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Special Issue article

Global-aware and multi-order
context-based prefetching for
high-performance processors

Yong Chen1, Huaiyu Zhu2, Philip C. Roth3, Hui Jin4 and
Xian-He Sun4

Abstract
Data prefetching is widely used in high-end computing systems to accelerate data accesses and to bridge the increasing
performance gap between processor and memory. Context-based prefetching has become a primary focus of study in
recent years due to its general applicability. However, current context-based prefetchers only adopt the context analysis
of a single order, which suffers from low prefetching coverage and thus limits the overall prefetching effectiveness. Also,
existing approaches usually consider the context of the address stream from a single instruction but not the context of the
address stream from all instructions, which further limits the context-based prefetching effectiveness. In this study, we
propose a new context-based prefetcher called the Global-aware and Multi-order Context-based (GMC) prefetcher. The
GMC prefetcher uses multi-order, local and global context analysis to increase prefetching coverage while maintaining
prefetching accuracy. In extensive simulation testing of the SPEC-CPU2006 benchmarks with an enhanced CMP$im simu-
lator, the proposed GMC prefetcher was shown to outperform existing prefetchers and to reduce the data-access latency
effectively. The average Instructions Per Cycle (IPC) improvement of SPEC CINT2006 and CFP2006 benchmarks with
GMC prefetching was over 55% and 44% respectively.

Keywords
prefetching, context-based prefetching, prefetching accuracy, prefetching coverage, processor architectures, memory
hierarchy, data access delay, prefetch degree, prefetch priority, cache pollution, bandwidth contention, SPEC-
CPU2006, CMP$im simulator, PIN, high-end computing, data intensive computing

1 Introduction

The rapid advance of semiconductor process technology

means that the processor speed or the aggregate processor

speed on chips with multicore/manycore architectures grows

quickly and steadily. The memory speed or the data load/

store performance, on the other hand, has been increasing

at a snail’s pace (Hennessy and Patterson, 2006). The mem-

ory speed has only increased by roughly 9% each year over

the past two decades, which is significantly lower than the

improvement in speed of nearly 50% per year for processor

performance (Hennessy and Patterson, 2006). The unba-

lanced performance improvement leads to one of the signif-

icant performance bottlenecks in high-end computing,

known as the ‘‘memory-wall’’ problem (Wulf and Mckee,

1995; McKee, 2004). Worse, unless revolutionary memory

technology changes occur, the processor–memory perfor-

mance gap is predicted to continue to widen in the coming

years. Multiple memory hierarchies have been the primary

solution to bridging the processor–memory performance

gap. However, due to the limited cache capacity and highly

associative structure, the large number of off-chip accesses

and long data-access latency still spike the performance

severely.

Data prefetching is a common technique for reducing

the processor stall time on data accesses, and has been

widely recognized as a critical companion technique of the

memory hierarchy solution to overcoming the memory-

wall issue (Wulf and Mckee, 1995; Mckee, 2004; Hennessy

and Patterson, 2006). As the term indicates, the essential

idea of data prefetching is to observe data referencing

patterns, then speculate future references and fetch the
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predicted reference data closer to the processor before the

processor demands them. By overlapping computation and

data accesses, data prefetching can partly overcome the

limitations of cache memories, and reduce long memory

access latency. Many applications, including scientific and

high-end computing applications, exhibit regular and pre-

dictable access patterns, and thus data prefetching works

well and can effectively improve the data-access perfor-

mance (Chen and Baer, 1995; Vanderwiel and Lilja,

1997; Srinivasan et al., 2004; Hennessy and Patterson,

2006). Numerous studies have been conducted and many

strategies have been proposed for data prefetching (Jouppi,

1990; Dahlgren et al., 1993; Chen and Baer, 1995; Joseph

and Grunwald, 1997; Kandiraju and Sivasubramaniam,

2002; Annavaram et al., 2003; Nesbit et al., 2004; Nesbit

and Smith, 2004; Srinivasan et al., 2004; Emma et al.,

2005; Wenisch et al., 2005; Ceze et al., 2006a,b; Srinath

et al., 2007; Chen et al., 2008; Ebrahimi et al., 2009;

Somogyi et al., 2009; Bhattacharjee and Martonosi,

2010). In addition, many commercial high-performance

processors have adopted data prefetching techniques to

hide long data-access latency (Doweck, 2006; Hennessy

and Patterson, 2006; Le et al., 2007).

Among many prefetching strategies, context-based data

prefetching has received attention in recent years due to its

general applicability and high accuracy (Geomen et al.,

2001; Ramos et al., 2007, 2009; Chen et al., 2010).

A context-based prefetcher builds a state transition diagram

with the access address strides (deltas) as states, and char-

acterizes the correlation among miss address streams.

Depending on the length of the context considered, the pre-

fetcher can adjust the prefetching overhead and confidence.

The length of the context is referred as the order of the

context-based prefetcher. For instance, if the access strides

sequence is ‘s1; s2; s3; s4; s5’, the context prefetching can

build a state transition diagram with order-1 context, i.e.

‘s1’, ‘s2’, ‘s3’, etc., order-2 context, i.e. ‘s1; s2’, ‘s2; s3’,

‘s3; s4’, etc., or order-3 context such as ‘s1; s2; s3’,

‘s2; s3; s4’, etc.

Although numerous studies have been conducted in

context-based prediction and prefetching (Sazeides and

Smith, 1997a,b; Goeman et al., 2001; Ramos et al., 2007,

2009), many issues remain open. We have identified two

major limitations of current context-based prefetching via

extensive simulation. The first limitation is that the existing

context-based prefetching only supports the context analy-

sis and prediction with a single order. Although such an

approach can achieve high prefetching accuracy (the ratio

of the accurate prefetches to all prefetches), our study

shows that using an approach that considers only one

order leads to limited prefetching coverage (the ratio of

reduced misses to all misses). The ultimate goal of a data

prefetching strategy is to reduce access delay; however, the

performance gain of data prefetching depends on both pre-

fetching coverage and accuracy. This limited prefetching

coverage, in turn, leads to limited prefetching effective-

ness. The second limitation is that the existing context-

based prefetching usually only considers the context of the

miss address stream from a specific instruction and ignores

the context of the miss address streams from other instruc-

tions. We refer to the context of a specific instruction as the

local context, and the context of all instructions as the glo-

bal context. We observe that, by incorporating both local

and global context analysis into context-based prefetching,

the prefetching coverage can be further improved. Motivated

by these limitations of existing context-based prefetchers,

we propose a new context-based prefetcher design called

the Global-aware and Multi-order Context-based (GMC)

prefetcher. The goal of this research is to address the limita-

tions of existing approaches and further explore the potential

of the context-based prefetching.

