, and three nodes from the
UC cluster. Two factors influence the accuracy of this
kind actual testing, workload determination and system
software interference. As a user we only can estimate
the workload of Cactus based on its iteration number
and input values ¨C which is error prone. Also the
underlying DOT management system may take CPUs

Assumption: A divisible grid task is partitioned and
sub-tasks are assigned to machines appropriately for a
better performance
Objective: Scheduling a grid task heuristically to reach
a semi-optimal performance
--
List a set of idle machines that are lightly loaded over an
observed time period.
Sort the list of idle machines in a decreasing order with
their potential contributions to the optimization goal.
Generate a list of machine set by gradually adding a
machine from the sorted machine list until all machines
is included in a machine set
Using the binary search to find the machine set with the
best value of the optimization criteria.
Assign tasks to this machine set accordingly.

Figure 2. Heuristic task scheduling algorithm

Figure 3. Mean and variance of prediction
error of Cactus’s execution time

0

10

20

30

40

50

60

70

80

1 2 4 8 16

parallel task execution time (hours)

pr
ed

ic
tio

n
er

or
 (%

)

mean

variance

away from time to time. Nevertheless, Figure 3 shows
the model working well even with these two factors.

A simulator of an M/G/1 queuing system is built to
test the model for real-time service. The simulator is
composed of a local job generator, a waiting queue, a
scheduler, and a server. Both FCFS and RR queuing
disciplines are supported in the simulator. The
proposed model is tested with the bounded Pareto job
lifetime distribution [8] as suggested by Harchol-Balter
and Downey. Figure 4 plots the mean of percentage
prediction error with different reservation periods from
2000 seconds to 10000 seconds when the reservation
ratio is 0.2 and the utilization is 0.15. The predicted
value is the calculated relative slowdown given by
formula (3) and (4) derived from the proposed model
and the measured value is the QoS degradation of local
jobs collected from simulation results. We observe that
the mean of prediction error is very small. The
maximum prediction error observed in simulation is
1.15%. The mean of the prediction error tends to be
smaller with the increase of the reservation period.
These simulation results demonstrate that the
computation model for real-time service can accurately
capture the effect of reservation on the QoS
degradation of local jobs [8].

We have also conducted experiments to measure the
local job QoS degradation with the updated resource
reservation tool, DSRT, on the DOT Grid Testbed.
Two Grid applications are used in the experiments.
One application is a meta-task, which consists of a set
of independent indivisible computation intensive
subtasks. Another application is the Cactus parallel
application. In the experiment, the server and three
nodes, iit01, iit02, and iit03 are used. The utilization on
these machines is set as 0.2 and the reservation ratio as
0.2. FCFS queuing discipline is enforced on each
resource. Table 1 gives the actual CPU part occupied
by Grid tasks and the measured relative slowdown of
local jobs. It shows that the measurements match the
analytical result well (the calculated relative slowdown
is 1.33). The small differences can be contributed to
the system overhead such as synchronization and
communication among processes.

Task scheduling. Task scheduling partitions and
schedules a Grid task onto appropriate resources to
achieve the best quality under a given policy. To test
the effectiveness of the newly proposed mechanisms, a
Grid environment simulator is built for the testing of
scheduling under each service. The simulated Grid
environment is composed of a number of machines,
which can be scaled from dozens of resources to
thousands of resources. We set different job arrival
rates and service rates for these machines to simulate
heterogeneous machine usage patterns in a Grid
environment. Using the simulated Grid environment,

we conducted simulations to test the efficiency of a
proposed heuristic minimization scheduling algorithms
for the real-time service. We simulated systems of 20,
30, and 40 machines and utilized the Weibull
distribution to describe the failure probability, while
our scheduling can be applied with any empirical
failure probability distributions. Because local users of
different machines may have different tolerances to a
relative slowdown of local jobs, we differentiate the
shape and scale parameters of Weibull distribution at
each machine to reflect this heterogeneity by randomly
generating these parameters in a certain range. We
calculate the failure probabilities based on our
computation model for the real-time service under five
scheduling strategies: heuristic, random, fast-speed,
light-load. Fast-speed and light-load scheduling means
that machines are selected based on their speeds and
loads respectively. For example, Fast5 represents the
first 5 fastest machines are selected for task allocation.
Figure 5 gives the 5th, 50th, and 95th percentiles of
failure rate over 100 simulations for each scheduling
policy. We can observe that not only the average
reservation failure rate with heuristic scheduling is
much lower than those with other scheduling
algorithms, but also the variation of the failure rate
with heuristic scheduling is rather smaller than others
[8].

