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Abstract

Conventional performance evaluation mechanisms focus on dedicated systems. Grid computing infrastructure, on the other hand, is a shared
collaborative environment constructed on virtual organizations. Each organization has its own resource management policy and usage pattern.
The non-dedicated characteristic of Grid computing prevents the leverage of conventional performance evaluation systems. In this study, we
introduce the grid harvest service (GHS) performance evaluation and task scheduling system for solving large-scale applications in a shared
environment. GHS is based on a novel performance prediction model and a set of task scheduling algorithms. GHS supports three classes
of task scheduling, single task, parallel processing and meta-task. Experimental results show that GHS provides a satisfactory solution for
performance prediction and task scheduling of large applications and has a real potential.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

With the advance of cyberspace, resource sharing has be-
come a commodity. Many geographically distributed systems,
such as Condor [37], NetSolve [12] and Nimrod [1], have been
constructed in recent years to support resource and service
sharing. The success of these systems inspired and facilitated
the formation of a national scale distributed environment, the
information power Grid [23]. While noticeable progress has
been made in standardization to enable service orchestration
and resource collaboration [25,22], Grid computing is still in its
infancy. Many research issues remain open, which include how
to deliver the diverse autonomous computing power of a Grid
effectively to users.

Grid Computing introduces a great challenge in task schedul-
ing: how to partition and schedule tasks in a large, available but
shared, heterogeneous computing system. Conventional paral-
lel processing scheduling methods cannot apply to a Grid en-
vironment directly where computing resources are shared [24]
and non-controlled local jobs co-exist with Grid tasks. A key
of Grid task scheduling, therefore, is to estimate the availabil-
ity of computing resources and to find its influence on the
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application performance. Some Grid tools have been devel-
oped to meet the need. However, these tools are for short-term
resource availability. For instance, the well-known network
weather service (NWS) [11,47] system only predicts the avail-
ability of a computing or communication resource for the next
5 min, and its satisfactory prediction range in general is much
less than the 5-min upper bound. Another approach is to avoid
the hard issue of predicting resource availability, and use reser-
vation to reserve a computing resource [26]. This approach asks
resource owners to give up their privilege and suffers in system
utilization. It is useful for high-priority tasks or to show the po-
tential of Grid computing, but has difficulties to be employed
in a general enterprise environment. Also, the reservation ap-
proach will be more effective and trustworthy if it is based on
resource availability prediction.

In this study, we present the design and prototype implemen-
tation of a long-term, application-level performance predic-
tion and task scheduling system, namely grid harvest service
(GHS) system, for Grid computing. Here long-term means an
application requiring hours or more, in contrast to minutes, of
sequential execution time; and application-level performance
means that the performance is measured in application turn-
around time, in contrast to resource availability. GHS con-
sists of the components of performance monitor, performance
prediction, task partition and scheduling, and user interface.
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The prediction component is based on a new performance
model [29,42], which is derived from a combination of stochas-
tic analysis and direct-numerical simulation. Unlike other
stochastic models, this model individually identifies the effects
of machine utilization, computing power, local job service, and
task allocation on the completion time of a parallel application.
It is theoretically sound and practically feasible.

Utilizing performance prediction, various partition and
scheduling algorithms are developed and adopted in the parti-
tion and scheduling component for a single sequential task, a
single parallel task with a given number of subtasks, optimal
parallel processing, as well as a meta-task composed of a group
of independent tasks. A heuristic task-scheduling algorithm is
proposed to find an acceptable solution with a reasonable cost.
GHS uses an adaptive measurement methodology to monitor
resource usage pattern, where the measurement frequency is
dynamically updated according to the previous measurement
history. This method reduces monitoring overhead consider-
ably.

A prototype GHS has been developed for computation in-
tensive applications. Experimental testing has been conducted
on Grid nodes at Argonne National Laboratory, Oak Ridge
National Laboratory, and in the DOT Grid Testbed using both
synthetic programs and a real Grid application, Cactus.
Experimental results show GHS outperforms NWS [11,47]
and AppLeS [9,10,13,14] in performance evaluation and task
scheduling, respectively, for long-term applications. It has a
real potential for Grid computing.

The remainder of this paper is organized as follows: Section
2 describes the related work. Section 3 presents the structure
and primary components of GHS. The performance evaluation
approaches are introduced in Section 4. Performance measure-
ment mechanisms are discussed in Section 5. Section 6 gives
task partition algorithms and scheduling schemes. Experimen-
tal results are presented in Section 7. Finally, the conclusion
and summary are given in Section 8.

2. Related work

Early work in performance evaluation was mostly focused
on dedicated systems. The study of usage patterns of non-
dedicated workstations is relatively recent [6]. Mutka and Livny
[39] reported that the distribution of available time intervals on
workstations could be characterized as a combination of several
hyper-exponential distributions. Harchol-Balter and Downey
claimed that the median remaining life of a process is equal to
its current age [30]. These works are observational in nature.
Kleinrock and Korfhage [33] gave an analytical expression for
the mean and standard deviation of the task completion time
based on Brownian motion, which assumes that tasks are as-
signed to loaded workstations. Further, the effects of different
factors cannot be analyzed due to the inherent limitation of their
method. Leutenegger and Sun [35] put forward an analytical
performance model to investigate the effect of a remote task
on local jobs of the workstation owner and vice versa. An ef-
fective prediction equation was derived for homogeneous non-
dedicated systems. Most recently, Gong et al. have introduced a

more general model for heterogeneous non-dedicated network
computing [29]. Their model was derived from a combination
of rigorous mathematical analysis and intensive simulation.