The contribution of this work is three-fold. First, we

present a comprehensive study that compares different

orders of context-based prefetching models, as well as

local and global context analysis. Second, we propose a

new Global-aware and Multi-order Context-based data

prefetcher that incorporates multi-order, local and global

context analysis to achieve better overall prefetching

effectiveness. Third, we present simulation results that

validate the GMC prefetcher design, showing significant

performance improvement over existing data prefetching

techniques.

The rest of this paper is organized as follows: Section 2

reviews important related works; Section 3 introduces the

design of the proposed Global-aware and Multi-order

Context-based prefetcher and prefetching methodology;

Section 4 discusses the simulation experiments and perfor-

mance results in detail; Section 5 concludes this study.

2 Related work

Hardware data prefetching has been extensively studied

(Jouppi, 1990; Dahlgren et al., 1993; Palacharla and

Kessler, 1994; Chen and Baer, 1995; Joseph and Grunwald,

1997; Kandiraju and Sivasubramaniam, 2002; Annavaram

et al., 2003; Nesbit et al., 2004; Nesbit and Smith, 2004,

2005; Wenisch et al., 2005; Ceze et al., 2006a,b; Chen

et al., 2007; Le et al., 2007; Srinath et al., 2007; Ebrahimi

et al., 2009; Somogyi et al., 2009; Bhattacharjee and

Martonosi, 2010; Chen et al., 2010). Existing representa-

tive studies can be roughly classified into several categories:

sequential, stream, and stride prefetching; correlation-based

prefetching; and context-based prefetching. After describing

previous work in each of these categories, we discuss how

our GMC prefetcher is related to the existing work.

2.1 Sequential, stream, and stride prefetching

Sequential prefetching is a basic prefetching strategy.

It prefetches one or more blocks that follow the current

missing block (Dahlgren et al., 1993, 1995). This prefetch-

ing mechanism takes advantage of spatial locality and

assumes the applications usually request consecutive mem-

ory blocks. The One-Block-Lookahead (OBL) approach
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prefetches one block that follows the one being accessed.

An alternative to OBL is prefetching k blocks of data

instead of one; k is called the prefetching degree. To

improve prefetching efficiency, adaptation of the prefetch-

ing degree at runtime was introduced to sequential prefetch-

ing (Dahlgren et al., 1993). Stream prefetching can track

different streams and prefetch data blocks for each stream

(Jouppi, 1990; Palacharla and Kessler, 1994). It is adopted

in commercial processors such as POWER6 architecture

processors (Le et al., 2007). Stride prefetching was proposed

by Chen and Baer to detect the stride patterns in data access

streams (Chen and Baer, 1995). A Reference Prediction

Table (RPT) is used to keep track of the strides of recent data

accesses. Once the prefetcher is trained, blocks can be

prefetched according to the stride recorded in the RPT. Due

to its simplicity and effectiveness, stride prefetching is

widely used (Chen and Baer, 1995; Doweck, 2006).

2.2 Correlation-based prefetching

Markov prefetching was proposed by Joseph and Grunwald

to capture the correlation between cache misses and pre-

fetch data based on a state transition diagram (Joseph and

Grunwald, 1997). Nesbit and Smith proposed the Global

History Buffer (GHB) to maintain the recent history of data

access (Nesbit and Smith, 2004, 2005). It is an efficient struc-

ture for supporting different prefetching algorithms and has

been adopted widely. Similar to GHB, the Data Access His-

tory Cache (DAHC) (Chen et al., 2007) was proposed to facil-

itate data prefetching with a single structure and to support

various algorithms simultaneously at runtime. More recently,

a stream chaining method was proposed by Diaz and Cintra to

link various localized streams into predictable chains such

that multiple levels of correlation can be exploited by the pre-

fetcher (Diaz and Cintra, 2009). Since data access patterns

may change at runtime, adaptive mechanisms, such as the

feedback directed prefetching proposed by Srinath et al.

(2007), are often used to control dynamically the prefetch

degree and the prefetcher’s aggressiveness.

In addition, epoch-based correlation prefetching was

proposed by Chou to reduce late prefetches for

correlation-based prefetching (Chou, 2007). The idea is

to localize misses within an epoch (a fixed length of time),

and to conduct prefetches based on epochs to prevent late

prefetches. Lai et al. (2001) proposed a dead-block predic-

tor (DBP) to improve the timeliness of correlation-based

prefetching by triggering prefetches and making replace-

ment decisions on time. It predicts when a cache block is

dead and can be evicted by tracking the time duration

between when it comes into the cache and when it is

evicted. Hu et al. (2002) also proposed time-keeping

mechanisms to improve timely prefetching. Bhattacharjee

and Martonosi proposed two Inter-Core Cooperative (ICC)

Translation Lookaside Buffer (TLB) prefetching mechan-

isms to exploit the correlation in TLB miss patterns across

cores in chip multiprocessors (CMPs), which significantly

improves data TLB (D-TLB) access performance

(Bhattacharjee and Martonosi, 2010). Ebrahimi et al. (2009)

proposed a hierarchy of prefetcher aggressiveness control

structures to control prefetcher-caused inter-core interference

by dynamically adjusting and coordinating the aggressive-

ness of multiple prefetchers in CMPs. Their proposed struc-

tures improve system performance and reduce bus traffic

considerably on a multi-core system. Somogyi, Wenisch,

et al. proposed temporal, spatial, and spatio-temporal mem-

ory streaming to detect repeated patterns in specific memory

regions and to boost memory access performance (Wenisch

et al., 2005; Somogyi et al., 2009). These approaches achieve

remarkable performance for applications with regional

repeated patterns.

2.3 Context-based prefetching

Context-based prefetching is considered to be a more gener-

alized prefetching approach than conventional prefetching

strategies. In context-based data prefetching, the correlation

between the current context (the miss access) and the past

history is used to make predictions for data prefetching.

