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Speed Gap Between CPU and Hard Drive

http://www.velobit.com/storage-performance-blog/bid/114532/Living-With-The-2012-HDD-Shortage



Computing Becoming Data Intensive

Project On-line 
Data (TB)

Off-line 
Data (TB)

Combustion in Reactive Gases 1 17
CO2 Absorption 5 15
Seismic Hazard Analysis 600 100
Climate Science 200 750
Energy Storage Materials 10 10
Stress Corrosion Cracking 12 72
Nuclear Structure and Reactions 6 30
Reactor Thermal Hydraulic Modeling 100 100
Laser-Plasma Interactions 60 60
Vaporizing Droplets in a Turbulent Flow 2 4

Selected 2012 INCITE applications at Argonne Leadership Computing Facility of ANL [1]

[1] R. Latham, R. Ross, B. Welch, and K. Antypas, "Parallel I/O in Practice,"  Tutorial of the 
International Conference for High Performance Computing, Networking, Storage and Analysis, 2013.



To Meet The High I/O Demands: PFS



Poor performance of PFSs



SSD provides new solutions for 
parallel  I/O systems

• Benefits of SSDs
• Higher storage density
• Lower power consumption
• Smaller thermal footprint
• Higher performance
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Traditional Parallel I/O Systems
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Problem

• How to use SSDs to improve the performance of 
hybrid I/O systems?

• Challenge
• I/O workload can change
• SSDs and HDDs have different performance characteristic's
• The performance and cost trade off



Outline

• Problem
• Our idea
• Design
• Evaluation



Key Idea: S4D-Cache

• Smart-Selective SSD Cache for Parallel I/O 
Systems 
• Integrate a small number of SSD-based file servers into the 

systems
• Propose a centralizing SSD cache architecture
• Selectively caching performance-critical data
• Request parallelism
• Request randomness



S4D-Cache Architecture Overview
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Design Benefits

• Key global data access information are accessible 
in this layer, and can be used to help improve 
performance 

• The solution can support multiple file systems
• The plug-in design is transparent to applications
• Only a small cluster of SSDs are deployed into the 

system, which makes the design highly cost 
effective



Software structure
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Data Access Cost Model

We calculate the data access cost for requests on DServers and 
CServers respectively. 

Pars Description

M Number of HDD file servers

N Number of SSD file servers (N<M)

str Stripe size of parallel file system

d Logical address distance between  ri and ri-1

f File offset of request ri

r Data size of request ri

R Average rotation delay for HDD

S Maximum seek time for HDD

βD Cost of access one unit of data for HDD

βC Cost of access one unit of data for SSD

Table 1. Parameters (short in Pars) in cost analysis model.



DServer Cost Model

• Request access cost	 ܶ:
• ܶ ൌ ௦ܶ  ௧ܶ																																																					（1）
• Ts: startup time, Tt: data transfer time

• Ts of sub-request
• Involves seek time, rotation time  on each server
• ௌܶ follows uniform distribution on [a,b]
• a=F(d)+R, F(d) is a function for converting  request distance d to seek [1]
• b=S+R

• ܲ ߙ ൏ ݔ ൌ ௫ି
ି

, ܽ  ݔ  ܾ （2）

• Ts of a file request on multiple DServers
• Tݏ is the maximum of all the ݉ servers 
• ܺ ൌ max ,1ߙ ,2ߙ … , ݉ߙ
• ௦ܶ ൌ  ݂ݔ ݔ ݔ݀ ൌ ܽ  

ାଵ
ሺܾ െ ܽሻ

 (4)



T depends on sub-request size

Four cases of a file request distribution on DServers
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Maximal sub-request size of a request (Sm)

• ௧ܶ ൌ ݏ 	∗ ߚ	 (5)



SServer Cost Model

• The startup time is ignored (High-end SSDs).
• Only use the data transfer time.