There are several on-going projects on performance evalua-
tion in parallel or distributed programming environments. Para-
dyn parallel performance tools [38] is a known performance
evaluation system. The technical features of Paradyn are dy-
namic instrumentation, W3 (why, when, and where) search
model and uniform data abstraction. Paradyn measures the per-
formance of an application. However, it does not provide perfor-
mance analysis and prediction based on resource usage pattern.
Tuning and analysis utilities (TAU) [41] was developed at the
University of Oregon. Its salient features are instrumentation
at the source code level, message trace and visualization, stan-
dard format for performance files, and further analysis based
on the recompilation and rerun of the application with different
profile statistics options of libraries. It is a post-execution per-
formance analysis system. The Prophesy project is centered on
the interaction or coupling between kernels with an application
[43]. Another related work is SCALEA [44], which provides
the performance analysis for individual code regions of appli-
cations. These systems focus on application performance in a
dedicated parallel system instead of a non-dedicated distributed
environment.

Network weather service (NWS) [11,47] monitors and fore-
casts resource performance on-line. It provides system perfor-
mance sensors, various simple forecasting methods, dynamic
predictor selection and web-based visualization interfaces. Re-
source prediction system (RPS) Toolkit [16] predicts the CPU
availability of a Unix system over a small time range with time
series techniques. These works are for non-dedicated environ-
ments. However, they only predict the short-term availability
of non-dedicated resources. There is no application-level per-
formance analysis and long-term prediction.

Most scheduling methodologies in distributed systems con-
sider application performance or system load balance [8,32].
They are based on either current system usage or advanced
resource reservation mechanisms. Condor system provides a
matchmaking mechanism to allocate resources with ClassAds
[40]. The scheduling strategy is based on the mapping of
the users’ ClassAds. It ranks available machines according
to their latest usage, instead of application-level performance
prediction. Grid advance reservation API (GASA) [26] is a
subsystem of Globus project. It provides resource reservation
mechanisms so that applications can receive a certain level
of service. Legion system also supports resource reservation
[36]. These reservation approaches try to have dedicated re-
sources in a non-dedicated environment, which may or may
not be feasible in an actual engineering environment. Some
other projects, such as Nimrod, consider the economy issue.
In our study, we focus on the application performance in task
scheduling. The experience in the development of the GrADS
project [9] and other Grid projects has demonstrated that the
integration of performance evaluation mechanisms with ap-
plication is pivotal to the success of Grid computing [22].
However, there is no existing performance prediction and task
scheduling system designed for a large scale-application in
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a shared Grid environment. NWS is designed for short-term
resource predictions. The AppLeS Grid task scheduling sys-
tem [10,11] uses the short-term resource prediction provided
by NWS for task scheduling and only focuses on independent
meta-tasks. GHS is designed to cover the non-existence and is
a complement of NWS and AppLeS.

3. The design of GHS system

Appropriated scheduling of diverse, autonomous network re-
source is an essential of Grid computing. The goal of GHS is
to minimize the application execution time. There are many
factors affecting the design considerations, such as scheduling
cost, application types (e.g. parallel program or meta-task) and
the workload of applications (e.g. long-term or short-term). Dif-
ferent emphasis on these factors may lead to various schedul-
ing strategies. Whatever factors are considered, however, task
scheduling of a distributed application generally includes sev-
eral basic steps: resource selection, task partition, performance
evaluation, and finally scheduling. Resource selection is to
choose a subset of the available resources. Task partition can be
either partitioning or grouping. Partitioning divides a parallel
application into subtasks and then assigns each subtask to a re-
source in this subset. Grouping clusters subtasks in a meta-task
and then assigns each set of subtasks to a resource. A meta-
task is composed of a set of independent indivisible subtasks.
Strategies of resource selection and task partition can be based
on resource availability information. Performance evaluation
is to estimate the application execution time for a given task
partition plan using a performance model. A straightforward
approach of scheduling is to examine the performance of all
possible combinations of assignments. An optimal scheduling
plan then can be selected accordingly based on the predicted
application performance. A general flowchart of scheduling is
shown in Fig. 1. GHS follows the general scheduling frame.
The difference in GHS is that the performance evaluation and
scheduling has to consider the variation of resource availabil-
ity. Resource availability has patterns and can be predicted for
long-term applications. For a given resource, however, the avail-
ability pattern may vary over time. To cope with the variation,
GHS also has an additional rescheduling functionality. When a
major pattern change is identified, GHS will reschedule tasks
accordingly.

The strategy used in each step depends on the application
specific information and the system specific information. For
example, based on the ensemble size of the Grid and schedul-
ing cost, different resource selection mechanisms can be cho-
sen in Step 1. If the number of available resources is small,
an exhaustively resource selection method is usually applied to
find an optimal solution. If we have a large number of available
resources, a heuristic algorithm should be applied for a near-
optimal solution. The design of GHS is component-oriented
and follows the basic scheduling principle. GHS can be eas-
ily integrated into other scheduling systems and vice versa.
Fig. 2 depicts the primary components of GHS (shaded ar-
eas) and their relations with other general Grid services in a
Grid environment provided by the Globus middleware [28].

Selecting a resource set 

Partitioning application

Estimate application
     performance

 Choose the best
 scheduling plan

Finishing all possible 
machine set?

Performance
  Modeling

Resource
Availability

NO

Finding resources

Fig. 1. Flowchart of scheduling a distributed application.

These components are:

• Application-level predictor: This component estimates the
application performance based on the map information pro-
vided by the Task Allocator component and the system
information provided by the System-level Predictor compo-
nent. It identifies the distribution of an application execution
time in a shared environment.

• System-level predictor: The System-level Predictor analyzes
resource usage patterns to provide an estimation of system
performance in a future period. The input of this component
is the preprocessed system parameters stored in a perfor-
mance database. The structure of the database could be either
distributed or centralized depending on the system scale.

• Task allocator: This component decides how to partition a
parallel program or how to group subtasks of a meta-task.
The input of this component is the application characteristics
(workload, application type, dependency of subtasks of an
application). The output is a mapping of subtasks on a given
set of computing resources.

• Task scheduler: The Task Scheduler determines a schedul-
ing plan for a large-scale application to provide an optimal
or near-optimal solution for its running in a shared environ-
ment. It is actually a searching process. Users submit a par-
allel application or a meta-task for task scheduling. The task
scheduler checks potential available resources in the system
and then searches for the best set of resources to assign the
application.