6. Conclusion and future work

Quality of service of Grid computing is a
challenging but timely important problem. While
intensive research has been conducted in QoS in recent
years, most existing results are ad hoc and there is no
taxonomy or a systematic understanding of the QoS
under resource sharing. In this study, we conduct a
thorough research to increase the fundamental
understanding of QoS of Grid computing and promote
system software to support QoS of Grid computing
automatically. Our QoS is focused on the resource
sharing of the Grid tasks and local jobs. We first
introduce a QoS taxonomy based on QoS policies. The
corresponding optimization issues of each QoS policies

Figure 4. The mean of prediction error with
different reservation periods

0

0.002

0.004

0.006

0.008

0.01

0.012

2000 4000 6000 8000 10000

reservation period (s)

p
re
di
c
ti
on

er
ro
r
(%
)

pareto(FIFO)

pareto(RR)

are identified next. Performance modeling and task
scheduling algorithms are then presented to illustrate
the solutions of selected optimization issues. Finally,
some experimental results are given to confirm the
feasibility and functionality of the proposed solutions.
The QoS taxonomy and its associated optimization
mechanisms form a framework whereas an automatic
system support of QoS of Grid computing can be
developed upon. In the future, we plan to further
increase the fundamental understanding of quality of
service of Grid computing. This may include
identifying new QoS policies; in-depth understanding
of existing policies; automatic policy deployment for
choosing an appropriate policy under a given scenario;
dynamic policy adjustment where different policies
may be adopted at different time for the best fit. We
plan to provide a prototype system which can
automatic choose an appropriate policy, and automatic
adjust QoS parameters at runtime to optimize the
quality of services.

Reference:
[1] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, ISBN 1-55860-475-8, July
1998.

[2] M. Wu, “System Support of Quality of Service in Shared
Network Environments”, dissertation, Department of
Computer Science, Illinois Institute of Technology, 2006.

[3] I. Foster, A. Roy, V. Sander, “A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation”, IWQoS’00, pp. 181-188,
Pittsburgh, PA, June 2000.

[4] D. Nurmi, J. Brevik, and R. Wolski, “Modeling Machine
Availability in Enterprise and Wide-area Distributed
Computing Environments,” UCSB Computer Science
Technical Report (CS2003-28), 2003.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al,
“Adaptive Computing on the Grid Using AppLeS”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14,
No. 4, pp 369--382, 2003.

[6] L. Gong, X.H. Sun, and E. F. Waston, “Performance
Modeling and Prediction of Non-Dedicated Network

Computing,” IEEE Trans. on Computers, Vol. 51, No 9, pp.
1041-1055, September, 2002.

[7] D. Gross, C. M. Harris, Fundamentals of Queuing
Theory, 3rd Edition, 1998.

[8] M. Wu, X.-H. Sun, Y. Chen, “QoS Oriented Resource
Reservation in Shared Environments,” CCGrid’06,
Singapore, May 2006.

[9] M. Wu and X.-H. Sun, “Grid Harvest Service: A
Performance System of Grid Computing,” Journal of
Parallel and Distributed Computing, Vol. 66, No. 10, pp.
1322-1337, 2006.

[10] K. Keahey and K. Motawi, “The Taming of the Grid:
Virtual Application Services,” Technical Memorandum
ANL/MCS-TM-262, May 2003.

[11] A. Gupta, B. Lin, P. Dinda, “Measuring And
Understanding User Comfort With Resource Borrowing,”
HPDC’2004, Honolulu, Hawaii, 2004.

[12] DSRT2.0, http://cairo.cs.uiuc.edu/software/DSRT-
2/dsrt-2.html.

Figure 5. Failure rates with different
scheduling algorithms