• ܶ ൌ ݏ 	∗ ߚ	 (7)



Critical data identification

• Performance benefit (B):

• A positive B means the request should be served 
at CServers

• Implications
• Large request should be placed on DServers due to high 

parallelism
• Random small requests should be placed on CServers

• ܤ ൌ ܶ 	െ ܶ (8)



Cache metadata management

• Key data structure
• Critical data table (CDT)
• Data mapping table (DMT)

CDT
…

…

D_file

DMT
…

…

D_offset Length C_flag
D_file D_offset Length C_flag

D_file D_offset C_file C_offset Length D_flag
D_file D_offset C_file C_offset Length D_flag



Selective Cache Algorithm

• Caching data on CServers 
based on three factors
• The performance benefit (critical 

data)
• Available free space on SServers
• Type of I/O requests

• Read request is cached in 
a “lazy” way



Data reorganization

• Functions
• Flush dirty data back to DServers, indicating the data can be 

reclaimed
• Read data from DServers to CServers, reset C_flag to 0 to show 

the data has been cached

• Reduce the interference to normal I/O requests
• Multiple threads: main and help thread
• Help thread issue low-priority I/O requests



Implementation

• Environments
• I/O middleware MPICH2
• PFS: PVFS2

• Cache metadata mapping table
• Memory: Hash table
• Storage file: Berkeley DB file on CServers

• I/O redirection module
• MPI_File_open/read/write(),…

• Rebuilder
• Multiple threads
• Shared variables for communication between threads



Experimental Setup

65-nodes SUN Fire Linux Cluster
CPU Quad-Core AMD Opteron(tm) Processor 2376 * 2
Memory 4 * 2GB, DDR2 333MHz
Network 1 Gbps Ethernet

Storage
HDD: Seagate SATA II 250GB, 7200RPM
SSD:   OCZ PCI-E X4 100GB 

OS Linux kernel 2.6.28.10

File system PVFS2 2.8.2

1: 32 computing nodes, eight HServers, four SServers
2: Stock system w/o S4D-Cache enabled
3: When S4D-Cache is enabled, the cache capacity is set to 20% 
of the application's data size.



Benchmark

• IOR
• 10 instances of IOR are
• six issue sequential I/O requests
• remaining send random I/O requests 

• In each instance, default parameters
• Access a shared 2GB file
• 32 processes
• request size is kept to 16KB

• HPIO
• MPI-Tile-IO



Varying Request Sizes

• For small requests, S4D-Cache significantly improve the I/O 
performance

• For large requests, less performance gains can be obtained
• Read has similar trend

Write Read



Request distribution on different 
servers

• Most of the random small requests are redirected to 
CServers, because CServer has good behaviors for them

• Nearly all large requests are absorbed by the original 
DServers, because DServers have higher I/O parallelism 
and better aggregated I/O throughput



Varying Number of Processes

• S4D-Cache improves the overall I/O bandwidth for various processes

• With the number of processes increasing, bandwidth gets lower because each 
DServer needs to serve more processes' requests and the competition among 
processes gets more severe.

• Good scalability in terms of the number of processes.

Write Read



Varying SSD Cache Capacities

• Throughput improves by increasing the capacity of 
CServers

• More random I/O requests can benefit from CServers. 

• Continuously enlarging CServers will only bring limited 
performance improvement.



Varying Numbers of SSD File Servers

• With the number of CServers increasing, the I/O bandwidth 
improves because CServers provides better random performance. 

• The I/O performance only slightly improves when the number of 
file servers is above four,  because only a portion of the I/O 
workload is random and the improvement is bounded to these 
requests. 

• Choosing a reasonable number of file servers is critical to make 
full use of the SSDs.

Write Read



HPIO

• S4D-Cache is effective with respect to HPIO 
benchmark

• Improvements for HPIO are not as significant as 
those for IOR because the workload is not as 
random as IOR.

Write Read



MPI-Tile-IO

• Performance improvement is still significant

Write Read



Overhead

• Storage overhead: 0.6% 
space overhead to keep 
DMT in storage

• Performance overhead
• Request cost analysis
• Critical data identification
• Cache metadata look-up

• When no requests are 
cached( Intentionally)
• Overhead is almost unobservable.



Conclusions

• A centralized SSD cache architecture for parallel 
I/O systems

• A cost model to evaluate the file request access 
time on CServers or DServers at the I/O 
middleware layer

• A selective caching algorithm to caching critical 
data on the limited SSD space

• The proposed caching system is feasible and 
effective
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