• Performance data management: This component implements
data filtering and reduction techniques for extrapolating
system and application performance information on each
resource. The raw performance data is collected through
different types of sensors, such as CPU sensor, I/O sensor,
and network sensor.
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Fig. 2. Framework of GHS performance evaluation and task scheduling system.

• Reschedule trigger system: This component analyzes the coll-
ected application and resource performance data to detect
whether resources present abnormal performance from their
historical records. If an abnormal resource behavior is iden-
tified, application will be rescheduled to prevent potential
performance loss. This component is included in GHS to en-
able reliable scheduling in shared environments, like a Grid.

The task manager, which is responsible for task management,
is located in the Application layer. It sends a request to the
scheduler component in the collective layer for resource alloca-
tion. The scheduler component contacts the index service pro-
vided by WS monitoring and discovery system of Grid to locate
potential available resources. The prediction component can
also serve other Grid service, such as the Grid-enabled program-
ming system (GEPS) and problem solving environment (PSE),
in a Grid runtime system. The prediction component accesses
the performance database to estimate the task completion time.
The Grid performance communication manager (PCM) com-
ponent is used to collect performance data. The Grid FTP ser-
vice can be used to handle the transfer of applications and their
data files, and the GRAM can be used to dispatch subtasks of
applications on resources. In the fabric layer, the GHS perfor-
mance data manager (PDM) component on each resource is re-
sponsible for measuring system and application information by
using various sensors and the reschedule trigger system (RTS)
[20] analyzes the collected performance data and automatically
triggers rescheduling when abnormal situations are detected.

4. Performance evaluation

Performance prediction is a foundation of task scheduling in
shared environments [11]. Current scheduling systems, such as
AppLeS [10,13,14], PEGASUS [15], CONDOR-G [27], and
Stork [34], involve some kind of prediction. However, they do
not consider the variation of resource availability on application
performance and assume the utilization of each resource is fixed
during each execution. Instead of using a fixed utilization for
resource availability, we model the resource usage pattern with
a novel M/G/1 queue system. This model individually identifies
the effects of machine utilization, computing power, local job
service, and task allocation on application performance [29].

4.1. Prediction of application execution time

The execution time of an application is affected by applica-
tion characteristics, system status, and parallel processing. In
this section, we introduce the underlying prediction model of
the GHS system. To distinguish an application under schedul-
ing with other competing processes, we call the application
the remote task and other competing processes local jobs. We
assume the arrival of local jobs follows a Poisson distribution
with �. The service time of local jobs follows a general distri-
bution with mean 1/� and standard deviation �. These assump-
tions are based on the observations of machine usage patterns
reported by researchers in Wisconsin-Madison et al. [2,6,39].
Since we only consider large-scale applications, we also
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assume all the available resources do not have remote tasks.
Otherwise, the utilization of resources would be high and
would not be available for new tasks.

4.1.1. Computation time of a remote task
In GHS system, a remote task is given a lower priority than

local jobs so that the remote task is less intrusive. Let w denote
the workload of the remote task and � denote the computing
capacity of a machine which is defined as the amount of work-
load that can be finished in a unit time. Given a machine is idle
when a remote task arrives at the machine, the completion time
of the remote task can be expressed as

T = X1 + Y1 + X2 + Y2 + · · · + XS + YS + Z,

where Xi and Yi (1� i�S) represent the computing time con-
sumed by the remote task and the local jobs, respectively; and
S is the number of interruptions due to local job arrival; and Z
is the execution time of the last phase of the remote task. By
defining

U(S) =
{

0, if S = 0,

Y1 + Y2 + · · · + YS, if S > 0,

we can obtain the distribution of the remote task execution time
T as [29]

Pr(T � t) =
{

e−�w/� + (1 − e−�w/�)Pr(U(S)� t − w/�|S > 0) if t �w/�,
0 otherwise.

(1)

To calculate the distribution of the remote task completion
time, we need to identify the distribution of Pr(U(S)). Using the
well-known result in queuing theory, we can get the mean and
variance of the remote task completion time. The mean and vari-
ance of U(S) given S > 0 are thus calculated, respectively as

E(U(S)|S > 0) = 1

1 − e−�w/�

�

1 − �

w

�
, (2)

V (U(S)|S > 0) = 1

1 − e−�w/�

�

(1 − �)3

(�2 + 1)

�

w

�
, (3)

where � = �/� is the machine utilization and � is the coef-
ficient of variation of service. Simulation results indicate that
Gamma, Lognormal or Weibull are among the best-fit distri-
butions to describe the Pr(U(Sk). In GHS, we use the Gamma
distribution in the calculation of the distribution of the remote
task completion time.

In the above discussion, the remote task is assumed as a
sequential job. In a Grid environment, we usually deploy large-
scale parallel applications which are often partitioned into
independent subtasks for parallel processing. Each subtask is
assigned to a different machine. The computation time of a
parallel application is thus the maximum of the execution time
of its subtasks. After the distribution of the computation time
of each single subtask is identified, the cumulative distribution
function of a remote parallel task computation time can be
calculated as

Pr(T � t) =
⎧⎨
⎩

q∏
k=1

[e−�kwk/�k + (1 − e−�kwk/�k )Pr(U(Sk)� t − wk/�k|Sk > 0)] if t �wmax,

0 otherwise,
(4)

where �k = �k/�k is the machine utilization, wk is the sub-
task workload on machine mk (1�k�q), and wmax =
Max{wk/�k}.

By evaluating the mean and coefficient of the applica-
tion completion time on a group of available machines with
Eq. (1) or Eq. (4), the remote task to be scheduled can be
assigned to the most appropriate resources. In this study, we fo-
cus on task scheduling of computation-intensive applications.
We assume communication cost is either negligible small com-
pared to computing or is a constant which can be considered
as a part of the workload. We do not consider the variation of
network bandwidth availability. Our model cannot extend to
communication networks due to the complicated short and
long-range temporal dependence characteristic of heteroge-
neous network traffic and the underlying routing policies. Also,
no existing network model can provide a satisfactory solution
for a long-term network performance estimate. Developing
a practical long-term network performance prediction mech-
anism is a challenging research issue facing the community
today. However, if such a network performance model were de-
veloped, GHS would be extendable to communication extensive
applications.