A context-based prefetching method builds a state transition

diagram with the access address strides (deltas) as states, and

characterizes the correlation among miss address streams.

Context-based data prefetching is similar to the context-

based value predictor proposed by Sazeides and Smith

(1997a,b), but is used as a data prefetcher at the cache level.

The Finite Context Method (FCM) is a representative

context-based predictor that predicts the next value based

on a finite number of preceding values (Sazeides and

Smith, 1997b). The FCM is usually implemented with two

tables (Sazeides and Smith, 1997a), a Value History Table

(VHT) and a Value Prediction Table (VPT). The VHT con-

tains the context of data accesses, and the VPT contains the

predictions associated with the context. A hash function

uses the context information from the VHT and the proces-

sor state to form an index that leads to a VPT entry. A var-

iation of the FCM prefetcher, called Differential Finite

Context Method (DFCM), was proposed by Goeman

et al. (2001). In this model, the context is formed by the dif-

ferences between values instead of the values themselves.

DFCM can find more repeating patterns than FCM does,

using fewer VPT entries than FCM requires. P-DFCM is

another proposed data prefetcher based on DFCM (Ramos

et al., 2007). There are two major differences between

P-DFCM and DFCM. First, P-DFCM prefetches on L2 load

misses only, while DFCM prefetches on both load and store

misses. Second, P-DFCM requires only the program coun-

ter (PC) to prefetch data, whereas DFCM requires both the

PC and the requested data address. Distance prefetching,

originally proposed for TLB but also used in data caches,

is usually considered a representative context-based

prefetcher with order-1 context analysis (Kandiraju and

Sivasubramaniam, 2002). Recent extensions of distance

prefetching, called PC/DC and G/DC prefetchers (Nesbit

et al., 2004; Nesbit and Smith, 2005), improve the distance

prefetching and are representative order-1 prefetchers.
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2.4 Relation to this work

In this paper, we propose a new Global-aware and

Multi-order Context-based prefetcher. We also present a

comprehensive evaluation of the performance of context-

based prefetching. We analyze the impact of orders, local

context and global context on the performance. To the best

of our knowledge, there does not exist a detailed study that

analyzes context-based prefetching performance and the

impact of different orders and contexts across a wide range

of prefetching techniques. In addition, existing context-

based prefetchers only adopt the context analysis with a

single order, and do not take both local context and global

context into consideration at the same time. Our evaluation

shows that these drawbacks of existing strategies lead to

limited prefetching coverage, and in turn limit the overall

effectiveness of prefetching. The proposed GMC pre-

fetcher addresses these limitations well. The simulation

results show that this new prefetcher outperforms the exist-

ing context-based prefetchers and achieves considerably

better latency reduction than the existing prefetchers.

3 GMC prefetcher design and prefetching
methodology

In this section we present the design and prefetching

methodology of the Global-aware and Multi-order

Context-based (GMC) prefetcher. We first introduce the

observations that motivate the proposed GMC prefetcher.

We then introduce the design rationale and a high-level

view of the prefetcher. After that, we detail the GMC pre-

fetcher techniques including prefetching methodology,

table updating, prefetch priority and degree control. Lastly,

we discuss the implementation cost of a GMC prefetcher.

3.1 Motivation

The motivation of the proposed GMC data prefetcher

comes from two important observations we noticed in

evaluating the performance of context-based prefetching.

The performance evaluation was conducted from two

aspects: the prefetching accuracy, which measures what

percentage of prefetches are correct, and the prefetching

coverage, which measures how many patterns are recog-

nized and how many misses are reduced. We used another

metric, prefetching effectiveness, to evaluate the perfor-

mance of a prefetching strategy considering both accuracy

and coverage. Prefetching effectiveness is defined as the

product of the prefetching accuracy and the prefetching

coverage. This definition of the prefetching effectiveness

metric is motivated by the common usage of an aggregated

speedup metric (Hennessy and Patterson, 2006); accuracy

and coverage are two independent metrics that evaluate a

prefetching strategy, while the effectiveness is an aggrega-

tion of these two metrics.

Our first observation was that context-based analysis

with higher order can achieve better accuracy in generating

predictions than analysis with lower order. For instance,

order-2 analysis has higher accuracy than order-1 analysis.

However, using an approach that considers only one order

(e.g. order 2 but not order 1 or order 3) limits the recogni-

tion rate of patterns and thus the prefetching coverage. This

limited prefetching coverage in turn also affects the pre-

fetching effectiveness. Figure 1(a) shows the simulation

results of the prefetching accuracy and coverage of five

representative SPEC-CPU2006 benchmarks (Section 4 has

the results of all 29 benchmarks) with orders 1, 2, 3, and

4 respectively from left to right in each group. The results

show that a high-order prefetcher has higher accuracy

but lower coverage, and a low-order prefetcher has lower

accuracy but can considerably improve the prefetching

coverage. This observation motivates us to integrate

multi-order analysis to provide both high accuracy and

wide coverage for context-based data prefetching.

The second observation is that the existing context-

based prefetchers only consider the context scope of access

addresses from the same instruction, because this approach

Figure 1. Impact of orders and context scope on context-based prefetching performance.
(a) Impact of different orders with representative SPEC-CPU2006 benchmarks (b) Impact of different context scope with representative SPEC-CPU2006
benchmarks
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has high accuracy in identifying potential correlations.

However, the simulation testing shows that this approach

has low overall prefetching effectiveness. When consider-

ing the context scope analysis, we distinguish

four strategies: local-only, global-only, local-first, and

global-first. The local-only context scope considers a strat-

egy that only uses the local context analysis, while ignoring

any global context analysis. Similarly, the global-only

strategy only uses the global context analysis. The local-

first context scope analysis refers to a strategy that com-

bines both local and global context analysis but always

gives the local context analysis a higher priority. The glo-

bal-first strategy uses both local and global context analy-

sis, but gives global context analysis a higher priority. The

differences between these four strategies are also shown in

Table 1 for easy comparison.

Figure 1(b) illustrates the prefetching effectiveness of

an order-2 context-based prefetcher with five representative

SPEC-CPU2006 benchmarks. The results clearly demon-

strate the potential of global context awareness. Among the

four strategies, the local-first global-aware strategy achieved

the best prefetching effectiveness. This observation moti-

vates us to incorporate global awareness into context-based

data prefetching.

