
S4D-Cache: Smart Selective
SSD Cache for Parallel I/O
Systems

Shuibing He, Xian-He Sun, Bo Feng

Department of Computer Science

Illinois Institute of Technology

Speed Gap Between CPU and Hard Drive

http://www.velobit.com/storage-performance-blog/bid/114532/Living-With-The-2012-HDD-Shortage

Computing Becoming Data Intensive

Project On-line
Data (TB)

Off-line
Data (TB)

Combustion in Reactive Gases 1 17
CO2 Absorption 5 15
Seismic Hazard Analysis 600 100
Climate Science 200 750
Energy Storage Materials 10 10
Stress Corrosion Cracking 12 72
Nuclear Structure and Reactions 6 30
Reactor Thermal Hydraulic Modeling 100 100
Laser-Plasma Interactions 60 60
Vaporizing Droplets in a Turbulent Flow 2 4

Selected 2012 INCITE applications at Argonne Leadership Computing Facility of ANL [1]

[1] R. Latham, R. Ross, B. Welch, and K. Antypas, "Parallel I/O in Practice," Tutorial of the
International Conference for High Performance Computing, Networking, Storage and Analysis, 2013.

To Meet The High I/O Demands: PFS

Poor performance of PFSs

SSD provides new solutions for
parallel I/O systems

• Benefits of SSDs
• Higher storage density
• Lower power consumption
• Smaller thermal footprint
• Higher performance

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Ba
nd

w
ith

 (M
B/

se
c)

Request Size (KB)

SSD-seq SSD-ran HDD-seq HDD-ran

Traditional Parallel I/O Systems

Compute Nodes

…P P P P P P

MPI-IO

…

P P P P

MPI

PFS Client

HDD HDD HDD HDDHDD

Problem

• How to use SSDs to improve the performance of
hybrid I/O systems?

• Challenge
• I/O workload can change
• SSDs and HDDs have different performance characteristic's
• The performance and cost trade off

Outline

• Problem
• Our idea
• Design
• Evaluation

Key Idea: S4D-Cache

• Smart-Selective SSD Cache for Parallel I/O
Systems
• Integrate a small number of SSD-based file servers into the

systems
• Propose a centralizing SSD cache architecture
• Selectively caching performance-critical data
• Request parallelism
• Request randomness

S4D-Cache Architecture Overview

Application

Middleware

PFS client

PFS server

Original PFS(OPFS)

SSD SSD

Compute Nodes

CSservers

HDD

…

…

P P P P P P

HDD HDD HDD HDD HDD

S4D-Cache

MPI-IO

…

Cache PFS(CPFS)

DServers

The original system The plug-in system

Design Benefits

• Key global data access information are accessible
in this layer, and can be used to help improve
performance

• The solution can support multiple file systems
• The plug-in design is transparent to applications
• Only a small cluster of SSDs are deployed into the

system, which makes the design highly cost
effective

Software structure

Data Identifier

Redirector
Rebuilder

(Helper
thread)

OPFS CPFS

Request

CDT

DMT

Application
main thread

Process 0

Data Identifier

Redirector
Rebuilder

(Helper
thread)

Request

CDT

DMT

Application
main thread

Process 1

S4
D

-C
ac

he

...

Cost
Model

Cost
Model

Data Access Cost Model

We calculate the data access cost for requests on DServers and
CServers respectively.

Pars Description

M Number of HDD file servers

N Number of SSD file servers (N<M)

str Stripe size of parallel file system

d Logical address distance between ri and ri-1

f File offset of request ri

r Data size of request ri

R Average rotation delay for HDD

S Maximum seek time for HDD

βD Cost of access one unit of data for HDD

βC Cost of access one unit of data for SSD

Table 1. Parameters (short in Pars) in cost analysis model.

DServer Cost Model

• Request access cost	 ܶ:
• ܶ ൌ ௦ܶ ௧ܶ																																																					（1）
• Ts: startup time, Tt: data transfer time

• Ts of sub-request
• Involves seek time, rotation time on each server
• ௌܶ follows uniform distribution on [a,b]
• a=F(d)+R, F(d) is a function for converting request distance d to seek [1]
• b=S+R

• ܲ ߙ ൏ ݔ ൌ ௫ି
ି

, ܽ ݔ ܾ （2）

• Ts of a file request on multiple DServers
• Tݏ is the maximum of all the ݉ servers
• ܺ ൌ max ,1ߙ ,2ߙ … , ݉ߙ
• ௦ܶ ൌ ݂ݔ ݔ ݔ݀ ൌ ܽ

ାଵ
ሺܾ െ ܽሻ

 (4)

T depends on sub-request size

Four cases of a file request distribution on DServers

Request

File Servers

File

Str

r

(1) (2) (3)

r

Sm Sm

r

File Servers File Servers

Request

File

Request

File

r

(4)

r

File Servers

Request

File

f f

Sm

f f

Sm
b
e

b
e

b
e

Maximal sub-request size of a request (Sm)

• ௧ܶ ൌ ݏ 	∗ ߚ	 (5)

SServer Cost Model

• The startup time is ignored (High-end SSDs).
• Only use the data transfer time.