4.2. Prediction of resource availability

From the above discussion, we can see that the application
execution time in a shared environment is determined by the
application workload (w) and resource parameters (�, �, �, �).
To predict the distribution of the remote task completion time,
we first need to determine these parameters. While the appli-
cation workload and the resource speed are static values and
can be easily obtained by analyzing the application structure
(or provided by users) and running the application benchmark
respectively, the system parameters �, �, and � may vary with
time. For example, the job arrival rate � could be less at night.
In GHS, the system-level predictor determines these system
parameters via measurement and prediction.

In GHS, we first aggregate the original measurement time
series into an interval time series. Then we choose the mean-
based method, which uses the arithmetic average of the ag-
gregated values as the estimate of the system parameter value
over the time interval. Similar methods are used in NWS [46]
and RPS [16]. The difference lies in the selection of the sam-
ple space. NWS and RPS use the aggregated values over a
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Fig. 3. System parameter prediction algorithm.

number of continuous time intervals as the sample space and
then use the average to predict the value in the next time inter-
val. We call this kind of sample space past-sample-space. Past-
sample-space may work for short-term estimations (in terms
of seconds or minutes). However, as indicated in [45], long-
term resource behaviors often present seasonal patterns. Con-
sidering these seasonal effects, we add two different sample
spaces: day-sample-space and week-sample-space. The day-
sample-space includes the aggregated values over a number
of the same time intervals in a day, and the week-sample-
space includes the aggregated values over a number of the
same time intervals in a week. We define Vp as the arith-
metic average over past-sample-space, Vd as the arithmetic
average over day-sample-space, and Vw as the arithmetic av-
erage over week-sample-space. After calculating Vp, Vd, and
Vw, we use �∗Vp + �∗Vd + 	∗Vw to estimate the value over the
next time interval where (� + � + 	) = 1. The system param-
eter prediction algorithm is illustrated in Fig. 3. In the current
implementation, we set � = � = 	 = 1

3 . A gradient-descent
strategy is applied in NWS prediction to dynamically set the
size of a “sliding window” [46]. Similar methods can be utilized
to adjust �, �, 	 so they can adapt to the system change. Other
forecast models, such as LAST model, AR model, and ARIMA
model [16], can be used to replace the mean-based method in
this algorithm.

5. Performance measurement

Four system parameters, �, �, � and �, are used in our pre-
diction model. � is the local job arrival rate, � is the machine
utilization, � is the standard deviation of service time, and � is
the computing capacity for a given machine. � is a constant and
can be obtained by running application benchmarks. We focus
on the measurement of �, � and �.

Supposing parameter x over a time interval has a popu-
lation with a mean and a standard deviation and we have
a sample {x1, x2, . . . , xn}, the smallest sample size with a
desired confidence interval and a required accuracy r is given

by ns = (100z1−�/2d/rx̄)2 [31]. The desired accuracy of r
percent means that the confidence interval is (x̄(1 − r/100,

x̄(1 + r/100)). If the confidence interval is 95% and accuracy
is 5, we get

ns = 1536.64

(
d

x̄

)2

, (5)

where the sample mean is x̄ = (1/n)
∑n

i=1 xi and the sample
standard deviation is

d =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2.

We assume that parameter x is a random variable with a fixed
mean and a fixed standard deviation during a continuous 24-h
period. Parameter x is measured in ns time intervals during 24 h.
At the end of each hour, we calculate ns with x̄ and d over the
previous 24 h using Eq. (5). In this way, we dynamically adjust
the number of time intervals to adapt the possible variance of
x. A number (ns/24) of xi will be measured for the next hour.

The Unix utility vmstat is used to measure �. It accesses per-
formance statistical data, which is collected and maintained by
the kernel system. vmstat directly outputs the resource utiliza-
tion. The Unix utilities ps and lastcomm are used to obtain local
jobs’ execution information at the beginning and the ending of
Tinterval to calculate � and �. ps shows the process information
of the active job while lastcomm presents the processes infor-
mation of the finished jobs. The detailed measurement methods
are given in [42].

In GHS, the resource performance data collection is pro-
vided by the Performance Data Management component. We
calculate the number of measurements for the next hour accord-
ing to the system history over the previous 24 h. This method
can dynamically adjust the measurement number to reduce the
measurement cost. The GHS measurement consumes very little
CPU resource (less than 1%).
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Fig. 4. Min–min task group allocation algorithm.

6. Task scheduling

Task scheduling in a shared environment involves the
integration of application specific and system specific infor-
mation. GHS is designed to support task scheduling based
on the performance estimation provided by the application-
level predictor and the system-level predictor to minimize the
make-span of applications. We have designed different task
scheduling algorithms for various classes of applications.

6.1. Task allocation

Two classes of distributed applications are investigated. One
is parallel application, which can be partitioned arbitrarily into
subtasks. Another is meta-task, which is composed of indepen-
dent indivisible subtasks. A typical example of meta-tasks is
the parameter sweep application, a widely used Grid applica-
tion [13].

For task scheduling of distributed applications, the first prob-
lem is how to partition an application and allocate subtasks
to machines so that we can achieve an optimal performance
for a given number of machines. After identifying the subtask
demand wk on each machine mk , we can use Eq. (4) to calcu-
late the mean and variance of the distributed application com-
pletion time. A natural optimal partition strategy is to assign
each machine a certain amount of workload so that subtasks on
different machines are finished at the same time. We call this
mean-time allocation. For a parallel application, supposing that

the mean subtask completion time is �, we can get the subtask
demand wk = �(1 − �k)�k . Since W = ∑q

k=1 wk , the subtask
workload can be expressed as

wk = W
q∑

k=1
(1 − �k)�k

(1 − �k)�k. (6)

By comparing the parallel application completion time on dif-
ferent sets of machines with Eq. (4), we can identify the best
machine set for running this application.