3.2 GMC prefetcher design and rationale

Motivated by the observations, we propose a new Global-

aware and Multi-order Context-based data prefetcher to

incorporate multi-order, local and global context analysis

to achieve better overall prefetching effectiveness. The pro-

posed GMC prefetcher has a three-level table organization

as shown in Figure 2. The first two levels adopt the design

of the GHB prefetcher with separate PC and address indices

(Nesbit and Smith, 2004, 2005). The GHB table is a FIFO

structure and stores detailed data access history informa-

tion. Each entry in the GHB table is a pair containing a pro-

gram counter and access address. It gives high priority to

recent access history, and thus removes the most outdated

history automatically. The indices are used to provide quick

access to the GHB table with a ‘‘key’’. The unique instruc-

tion address is the key for program counter indices, and the

unique data address is the key for address indices. The

content of the PC and address index tables are the paired

PC and index, and address and index, respectively. GMC

augments GHB with a third level of tables – the Data

Access Prediction (DAP) tables (see Figure 2). There are

two DAP tables: Local DAP and Global DAP. The Local

DAP table is used to store the prediction associated with the

address context coming from the same PC (local context).

The Global DAP table is used to store the prediction asso-

ciated with the address context coming from any PC (global

context). Each DAP entry includes two fields. The first one

stores the predicted address corresponding to the context

indicated by the entry index. The second field stores a

confidence counter that is used to represent how strong the

prediction is. DAP entries are indexed by the hashed form

of the contexts derived from a hash function. In our current

design, we use an FS-5 hash function to produce the hashed

context as it has better performance than other choices

(Sazeides and Smith, 1997a). In the remainder of this

section, we present the detailed design and the methodology

of supporting context-based prefetching based on local,

global and multi-order context analysis in the GMC

prefetcher respectively.

3.3 Local context prefetching methodology

Figure 3 shows the methodology of prefetching based on

local context analysis. When a new miss occurs, the pre-

fetcher searches the PC indices to find the last miss address

from the same PC. It then follows the PC chain to retrieve

the miss sequence from the same PC. The recent k strides

(order-k context) are fed into the hash function unit and a

hashed form of context is the output. The GMC prefetcher

uses the strides between miss addresses as the context

instead of using the addresses themselves. This approach

is the same with existing context-based prefetchers such

as DFCM (Ramos et al., 2007). The hashed context in our

current design consists of 9 bits. It is used as an index for

looking up an entry in the local DAP table. If an entry can

be found in the local DAP table with the predicted stride in

its prediction field, prefetch requests are generated and

issued. The confidence counter associated with each DAP

entry reflects the confidence of the prediction following a

Table 1. Four different strategies considering context scope
analysis.

Strategy Description

Local-
only

Adopt local context analysis only; ignore global
context analysis

Global-
only

Adopt global context analysis only; ignore local
context analysis

Local-
first

Adopt both local and global context analysis, with a
higher priority for the local context analysis

Global-
first

Adopt both local and global context analysis, with a
higher priority for the global context analysis

Figure 2. High-level view of GMC prefetcher design.
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certain context. The confidence counter (2 bits) allows four

values (0, 1, 2, and 3) indicating lowest, low, high, and

highest confidences. The counter value increases upon a

correct prediction and decreases upon a false prediction.

The confidence counter affects the decision of replacing

an entry in the DAP table and issuing a prefetch request. Its

usage in replacing entries is discussed later in the table

updating section (Section 3.6). When the confidence coun-

ter indicates a high or highest confidence, i.e. with value 2

or 3, a prefetch is generated and the prefetch address is cal-

culated as the current miss address plus the predicted stride.

3.4 Global context prefetching methodology

The main difference between global context prefetching

and local context prefetching in the GMC prefetcher is

due to the way the context is obtained. Local context pre-

fetching considers the miss address stream from a single

instruction, while global context prefetching considers the

miss address stream from all instructions. Therefore, as

illustrated in Figure 4, when a new miss occurs, k number

of previous misses stored in the GHB are used with the cur-

rent one to form a global context sequence. The prefetcher

calculates the strides between adjacent miss addresses in

this sequence, and k strides are fed into the hash function

unit to generate the hashed form of the context. The hashed

context is used to look up an entry in the global DAP table.

Similar to local context prefetching, a prefetch is issued if

an entry is found in the global DAP table and if its confi-

dence is at high levels (a 2 or 3). If a prefetch is to be gen-

erated, its address is calculated as the current miss address

plus the predicted stride.

3.5 Multi-order context prefetching methodology

The GMC prefetcher is designed to support multi-order

analysis in context-based prefetching in order to guaran-

tee both high prediction accuracy and wide coverage.

However, we have not yet addressed the issue of which

multiple orders should be used. The major constraint for

the selection of a specific order comes from the hardware

storage requirement for supporting the context analysis

with a specific order. The storage requirement, in turn,

can be characterized by the table entry consumption for

storing the context and prediction addresses in an ideal

case without any hash conflicts. In order to better under-

stand the choice of orders, we show the table size require-

ments for different orders in the ideal hashing case in

Figure 5.

These results show that the higher the order, the more

table entries we need. This is expected because the higher-

order analysis uses a longer context for pattern recognition

and prediction. Also, since we use a hash table (with the

FS-5 hash function) in the context analysis, a higher-order

context analysis can cause more aliasing for a given table

size. Because higher orders require more storage or increase

the likelihood of hashing conflicts, we limit GMC to use at

most order 2 in our current design.

The GMC prefetcher supports order-0 and order-1

prefetching directly by taking advantage of the GHB

table without involving additional DAP tables. The order-0

context prefetching means that the prefetcher works without

a context. This prefetching method is essentially a sequential

prefetcher, which is optimal for programs that access

Figure 3. GMC local context prefetching.
Figure 4. GMC global context prefetching.