• ܶ ൌ ݏ 	∗ ߚ	 (7)

Critical data identification

• Performance benefit (B):

• A positive B means the request should be served
at CServers

• Implications
• Large request should be placed on DServers due to high

parallelism
• Random small requests should be placed on CServers

• ܤ ൌ ܶ 	െ ܶ (8)

Cache metadata management

• Key data structure
• Critical data table (CDT)
• Data mapping table (DMT)

CDT
…

…

D_file

DMT
…

…

D_offset Length C_flag
D_file D_offset Length C_flag

D_file D_offset C_file C_offset Length D_flag
D_file D_offset C_file C_offset Length D_flag

Selective Cache Algorithm

• Caching data on CServers
based on three factors
• The performance benefit (critical

data)
• Available free space on SServers
• Type of I/O requests

• Read request is cached in
a “lazy” way

Data reorganization

• Functions
• Flush dirty data back to DServers, indicating the data can be

reclaimed
• Read data from DServers to CServers, reset C_flag to 0 to show

the data has been cached

• Reduce the interference to normal I/O requests
• Multiple threads: main and help thread
• Help thread issue low-priority I/O requests

Implementation

• Environments
• I/O middleware MPICH2
• PFS: PVFS2

• Cache metadata mapping table
• Memory: Hash table
• Storage file: Berkeley DB file on CServers

• I/O redirection module
• MPI_File_open/read/write(),…

• Rebuilder
• Multiple threads
• Shared variables for communication between threads

Experimental Setup

65-nodes SUN Fire Linux Cluster
CPU Quad-Core AMD Opteron(tm) Processor 2376 * 2
Memory 4 * 2GB, DDR2 333MHz
Network 1 Gbps Ethernet

Storage
HDD: Seagate SATA II 250GB, 7200RPM
SSD: OCZ PCI-E X4 100GB

OS Linux kernel 2.6.28.10

File system PVFS2 2.8.2

1: 32 computing nodes, eight HServers, four SServers
2: Stock system w/o S4D-Cache enabled
3: When S4D-Cache is enabled, the cache capacity is set to 20%
of the application's data size.

Benchmark

• IOR
• 10 instances of IOR are
• six issue sequential I/O requests
• remaining send random I/O requests

• In each instance, default parameters
• Access a shared 2GB file
• 32 processes
• request size is kept to 16KB

• HPIO
• MPI-Tile-IO

Varying Request Sizes

• For small requests, S4D-Cache significantly improve the I/O
performance

• For large requests, less performance gains can be obtained
• Read has similar trend

Write Read

Request distribution on different
servers

• Most of the random small requests are redirected to
CServers, because CServer has good behaviors for them

• Nearly all large requests are absorbed by the original
DServers, because DServers have higher I/O parallelism
and better aggregated I/O throughput

Varying Number of Processes

• S4D-Cache improves the overall I/O bandwidth for various processes

• With the number of processes increasing, bandwidth gets lower because each
DServer needs to serve more processes' requests and the competition among
processes gets more severe.

• Good scalability in terms of the number of processes.

Write Read

Varying SSD Cache Capacities

• Throughput improves by increasing the capacity of
CServers

• More random I/O requests can benefit from CServers.

• Continuously enlarging CServers will only bring limited
performance improvement.

Varying Numbers of SSD File Servers

• With the number of CServers increasing, the I/O bandwidth
improves because CServers provides better random performance.

• The I/O performance only slightly improves when the number of
file servers is above four, because only a portion of the I/O
workload is random and the improvement is bounded to these
requests.

• Choosing a reasonable number of file servers is critical to make
full use of the SSDs.

Write Read

HPIO

• S4D-Cache is effective with respect to HPIO
benchmark

• Improvements for HPIO are not as significant as
those for IOR because the workload is not as
random as IOR.

Write Read

MPI-Tile-IO

• Performance improvement is still significant

Write Read

Overhead

• Storage overhead: 0.6%
space overhead to keep
DMT in storage

• Performance overhead
• Request cost analysis
• Critical data identification
• Cache metadata look-up

• When no requests are
cached(Intentionally)
• Overhead is almost unobservable.

Conclusions

• A centralized SSD cache architecture for parallel
I/O systems

• A cost model to evaluate the file request access
time on CServers or DServers at the I/O
middleware layer

• A selective caching algorithm to caching critical
data on the limited SSD space

• The proposed caching system is feasible and
effective

Shuibing He, Xian-He Sun, Bo Feng

Department of Computer Science

Illinois Institute of Technology

Thank you very much!