For a meta-task, we may not be able to make the assigned
task on each machine complete at the same time because the
subtasks cannot divide arbitrarily. So we cannot use Eq. (6) to
calculate the subtasks’ workload on each machine directly. We
apply a min–min heuristic algorithm to group indivisible sub-
tasks and map each subtask group to one of the resources based
on the estimation of execution time. In this algorithm, we as-
sume that an application is composed of a number of indepen-
dent tasks, {t1, t2, . . . , tp} with workload {w1, w2, . . . , wp} and
we have a list of machines {m1, m2, . . . , mq}, Fig. 4 shows the
min–min task group allocation algorithm. The intuition behind
this algorithm is to assign subtasks of a meta-task to resources
one by one while keeping the difference among the subtask
completion time on each machine as little as possible. In GHS,
the task allocation of parallel applications is performed by the
task allocator.
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Fig. 6. Parallel task scheduling algorithm with a given number of subtasks.

6.2. Task scheduling

The task scheduler is responsible for finding an appropriate
machine set for an application. It is supported by the task al-
locator and the application-level predictor. The task scheduler
supports different scheduling algorithms for different applica-
tion requirements. Fig. 5 gives the scheduling algorithm for
a single sequential task. Based on the estimate of the expec-
tation and variance of the application completion time, the
algorithm finds the best machine for a task. Fig. 6 shows the
scheduling algorithm for a single parallel application with
a given degree of parallelism (under our assumption of one
subtask for one machine, the degree of parallelism equals
the number of machines or subtasks used for the parallel
processing). Let q denote the number of available machine
and p denote the application’s subtask number. We need to
go through C

p
q possible machine sets to get an optimal task

scheduling decision. We also develop optimal parallel process-
ing where the application can be partitioned arbitrarily into

any number of subtasks. To achieve an optimal scheduling
plan, we have to search 2q possible degree of parallelisms
and machine combinations. The cost is quite high when the
machine set is large. A heuristic task-scheduling algorithm, as
shown in Fig. 7, is proposed to find a near optimal solution
with a reasonable cost. It includes two basic steps. The first
step of this algorithm is to sort each lightly loaded machine
according to (1 − �k)�k . Since �k is the machine utilization,
(1 − �k) means how much percent of the machine’s CPU
resource is available for a remote task. �k is the machine’s
computing power. So the production of (1 − �k) and �k stands
for the amount of the machine’s computing power available to
the remote task. A higher value (1 − �k)�k of a machine in-
dicates this machine has more available computing power for
an application and thus should be considered first. The second
step of this algorithm is to use the bi-section search to find the
local optimal based on the ordering. In Fig. 7, w is the ap-
plication work demand, �′ is the average of local jobs’ work
demands. Leutenegger and Sun [35] show that the task ratio,
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Fig. 7. Heuristic task scheduling algorithm.

the ratio of the remote task work demand to the mean demand
of machine’s local jobs, should be large enough to achieve ac-
ceptable efficiency. Here we choose it to be at least 4. Note that
in Figs. 6 and 7, we use the mean-time method to allocate sub-
tasks to each machine. When the allocation strategy is the min–
min task group allocation methodology, these task-scheduling
algorithms could also be applied for meta-task scheduling.
A typical example of meta-tasks is the parameter sweep ap-
plication [13]. AppLeS [13,14] has investigated how to sched-
ule the parameter sweep application in a Grid computation
environment. However, its scheduling algorithms are based on
minimizing each individual task completion time, where min-
imizing each task does not necessarily lead to an optimized
completion time of the whole application.

A self-adaptive task scheduling algorithm is designed and
implemented to deal with a situation when resources present
abnormal performance from their historical records, which
may be due to malicious users/application behaviors or a sud-
den change of local job’s work demand. A self-adaptive task
scheduling algorithm has been proposed to decide whether
we should reschedule the application and which resource we
should choose for task reallocation [48].

7. Experimental results

We have developed a prototype GHS system and conducted
experimental testing on machines at the Argonne and Oak Ridge
national laboratories, as well as in the DOT Grid testbed [18].
The performance of GHS prediction is first examined to verify
its accuracy and feasibility. Then we evaluate three task allo-
cation methods to examine GHS task partition strategy. The
completion time of a remote task over different numbers of ma-

chines with different scheduling methods (optimal, heuristic,
random) is also compared. After that, we compare the AppLeS
schedule with the GHS schedule. Finally, we test the efficiency
of our dynamic measuring methodology in reducing the mea-
surement cost.

7.1. GHS system-level and application-level prediction

The estimation of application performance in a shared en-
vironment is based on the prediction of resource availability,
which is provided by system-level prediction. In this subsec-
tion, we investigate the prediction error of GHS both at the
system level and the application level. We first examine the pre-
diction error of GHS for a sequential task. We then test GHS
prediction performance with a synthetic parallel task in both a
simulated distributed environment and an actual Grid produc-
tive machine. Finally, we evaluate GHS prediction accuracy for
a real application in a Grid Testbed.

Two performance metrics are generally used in the litera-
ture to evaluate the accuracy of a prediction model. One is
percentage prediction error, which is defined as |(Prediction −
Measurement)/Measurement|[46]. Another is square prediction
error, which is defined as (Prediction−Measurement)2 [17,46].
For large-scale applications, the square prediction error could
be very big even for excellent prediction. This is especially true
for scalable computing, where the square prediction error may
increase with the problem size. Percentage prediction error is
a more appropriate metric for large-scale applications and for
scalable computing. In our experiments, we are mainly con-
cerned about the effectiveness of GHS prediction for large ap-
plications with different sizes. Thus, we choose the percentage
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Fig. 8. Mean and variance of prediction error of utilization and remote task completion time on a single machine.

prediction error and simply call it prediction error throughout
the study.