Figure 5. Table entry consumption for different orders in an
ideal case.
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consecutive memory blocks. The order-1 context prefetching

means that the prefetcher makes the prediction based on the

context with each stride as one state, which is essentially the

existing distance prefetcher (Kandiraju and Sivasubrama-

niam, 2002; Nesbit et al., 2004). In theory, multiple DAP

tables are needed so that different order contexts can be

detected by the prefetcher, requiring higher hardware invest-

ment than our proposed GMC prefetcher. However, our pre-

fetcher can carry out low-order context prefetching (order 0

and order 1) without additional DAP tables. This is because

the GHB table maintains the full information for recent data

accesses. The GMC prefetcher obtains the order-0 analysis

(past accesses) and order-1 analysis (strides among accesses)

directly from the GHB table. Order-2 prefetching requires

information from the local and global DAP tables as

described in the previous section. One key advantage of the

GMC prefetcher is that it covers both sequential and distance

prefetching and harmonizes them with the multi-order

analysis.

In the GMC prefetcher, multi-order context-based

prefetching operates as follows. Upon a cache miss, the

order-0 prefetching issues n blocks of data requests,

depending on the prefetching degree, following the miss

address. The order-1 prefetching is similar to the distance

prefetching based on GHB nesm04, (Nesbit and Smith,

2004, 2005). The order-2 prefetching utilizes the local and

global DAP tables and follows the mechanism discussed

in the previous two subsections. The prefetch requests

generated from the different order analyses are handled

with prefetch priority and degree control, as discussed in

Section 3.7.

3.6 Table updating

The GMC hardware tables are updated when a miss occurs

and before the GMC prefetcher generates prefetches. When

a new miss occurs, the GMC prefetcher finds a new entry in

the GHB table, replacing the oldest entry following the

FIFO policy. The corresponding entries in the index tables

are also updated. For the DAP tables, the previous miss

address is subtracted from the new miss address and a stride

D1 is obtained. Then the previous k þ 1 addresses (with

order-k analysis) are used to calculate the hashed form of

the stride context. This hashed value is then used as an

index in locating local/global DAP tables. If an entry is

found and the predicted stride in that entry D2 is equal to

D1 (which means the prediction is correct), the confidence

counter is increased by one. If not, the prefetcher decides

whether it should use D1 to replace D2 according to the con-

fidence counter. If the confidence counter is low (with

value 0 or 1), the prefetcher replaces the old stride with the

new stride, and resets the confidence counter. Otherwise,

the prefetcher keeps the old stride and decreases the confi-

dence counter by 1. In essence, the confidence counter is a

2-bit saturating counter used to control the prefetcher’s

behavior. The state transition diagram for the confidence

counter is shown in Figure 6.

3.7 Prefetch priority and degree control

To handle the prefetch requests generated from different

context analysis and to guarantee the efficiency of pre-

fetching, the GMC prefetcher supports prefetch priority

and adaptive prefetch degree control. The GMC pre-

fetcher supports multiple prefetch queues. Each queue

corresponds to one order analysis. The queue with the

highest-order analysis has the highest priority when GMC

issues prefetches, as the highest-order analysis can gener-

ate the most accurate predictions. In the GMC’s local-

first prefetch strategy, within each priority queue the

prefetches based on local context analysis have higher

priority than the prefetches based on global context anal-

ysis. Prefetches are issued from the high priority queue

first, and when more issue bandwidth is available, pre-

fetches from lower priority queues are issued. This

mechanism ensures that prefetches are always issued

using the most accurate predictions available. In addition,

when a prefetch queue is full, new prefetch requests

replace the old ones in a FIFO manner. Note that all pre-

fetch requests have lower priority than demand requests,

so prefetch requests are only generated if there is more

issue bandwidth available after the demand requests are

issued. This design keeps the prefetch requests from com-

peting with demand requests for issue bandwidth.

The prefetch degree is dynamically tuned by tracking

the performance trend and bandwidth contention (Ramos

et al., 2009). We use Accesses Per Cycle (APC) as the per-

formance metric, which can be measured via hardware

counters available on modern commodity processors. The

GMC prefetcher checks the APC periodically and either

increases or decreases the degree based on the APC value.

Within a fixed window of cycles, if the APC is higher than

last time it was checked, more accesses can be issued. Thus,

the GMC adjusts the degree the same way (increase or

decrease) that it did the previous time it checked; other-

wise, it adjusts the degree in the opposite direction. Note

that increases in APC do not necessarily cause increases

in degree—it may be that APC increases when the degree

Figure 6. State transition diagram of the confidence counter.
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is decreased, and our approach dynamically responds to

this scenario. In addition to performance trend tracking,

the GMC prefetcher also uses bandwidth contention

tracking for adaptive prefetch degree control. GMC uses

two groups of miss status handling registers (MSHRs)

to track all on-the-fly memory access requests. One of

them is used to filter the redundant misses from the

stream and to hold outgoing requests issued by the CPU.

The other one, called prefetch MSHRs (P-MSHRs), holds

outgoing requests issued by the GMC prefetcher. In every

cycle, the GMC prefetcher checks the number of requests

in both MSHRs and P-MSHRs. If the number is higher

than a threshold, this cycle is considered as a ‘‘busy’’

cycle. GMC uses the average number of requests, as

analyzed through simulation testing, as a threshold. If the

busy cycle number during a fixed number of cycles is

higher than the threshold for high bandwidth contention,

the prefetching degree is decreased even though the APC

mechanism might suggest an increase. In practice, we

limit the prefetching degree to the range of 1 to 32. Fig-

ure 7 shows the methodology of generating multiple pre-

fetch candidates with prefetch degree 2 as an example.

The first prefetch candidate is generated by taking the

first prediction and the old index as input to the hashing

unit and using the output to locate an entry in the DAP

table. The second prefetch candidate is generated by com-

bining the miss address and the prediction in the located

entry. Prefetch candidates with further prefetch degree are

similarly generated.

3.8 Hardware Cost

The hardware budget of the proposed GMC prefetcher is

comparable with other prefetchers proposed recently

(Nesbit et al., 2004; Nesbit and Smith, 2004, 2005; Diaz

and Cintra, 2009). The primary hardware budget comes

from the cost of hardware tables. Depending on the spe-

cific configuration, i.e. the number of entries of each

table, the hardware budget ranges from 6 kB to 12 kB for

512-entry to 1024-entry tables. Compared with the well-

known GHB prefetchers (Nesbit and Smith, 2004, 2005), the

additional hardware budget of the GMC prefetcher comes

from two additional DAP tables. Each DAP table entry

needs 14 bits for the access strides and 2 bits for the confi-

dence counter. Two 512-entry DAP tables need an addi-

tional 2 kB storage compared to GHB prefetchers. For a

typical 1 MB L2 cache, the total hardware budget of

12 kB is trivial – only around 1%. However, as our simula-

tion verifies, the global-aware and multi-order context-

based prefetching can considerably reduce cache misses

and improve the overall system performance, so this

increase in hardware cost is well justified.

The combinatorial logic of realizing the proposed GMC

prefetcher is not complicated. The primary combinatorial

logic requirements are for the computation of the hashed

form of context. This can be done with known and prede-

fined functional units (Sazeides and Smith, 1997a). The

rest of the GMC’s required combinatorial logic supports

table lookup and the computation of access strides and pre-

fetch candidates. These operations can be implemented

with simple arithmetic logic units.

Due to the increasing importance of restricting system

power consumption, any proposed architectural change

must consider the impact on not only hardware budget but

also power. In our current study, we focus on the function-

ality, simulation, and analysis of the GMC prefetcher, and

do not quantitatively analyze its power consumption. This

approach for evaluating a new prefetcher has been widely

used in existing and well-known studies (Nesbit et al.,

2004; Nesbit and Smith, 2004, 2005; Doweck, 2006; Diaz

and Cintra, 2009; Ramos et al., 2009; Somogyi et al.,

2009), since the data prefetcher is a relatively small and

independent unit. Since the storage and combinatorial logic

requirements of the proposed GMC prefetcher are compa-

rable with existing prefetchers, such as the GHB prefetcher

(Nesbit and Smith, 2004, 2005) and Intel IP prefetcher

(Doweck, 2006), we believe the power consumption will

not become a significant barrier to the use of the GMC pre-

fetcher, and leave a detailed quantitative analysis of GMC

power consumption for future work.

4 Simulation and performance analysis

The GMC prefetcher design is general and can be used

at any cache level in the memory hierarchy. In this

study, we deploy it at the L2 cache level and assume

this is the lowest cache level in the memory hierarchy.

To evaluate the GMC prefetcher, we simulated it using

the CMP$im simulator (Jaleel et al., 2008). In this sec-

tion we first introduce the experimental setup, followed

by a comprehensive analysis of existing context-based

prefetching by evaluating the impact of different orders

and the impact of local and global context scope analy-

sis. We then present the performance results of the GMC

prefetcher and a comparison of its performance with two

representative prefetchers, PC/DC and G/DC (Nesbit

Figure 7. Multiple prefetch candidates generation.
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and Smith, 2004, 2005). These prefetchers can be cate-

gorized as an order-1 local context based prefetcher and

an order-1 global context based prefetcher respectively.

Finally, we vary different experimental settings to test

the sensitivity of the GMC prefetcher and to analyze its

potential for cache pollution.

4.1 Experimental setup

We collected miss stream samples from the SPEC-

CPU2006 benchmark suite and replayed them for perfor-

mance analysis using Pin (Luk et al., 2005) and CMP$im

(Jaleel et al., 2008). Pin is a dynamic binary instrumenta-

tion tool and can be used to collect program traces and per-

form various program analyses (Luk et al., 2005). CMP$im

is a trace-driven simulator that characterizes memory sys-

tem performance for various workloads (Jaleel et al.,

2008). The first Data Prefetching Competition (DPC-1)

committee released a prefetcher kit that provides an

interface for integrating the CMP$im simulator with any

add-on prefetching module (DPC-1, 2008). We used this

prefetcher kit to simulate context-based prefetching and

evaluate its performance. We used all 29 SPEC-CPU2006

benchmarks (Spradling, 2007) for our evaluation. The

benchmarks were compiled using GCC 4.1.2 with -O2 opti-

mization. For all benchmarks, we collected traces by fast-

forwarding 40 billion instructions and then collecting data

for the next 100 million instructions. This approach, and the

evaluation setting (or a slight variation thereof), are widely

used for evaluating architectural enhancements (Nesbit

et al., 2004; Nesbit and Smith, 2004, 2005; Diaz and Cintra,

2009; Ramos et al., 2009; Somogyi et al., 2009). We used

the ref input size for all benchmarks.

The simulator was configured as a representative con-

temporary out-of-order issue processor with a 15-stage,

4-wide pipeline. In this scenario, a maximum of two loads

and a maximum of one store can be issued every cycle. The

L1 cache was set as 32 kB and 8-way set associative; the L2

cache was configured as 16-way set associative, and the

capacity was varied from 512 kB to 2 MB for sensitivity

analysis. Both L1 and L2 caches used the LRU replacement

policy. The access latency was set as 20 cycles for the L2

cache and 200 cycles for memory. The GMC prefetcher’s

GHB table had 1024 entries, and the index table had 512

entries. Since we used 9 bits for the hashed form of context,

the GMC DAP tables had 29 ¼ 512 entries. Each entry

access of the GHB, index or DAP tables was modeled as

costing one cycle, which was used to calculate the prefetch-

er’s overhead and the timing of the prefetches. This

assumption of the table access overhead is reasonable for

a fairly small hardware table and is also commonly used

in existing studies (Nesbit et al., 2004; Nesbit and Smith,

2004, 2005; Diaz and Cintra, 2009). The PC/DC and

G/DC prefetchers used the same 1024-entry GHB. When

a repeated pattern was found, a fixed number of 8 pre-

fetches were issued in the PC/DC and G/DC prefetchers.

Table 2 details our simulation settings.

4.2 Performance analysis of context-based
prefetching

In this section we analyze the performance of context-based

prefetching and investigate the impact of using both local

and global contexts and different prefetch orders in detail.

4.2.1 Analysis of the impact of orders. In this section, we pres-

ent the analysis of the impact of orders on prefetching accu-

racy and coverage. Figure 8 shows the accuracy of context-

based prefetching with different orders for CPU2006

benchmarks. For most benchmarks (23 out of a total of

29), the accuracy increases strictly with an increase of the

order, meaning that a larger order can provide higher pre-

diction accuracy. This is intuitive because longer repeating

patterns give higher prediction confidence. For the remain-

ing six benchmarks, the accuracy does not always increase

with the increase of the order but it rarely decreases. Thus,

there are some application access patterns for which an

increase in order (hence consideration of a longer repeating

pattern) does not generate a better prediction. In addition,

note that the increase ratio of the accuracy with the increase

of the order differs greatly among different benchmarks.