An experiment is first conducted to test the prediction error of
GHS for a sequential task. Fig. 8 shows the mean and variance
of the prediction error of resource utilization and completion
time of a remote task with different workloads (from 1 to 24 h)
on a Sun workstation. The remote task is a replication of NAS
Benchmarks (BT, CG, LU, MG, IS and SP) [7]. The class type
of these benchmarks is “A” or “W”. The local job’s lifetime
is simulated with 2.0/x [5], which follows the observation of
real-life processes in [30]. x is a random number between 0
and 1. We also simulate the machine usage pattern based on
observations from SDSC Paragon logs and CTC SP2 logs [19].
The experimental results show, with the increase of remote task
workload, the mean and variance of the prediction error get
smaller. The left graph in Fig. 8 gives the mean and variance
of the prediction error of resource utilization and the right one
gives the mean and variance of the prediction error of remote
task completion time. We can find that the prediction error
of remote task completion time is larger than that of system
utilization. This may be explained by the real system time-
sharing scheduling strategy. In Unix system, even when the
priority of a remote task is set to the lowest, it still can occupy
a small part of CPU resource. Thus the completion time of a
short-term remote task is usually smaller than the analytical
result. With the increase of remote task workload, the impact
of this scheduling strategy on the prediction error gets smaller.
When a remote task’s workload is more than 8 h, the mean of
the predication error of task execution time is less than 10%.

We then investigate the prediction error of a parallel task.
As we focus on computation intensive applications, we use a
CPU-bound multi-level loop program for testing. The resource
usage pattern of local jobs is set the same as sequential pro-
cessing testing. We use a Sun ComputeFarm, named Sunwulf,
at Illinois Institute of Technology (IIT) to simulate a general
distributed environment in which each machine has its own job
arrival rate and service rate. The setting of different resource
usage patterns on each machine is based on observation of real-
life processes [30,19] and is used for all simulated Grid envi-
ronments throughout this study unless indicated explicitly. We
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Fig. 9. Mean and variance of prediction error of parallel task completion
time with different total task demands.

conduct our experiment six times. Fig. 9 gives the mean and
variance of the prediction error on the parallel task completion
time with different task work demands (from 32 to 512 h) on
32 nodes of Sunwulf. Notice that the task demand is the total
work demand. For example, with a 32-h task work demand,
the average workload on each of the 32 processors is 1 h. As
expected, a larger task workload leads to a smaller variance.
The mean and variance of the prediction error get smaller with
increase in task work demand.

We have also evaluated our prediction model for computation
cost on an actual Grid environment. Fig. 10 shows the mean and
variance of the prediction error of the parallel task completion
time on Pitcairn, a productive machine at Argonne National
Laboratory. Pitcairn is a multiprocessor with eight 250 MHz
UltrasparcII processors and 1 GB of shared memory. It is a
Grid node shared by many users. The result again shows that
the mean and variance of the prediction error get smaller as the
demand of a remote task increases. When the demand of the
remote parallel task is 8 h, a 1-h workload is assigned to each
subtask. The mean of the prediction error is about 9.31%. The
prediction error with 16-h remote task demand is about 4.18%.
Also we find that the prediction error is reduced more quickly
than that on a single workstation. This is due to the property of
probability modeling: with more processors and more samples,
the predicted results are more accurate.
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To evaluate GHS prediction accuracy for a real application
in an actual Grid environment, we examine the prediction error
of the application completion time of Cactus in the DOT Grid
Testbed [18]. Cactus [3,4] is a numerical simulation of a 3D
scalar field produced by two orbiting astrophysical sources. In
our experiments, we use the parallel version of Cactus appli-
cation. It decomposes the 3D scalar field into sub-fields, and
each sub-field is mapped onto a processor. An overlap region
is placed on each processor. We use the iteration number to
adjust the application execution time. The DOT interconnects
computer clusters at the Argonne National Laboratory, National
Center for Supercomputer Applications, Northwestern Univer-
sity, University of Chicago, University of Illinois at Chicago,
as well as IIT via the dedicated, high-speed “I-Wire” network.
Each cluster is composed of one server and multiple comput-
ing nodes. In the experiments, we use one server and one node
from the IIT cluster, three nodes from the ANL cluster, and
three nodes from the UC cluster. Local jobs are simulated with
the same method as before. Fig. 11 gives the mean and vari-
ance of the prediction error on the Cactus parallel application
completion time with different task work demands (from 8 h
to 128 h) on the eight nodes (from three clusters) of the DOT
Testbed. Compared with the experimental results shown in Fig.
9, we find that the prediction error of the Cactus application
completion time is usually larger than that of the synthetic ap-
plication for the same workload per node. This may be due
to the Grid communication and middleware cost. Cactus is
an iterative program. At the end of each iteration, data in the
overlap area needs to be exchanged between neighboring nodes.
In our experiment, we do not calculate the Cactus commu-
nication cost separately. Instead, we consider it as a part of
application workload. We measure the whole application ex-
ecution time several times in a dedicated distributed environ-
ment and use the average as the workload for the prediction of
application completion time in a corresponding shared environ-
ment. This method includes communication cost as workload
but may introduce some prediction error when the underlying
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Fig. 11. Mean and variance of prediction error of Cactus application execution
time on multiple clusters.

network performance varies during application running. How-
ever, we observe that GHS prediction still provides satisfactory
predictions, especially for large applications. When the Cactus
execution time has an average of 8 h per node (64 h sequential
workload), the predictor error goes down to 5.9%.

7.2. GHS task partition and scheduling

Task scheduling in GHS is performed by the collaboration of
the system-level predictor, the application-level predictor, the
task allocator and the task scheduler. In the above experiments,
we have demonstrated the efficiency of GHS prediction model-
ing. In this subsection, we investigate the performance of both
task allocation mechanisms and task scheduling algorithms of
GHS.

GHS uses the mean-time allocation to partition the workload
of a parallel application. In our experiment, we compare the
performance of the mean-time allocation with two other allo-
cation approaches. One is the equal-load allocation, where the
remote task workload is divided into equal sub-workloads and
then assigned to each machine. Another is the heterogeneous
equal-load allocation, which allocates each machine the sub-
workload matching its theoretical computing power.