Prefetching accuracy is important, but because there

may not be enough effective prefetches to reduce cache

misses and to hide memory access latency, we also care

about prefetching coverage. The prefetching coverage

metric is used to measure the number of patterns recog-

nized by a prefetcher and to evaluate the percentage

of misses reduced among all raw misses. As shown in Fig-

ure 9, lower prefetching orders achieve considerably wider

coverage because the analysis with lower orders can recog-

nize more patterns than the analysis with higher orders does.

Hence a model with lower order can reduce more misses on

the same given sequence of misses than higher-order mod-

els. This is an important observation: even though a high-

order model can provide high accuracy, it may not cause a

significant reduction in the number of misses, e.g. if it only

issues prefetches when it is highly confident.

4.2.2 Analysis of the impact of context scope. In this section,

we consider the impact of context scope (local and/or

Table 2. Configuration of simulated processor

Parameter Value

Window Size 128-entry
Issue Width 4
L1 Cache 32 kB, 8-way
L2 Cache 512 kB/1 MB/2 MB, 16-way
Block Size 64 B
L2 Cache Latency 20 cycles
Memory Latency 200 cycles
GHB Table Size 1024 entries
Index Table Size 512 entries
DAP Table Size 512 entries
GHB/Index/DAP 1 cycle per entry access
Table Latency
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global) on prefetching accuracy, coverage and overall

effectiveness. In this study, we restrict our presentation of

the performance comparison results for these four strate-

gies to a sample order-2 context analysis due to space lim-

itations. The prefetching accuracy and coverage using these

context analysis strategies for all 29 benchmarks are shown

in Figures 10 and 11 respectively. The overall prefetching

effectiveness for all benchmarks is shown in Figure 12.

These results show that, although the existing and

widely-adopted local-only strategy can achieve high

accuracy, its prefetching coverage is not as high as the

accuracy. For 27 out of 29 benchmarks, local-only pre-

fetching coverage is lower than the strategies considering

both local and global context analysis. Its overall prefetch-

ing effectiveness, as depicted in Figure 12, is also not as

good. The strategies with both local and global context

analysis can considerably increase the prefetching cover-

age and thus improve the overall effectiveness. Among the

three strategies with global context analysis, the local-first

strategy achieves the best overall prefetching effectiveness

for the majority of benchmarks depicted in Figure 12.

The average prefetching accuracy and coverage and the

overall prefetching effectiveness of four different strategies

with all 29 benchmarks are shown in Figure 13. This figure

has three sections, with each section showing the average

result of the prefetching accuracy, the prefetching coverage

and the overall prefetching effectiveness, respectively,

across all 29 benchmarks. Several observations can be

made from this figure. First, the approaches using local

context analysis tend to achieve higher accuracy. Second,

the local-first and global-first approaches can recognize

more data patterns and have better prefetching coverage

since they combine both local and global context analysis.

Third, the local-first approach achieves the highest overall

prefetching effectiveness (over 60%).

The performance trends of the context analysis with var-

ious orders, as shown in Figures 8 and 9, and with local and

global scopes, as shown in Figures 12 and 13, demonstrate

the need to support multiple orders and global context anal-

ysis in order to have the merits of both high accuracy and

wide coverage. Furthermore, because the local-first strat-

egy proved most effective in our evaluation, we adopt this

strategy for our proposed GMC prefetcher. We present the

performance analysis of the GMC prefetcher in the next

subsection.

4.3 Performance analysis of GMC prefetcher

In this subsection We present the simulation results of the

proposed GMC prefetcher, including the lowest-level

cache (L2 cache) miss rate reduction and the IPC speedup.

We also compare the GMC prefetcher’s performance with

Figure 8. Prefetching accuracy of context-based prefetching with different orders for SPEC-CPU2006 benchmarks.
(a) SPEC CINT2006 benchmarks (b) SPEC CFP2006 benchmarks

Figure 9. Prefetching coverage of context-based prefetching with different orders for SPEC-CPU2006 benchmarks.
(a) SPEC CINT2006 benchmarks (b) SPEC CFP2006 benchmarks
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Figure 10. Prefetching accuracy of local-only, global-only, local-first and global-first strategies.

Figure 11. Prefetching coverage of local-only, global-only, local-first and global-first strategies.

Figure 12. Overall prefetching effectiveness of local-only, global-only, local-first and global-first strategies.
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two other representative and recently proposed prefetchers,

PC/DC and G/DC. The L2 cache size was configured as

512 kB for these tests.

4.3.1 Miss rate reduction. Figure 14 shows the percentage of

L2 cache misses reduced by the GMC prefetcher, the PC/

DC prefetcher and G/DC prefetcher. On average, GMC

reduced L2 cache misses by over 55% for the CINT2006

benchmarks and 82% for the CFP2006 benchmarks, which

was much more than the PC/DC and G/DC prefetchers

achieved. The PC/DC prefetcher reduced misses by over

36% and 57% on average for the CINT2006 and CFP2006

benchmarks respectively. The G/DC prefetcher achieved

over 35% and 50% on average for these two sets of bench-

marks. Cache misses were reduced significantly for most

benchmarks with the GMC prefetching, including five

benchmarks whose misses were reduced by over 90%.

458.sjeng was the only benchmark on which the GMC pre-

fetcher had little performance improvement (less than 3%
miss reduction). This benchmark is very sensitive to cache

size and pollution. We conduct a detailed study of cache

pollution in the next subsection.

4.3.2 IPC speedup. Figure 15 shows the IPC speedup results

when using the GMC prefetcher. The IPC results were

reported by the simulator with add-on prefetcher modules

that computed prefetch timing and overheads. The bars

shown in each group include GMC prefetching, PC/DC

prefetching and G/DC prefetching, from left to right. The

simulation results clearly show that the GMC prefetcher

reduced the average data access latency and improved IPC

considerably compared to the other prefetchers. The IPC

performance improvement peaked at 259%, and the overall

geometric mean of the IPC improvement for the CINT2006

and CFP2006 benchmarks was over 55% and 44% respec-

tively. Compared to the PC/DC and G/DC prefetchers’

average IPC speedups (both improved the CINT2006 and

CFP2006 benchmarks by around 26% and 25%), the GMC

prefetcher was clearly more effective in hiding the memory

access latency and improving the application performance.

These results also show that the GMC prefetcher’s effi-

ciency is related to the miss rate of the benchmarks. It tends

to be more efficient when dealing with benchmarks with a

high miss rate. Among all the benchmarks with significant

improvement, the average miss rate was 71%. However,

the benchmarks on which the GMC prefetcher did not

achieve significant miss rate reduction had an average miss

rate of only 29%. There was only one exception to this

trend, namely 403.gcc with miss rate 75%. Although it had

a high miss rate, the prefetcher did not gain much perfor-

mance on it. Our detailed analysis shows that the 403.gcc

benchmark had only 0.2 million accesses over 100 million

instructions. Applications with infrequent data access such

as 403.gcc can hardly be improved by prefetchers even if

their miss rate is high. There were three benchmarks,

445.gobmk, 458.sjeng, and 473.astar, that experienced

a slight performance decrease using GMC. These

benchmarks exhibited much less predictable access patterns

than the others and did not offset the prefetching overhead

sufficiently. Since their performance differences were no

more than 6%, we consider GMC’s overall benefit to out-

weigh the slight performance disadvantage on this small num-

ber of benchmarks.

The simulation results with the SPEC-CPU2006

benchmarks clearly demonstrate the advantage of multi-

order and global context analysis for context-based prefet-

ching. They also show that the proposed GMC prefetcher

outperformed the recently proposed PC/DC and G/DC pre-

fetchers, with considerable latency reduction for most

benchmarks studied.

4.3.3 Sensitivity and cache pollution analysis. Cache pollution

is an undesirable side effect of data prefetching techniques.

In this subsection we present an analysis of the perfor-

mance sensitivity and cache pollution of the GMC pre-

fetcher under different cache sizes. To observe the GMC

prefetcher’s sensitivity to different cache sizes and the

impact of potential cache pollution, we considered GMC

performance with L2 cache sizes of 512 kB, 1 MB, and

2 MB. Although detailed miss rate reduction results

achieved by the GMC prefetcher when simulated with the

three different L2 cache sizes are omitted due to space lim-

itations, the results show that a larger cache size helps the

GMC prefetcher reduce more misses. A larger cache size

lowered the extra misses due to the cache pollution, and

therefore reduced the number of misses indirectly. The

only exception was the 483.xalancbmk. The miss rate of

483.xalancbmk was no longer high when a larger L2 cache

size was used, and thus the GMC prefetcher was less effec-

tive, reducing less than 30% of the miss rate. The geometric

means of the miss rate reduction rates for the three cache

sizes were 55%, 58%, and 60% respectively for the

CINT2006 benchmarks and 82%, 83%, and 84% respec-

tively for the CFP2006 benchmarks, showing a slight

increase as cache size increased in each case.

Figure 16 shows the IPC speedup results with three dif-

ferent L2 cache sizes. When the L2 cache size was

increased, the IPC speedup improved for 437.leslie3d,

473.astar and 482.sphinx3. These benchmarks are memory

Figure 13. Average accuracy, coverage and effectiveness of local-
only, global-only, local-first and global-first strategies.
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access intensive applications and have high miss rates.

Large cache sizes hide the performance loss caused by heavy

cache pollution for these benchmarks. On the other hand,

increasing cache capacity limited the GMC prefetcher’s per-

formance when tested with 456.hmmer and 483.xalancbmk

because these benchmarks are highly sensitive to cache size.

The performance improvement for these benchmarks was

due mainly to the enlarged cache capacity rather than the

GMC prefetcher. These simulation results and analyses

demonstrate that the GMC prefetcher achieved stable perfor-

mance improvement with different cache sizes and is not

highly sensitive to different cache size configurations.

Although large cache size helps reduce the cache pollution,

the GMC prefetcher’s design assigns high priority to highly

accurate predictions (high-order analysis and local-context

analysis), and can control the cache pollution well.

5 Conclusion

Advances in microprocessor architectures have put more

pressure than ever on reducing data access latency for

high-end computing systems. Data access latency has been

recognized by many as the leading factor preventing high

sustained performance of applications, including scientific

and high-performance computing applications (Wulf and

Mckee, 1995; Vanderwiel and Lilja, 1997; Mckee, 2004;

Srinivasan et al., 2004; Nesbit and Smith, 2004; Nesbit

et al., 2004; Nesbit and Smith, 2005; Doweck, 2006;

Hennessy and Patterson, 2006; Srinath et al., 2007; Diaz

and Cintra, 2009, Somogyi et al., 2009). Data prefetching

mechanisms, especially the general context-based prefetch-

ing approach, have received intensive attention and have

been proven to be effective in improving data access per-

formance for high-end computing.

In this study we advance the state-of-the-art in

context-based prefetching and further explore its potential.

Using extensive simulation testing, we conducted a thor-

ough examination of the performance characteristics of

context-based prefetching. We observed that the existing

approach with fixed and single order analysis is weak in

providing wide prefetching coverage, even though it can

potentially achieve high prefetching accuracy, which in

turn limits its overall prefetching effectiveness. In addition,

the existing approaches do not support both local and

Figure 14. L2 cache miss rate reduction achieved by the GMC, PC/DC and G/DC prefetchers.

Figure 15. IPC speedup achieved by the GMC, PC/DC and G/DC prefetchers.
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global context analysis. Such a drawback limits the overall

prefetching effectiveness as well. Motivated by these

observations, we proposed to incorporate multi-order, local

and global context analysis to improve context-based

prefetching, and proposed a new Global-aware and

Multi-order Context-based (GMC) prefetcher. We detailed

the GMC prefetcher design and the prefetching methodol-

ogy. We developed prefetch degree and priority control

mechanisms to reduce cache pollution and bandwidth con-

tention and to increase the prefetcher’s effectiveness. Using

simulation experiments with the CMP$im simulator and

the SPEC-CPU2006 benchmarks, we confirmed that the

GMC prefetcher significantly reduces average data-access

latency and increases performance. The GMC prefetcher

has the potential to improve data access performance for

high-end computing systems.
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