We test the efficiency of these allocation approaches in two
workstations. Workstation Scala has an average utilization of
50% while workstation Macro has an average utilization of
20%. The machines have a speed ratio of 1.33:1. Fig. 12 shows
the remote task completion time with these three allocation
approaches on the two machines. The parallel task demand in-
creases from 1 h to 8 h. Results show that the mean-time allo-
cation is the best. The time saved by the mean-time allocation
algorithm is 20–25% for large tasks. This difference is signifi-
cant. We further conduct our experiment on 64 nodes of Sun-
wulf with different parallel workloads (16 h and 32 h). Because
each of the 64 nodes used in our test has the same comput-
ing capacity, we compare only the equal-load and mean-time
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approaches. This experimental result shows that the mean-time
allocation is better than the equal-load. Around 25–40% of time
is saved.

The task allocation algorithm is used to identify how much
workload of a remote task should be assigned to each machine
in a given set of machines while the task scheduling algorithm
aims to find the best set of machines from a list of available
machines. Task allocation is another factor distinguishing GHS
from other existing Grid scheduling systems where allocation
is either not considered or equal-load allocation is used. In
Section 6.2, we have discussed various scheduling algorithms
for four cases. A heuristic task scheduling algorithm is proposed
because of the high computing cost of optimal task scheduling.

We have conducted experiments to compare the performance
of two scheduling algorithms, the optimal and heuristic task
scheduling on Sunwulf. The experiment is executed 10 times
over different number of nodes, 10, 15 and 20. In each case,
besides the optimal and heuristic task scheduling methods, we

also select a subset of machines for task allocation at random.
The average completion time of a remote task with different
scheduling algorithms are given in Fig. 13. The experimental
results show that the execution time of the remote task and
the number of utilized machines of heuristic task scheduling
are close to those of optimal task scheduling while the heuris-
tic scheduling cost is far less than the optimal scheduling cost.
When scheduling task among 20 available machines, 14 ma-
chines are identified for optimal scheduling and 13 machines are
used for heuristic scheduling. The average run time is 464.9 s
for optimal scheduling and 486.4 s for heuristic scheduling.
Meanwhile, when the system size is increased from 10 to 20, the
computing cost of optimal task scheduling increase from 3.16
to 6558.75 s while the computing cost of heuristic task schedul-
ing increases from 0.07 to 0.25 s. From Fig. 13, we can also
observe that both optimal scheduling and heuristic scheduling
outperform random scheduling in each case.

7.3. Comparison of AppLeS and GHS on task scheduling

AppLeS is a well-known application-level task scheduling
system for Grid environments [9–11]. Its scheduling decision is
made based on the estimate of the application completion time.
AppLeS predicts the application computation time with the for-
mula T = Tdedicated/AvailCPU where Tdedicated denotes the
application computation time in a dedicated resource and Avail-
CPU denotes is the prediction of the percentage of available
CPU for this resource. The prediction of AvailCPU is provided
by the Network Weather Service (NWS) [47]. Scheduling deci-
sion based on NWS prediction has two limitations. First, NWS
targets short-term system-level performance prediction. As its
claims, it is only suitable for jobs of five minutes time span
or less. It cannot provide a satisfactory solution to long-term
task scheduling. Secondly, NWS only provides resource avail-
ability, The effects of other system specific factors on the task
execution time are not analyzed and thus not considered in task
scheduling in AppLeS. In contrast, GHS makes scheduling de-
cisions based on long-term application-level performance pre-
diction. The effects of machine utilization, computing power,
local job service, and task allocation on the completion time of
a parallel task are individually identified.

An experiment is conducted to prove that short-term pre-
diction cannot provide a satisfactory solution to long-term
task scheduling. We first compare the prediction error of a
long-term sequential application’s completion time based on
resource availability provided by NWS and GHS. Using
the AppLeS formula T = Tdedicated/AvailCPU , we estimate
different application completion times based on resource pre-
dictions provided by NWS in terms of 10 s (default set of
NWS) and 5 min and provided by GHS, respectively. In GHS,
since we assume that a remote task is assigned with a lower
priority than local jobs, we can calculate AvailCPU with
AvailCPU = 1−� where the prediction of � is provided by the
System-level Predictor. To have a thorough comparison, in this
experiment, we calculate two performance metrics: percentage
prediction error and square prediction error. Fig. 14 shows
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that the percentage prediction error based on NWS remains
very high while the percentage prediction error based on GHS
decreases with the increase in application workload. Fig. 15
shows that the square prediction error based on NWS is always
higher than the square prediction error based on GHS. In this
figure, the square prediction error is normalized with the func-
tion log1000(1+ (X −Dmin)/(Dmax −Dmin)

∗999) where Dmax
is the maximum original square prediction error and Dmin
is the minimum original square prediction error. The results
indicate that the estimation of the completion time of a large
application based on short-term system prediction provided
by NWS is far from satisfactory. In a short time range, the
resource availability tends to be consistent with it history. So
we can estimate a short-term application execution time based
on the latest availability information. However, in a long time
period, a large-scale application execution will be affected by
arrivals and departures of local jobs. It is inappropriate to pre-
dict a long-term application performance using the short-term
availability prediction.

Due to the short range of NWS prediction, AppLeS does not
give a fixed scheduling for a large-scale parallel application. In-
stead, AppLeS adopts a multiple-phase scheduling approach for

large scale meta-tasks. In other words, it constantly reschedules
the tasks within the NWS prediction scope. At each scheduling
event, NWS online prediction is used for task scheduling. This
multiple-phase scheduling, in addition to the increased cost, has
an inherited drawback. The later phases of online prediction
are tampered by the assigned remote subtasks. Rescheduling
based on the tampered resource availability is inappropriate.
This situation would not happen in GHS because its predic-
tion is made before the task scheduling. We have conducted an
experiment to confirm that the multi-phase approach is not a
quick fix for short-term prediction. A simulation environment
is built following the descriptions of the application model and
the Grid model in AppLeS [13]. The application has a set of
independent subtasks. The input of each subtask is a set of files
and a single file might be input to more than one subtask. The
computational Grid is composed of a set of clusters of comput-
ing resources that are accessible to users via distinct network
links. The estimate of file transfer time on each link is assumed
to be available. In our experiment, the phase scheduling length
is set at 500 s as used in AppLeS. The number of clusters and
the map of input files onto subtasks are randomly generated in
each simulation time. The system consists of 20 machines and
the simulation runs 20 times for a given number of subtasks.
We compare the average, minimum, and maximum of the task
completion time (seconds) with two types of scheduling strate-
gies. One is using the multiple-phase scheduling with NWS
prediction. The other one is performing one-phase scheduling
with GHS prediction. In both cases, we use a standard AppLeS
scheduling algorithm, min–min heuristic [13]. The simulation
results are summarized in Table 1. It shows that with GHS pre-
diction the average task completion time decreases by 17–30%
compared with that of NWS prediction. This is because, in
multiple-phase scheduling, NWS online prediction is distorted
by the execution of the meta-task at runtime.

The improvement of GHS is not due solely to the prediction.
It is also due to its advanced scheduling algorithms. To com-
pare the scheduling algorithms only, we modify AppLeS to let
it access GHS’ prediction. The comparison of task completion
time (seconds) and the number of machine used with the two
different scheduling systems is given in Table 2. The experi-
mental results show that with GHS the task completion time
decreases by 10–20% compared with that of AppLeS system
while GHS only uses about one-half of the machines used in
AppLeS. When the system size is 400, GHS uses 113 comput-
ers and achieves a better performance than AppLeS while Ap-
pLeS uses all machines. This is the limitation of the determined
prediction approach used by AppLeS. It cannot identify the ef-
fect of the variation of resource availability on the application
execution time. This indicates that GHS works better in a large
distributed system. It has a real potential for Grid computing.

7.4. The efficiency of parameter measurement and GHS
run-time cost

In GHS, we calculate the number of measurements for the
next hour according to the system history over the previous 24 h.
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Table 1
Comparison of multiple-phase scheduling with NWS prediction and one-phase scheduling with GHS prediction

Number of subtasks 250 500 1000 2000

GHS (s) Average time 3892.0 6636.7 12819.4 24717.2
Min. time 2869.9 5003.3 10743.7 21000.1
Max. time 4671.2 7579.5 14516.4 29537.8

AppLeS (s) Average time 4567.6 8553.2 16399.2 32121.2
Min. time 3733.2 7298.3 14321.7 28180.9
Max. time 5225.5 9557.9 18561.2 36627.1

Table 2
Comparison of task scheduling of AppLeS and GHS

Workload 13801.7 27619.2 53779.5 108642.5 215141.0
(Maximum machine number) (25) (50) (100) (200) (400)

GHS Task completion 496.4 557.7 712.8 874.5 1140.4
time (s)
Number of machine used 13 26 57 99 113

AppLeS Task completion 547.4 637.4 818.3 1022.7 1266
time (s)
Number of machine used 25 50 100 200 400
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Fig. 16. Decreasing of measurement when the system is steady.

Table 3
The calculation time of the prediction component with different numbers of
workstations

Nodes Number 4 8 16 32 64 128 256 512 1024

Time (s) 0.00 0.00 0.01 0.02 0.04 0.08 0.16 0.31 0.66

Our measurement mechanism can dynamically adjust the num-
ber of measurements to reduce the measurement cost. Fig. 16
shows an example of the fluctuation of the number of inter-
vals measured in each hour when the machines are becoming
steady. It indicates that the number of measurements decreases
when the machine utilization remains at a certain level.

We have also measured the execution time of the prediction
program. Table 3 gives the runtime of our prediction program
on a Sun workstation, Scala. The results show that the run-time
cost of our prediction component is 0.66 s when the number
of machines is 1024. Compared to the potential gain from task
scheduling, this run-time cost is negligible.

8. Conclusion and future work

We have presented the design and development of the GHS
performance prediction and task scheduling system. GHS is
uniquely designed for solving large-scale applications in a
shared distributed environment. It consists of the components
of performance monitor, system-level and application-level
prediction, task partition and scheduling, and user interface.
The underlying prediction models and scheduling algorithms
have been discussed and experimental results have been given.
Experimental and analytical results show that GHS adequately
captures the dynamic nature of Grid computing. For large jobs,
eight hours runtime or more, its prediction error is less than
10% on a single machine. The prediction error is even less
on multi-processing systems. GHS optimal task scheduling
provides a significantly better performance than that of exist-
ing methods, while its heuristic scheduling provides a near
optimal performance. The contribution of GHS is two-fold, in
both performance prediction and in task scheduling. We have
shown that short-term prediction is not applicable to large scale
applications, and have shown that the multi-phase prediction
approach, which cuts a large application into many short-term
time periods for performance prediction, is not a quick fix for
large-scale task scheduling. The performance prediction and
task scheduling system of GHS is significantly better than
existing system for large-scale applications. For instance, com-
pared with AppLeS, a widely used Grid scheduling system,
GHS scheduling system decreases the task completion time
by 17–30%, while using only about one-half of the machines
used by AppLeS.

GHS is a long-term, application-level performance predic-
tion and task scheduling system for non-dedicated distributed
computing. It is a complement of existing Grid performance
tools. It can be integrated into existing toolkits for better



1336 M. Wu, X.-H. Sun / J. Parallel Distrib. Comput. 66 (2006) 1322–1337

service. For instance, NWS or RPS toolkits can be used to
provide the performance measurement for GHS, or they can
be combined with GHS to provide short-term system predic-
tion. GHS can be combined with AppLeS to provide specific
application scheduling. Like most existing performance sys-
tems, the current implementation of GHS has its limitations.
For instance, GHS only considers the workload in distributed
systems but not the communication and synchronization costs.
NWS or the network bandwidth predictor [21] can be used to
predict short-term bandwidth. Long-term network bandwidth
modeling and prediction, however, is still a challenging task
facing the network and distributed computing community as
a whole. The Alpha version of GHS is available on-line at
http://www.cs.iit.edu/∼scs/software.htm. The current imple-
mentation only demonstrates the feasibility and potential of
the GHS approach. More work is needed to integrate GHS
seamlessly into the Grid environment and with other existing
Grid tools.
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