
Core-aware Memory Access Scheduling Schemes†

Zhibin Fang Xian-He Sun Yong Chen Surendra Byna
Department of Computer Science

Illinois Institute of Technology, Chicago, IL 60616, USA
{zfang2, sun, chenyon1, sbyna}@iit.edu

Abstract

Multi-core processors have changed the
conventional hardware structure and require a
rethinking of system scheduling and resource
management to utilize them efficiently. However,
current multi-core systems are still using conventional
single-core memory scheduling. In this study, we
investigate and evaluate traditional memory access
scheduling techniques, and propose a core-aware
memory scheduling for multi-core environments. Since
memory requests from the same source exhibit better
locality, it is reasonable to schedule the requests by
taking the source of the requests into consideration.
Motivated from this principle of locality, we propose
two core-aware policies based on traditional bank-first
and row-first schemes. Simulation results show that the
core-aware policies can effectively improve the
performance. Compared with the bank-first and
row-first policies, the proposed core-aware policies
reduce the execution time of certain NAS Parallel
Benchmarks by up to 20% in running the benchmarks
separately, and by 11% in running them concurrently.

1. Introduction

Chip multiprocessing (CMP) technology with the
help of thread-level parallelism (TLP) and data-level
parallelism (DLP) have been driving processor
technology to increase computing power substantially.
Multi-core processors reduce power consumption by
using multiple simpler cores and packaging them
together on a single die. However, memory access
latency is a troubling performance issue. Due to the
so-called memory-wall problem [11], i.e. the enlarging
gap between CPU performance and memory
performance, data access is a recognized dominant
performance bottleneck. Competition for data access
and transferring data among cores may increase the stall
time of cores and lead to a substantial performance loss
of multi-core processors.

Reorganizing data accesses of multiple cores is an
effective solution in tackling the memory performance
bottleneck. However, in a multi-core system, data
access scheduling is performed by a shared memory
controller that is integrated onto the same multi-core
chip, which provides limited or no control to
programmers over its data access scheduling. The
controller is the single point for accessing memory, and
its effectiveness has a great impact on the overall
performance. Realizing that data access requests from
each core often come from one thread and have a better
memory locality, we believe a multi-core memory

† This research was supported in part by National Science

Foundation under NSF grant EIA-0224377, CCF-0621435,

and CCF-0702737.

access scheduling could be improved by considering
the source of the requests. Data access scheduling is a
very important issue. Simply adopting traditional
single-core scheduling is not a wise approach. It is
necessary to thoroughly investigate and design memory
access scheduling policies for multi-core processors.

Multi-core memory access is quite different from its
single-core counterpart. In a multi-core system, each
core has its own running thread that might exhibit
better locality among its own memory accesses than
interleaved memory accesses from multiple cores. In
addition, when running scientific parallel applications,
while most of the cores are concurrently working on
one application, the operating system also performs
various housekeeping functions, which generates
access requests to memory controller as well. These
application-unrelated memory requests may interfere in
exploiting the locality of application related accesses. It
is necessary to separate them and give higher priority
to application related memory requests.

Conventional memory access scheduling approaches
suggest that memory operations should be reordered
based on hardware features [9][10], such as the internal
memory structure, to increase the throughput. They are
efficient and sufficient for single-core architecture.
However, these methods are direct extensions of
sequential scheduling policies, which merge all
requests from different cores into one queue and apply
existing sequential scheduling policies directly on this
request queue. They are not aware of the source of the
memory requests and do not work well for multi-core
systems.

This study investigates two traditional single-core
memory scheduling policies, bank-first policy and
row-first policy, in a multi-core environment. We then
propose two novel core-aware memory access
scheduling policies and analyze the effect of different
memory scheduling policies. We show that the
proposed core-aware memory access scheduling
schemes are capable of reducing memory access

latency significantly and improving the overall
performance of applications.

The rest of this paper is organized as follows:
Section 2 reviews related work in memory access
scheduling. Section 3 introduces the proposed
core-aware memory access scheduling schemes.
Section 4 discusses experimental setup and Section 5
presents performance evaluation and analysis results.
We conclude our discussion in Section 6.

2. Background

2.1 Memory access scheduling

In a memory controller, the execution of a memory

access instruction must adhere to the rules and timing
constraints of the hardware to access data in a modern
DRAM. As shown in Figure 1, modern DRAMs are
three-dimensional memory devices with dimensions of
bank, row and column. Thus, a location in the DRAM
is identified by an address that consists of bank, row
and column fields. The steps of accessing a location
include a pre-charge, a row access, and then a column
access. Due to the DRAM structure and its hardware
implementation, sequential accesses to different rows
within one bank have high latency, whereas accesses to
different banks or different words within a single row

Figure 1. DRAM architecture [9]

have low latency [9].
Memory access scheduling can effectively reduce

the average memory access latency and improve
memory bandwidth utilization by reducing cross-row
data access. For example, prioritizing memory requests
to the same bank and the same row can improve
performance. Suppose there is a memory request
sequence that accesses different rows of the same bank,
and the sequence is A-B-A-B-A-B. This request
sequence will cause five row misses, and each row
miss between A and B requires a pre-charge, row
access and column access operations. The row-first
policy reorders the access sequence to A-A-A-B-B-B.
The reordered sequence only causes one row miss, and
leads to a much smaller latency. This technique
effectively improves the memory system performance
[13].

2.2 Memory scheduling schemes

Many memory scheduling policies have been
proposed to improve the efficiency of memory accesses
in the context of single-core processors. The key idea
in these policies is to focus on reorganizing memory
accesses by taking advantage of the internal memory
structure, access history or the characteristics of
application.

Rixner et al. [9] proposed a memory access
scheduling scheme within memory controller, called
bank-first scheduling, to improve the performance of a
memory system. Their approach reorders memory
accesses to exploit the non-uniform access times of the
“3-D” structure of banks, rows and columns of
contemporary DRAM chips. In the bank-first scheme,
memory operations to different banks are allowed to
proceed before those to the same bank, thus increasing
the access concurrency and throughput.

The burst scheduling proposed by Shao et al. [10],
also called row-first scheduling scheme, clusters
outstanding accesses into bursts that would access the
same row within a bank. Accesses within a burst,

except the first one, are row hits and only require
column access transactions. Data transfers of these
accesses can be performed back-to-back on the data
bus, resulting in a large payload and data bus utilization
improvement. Increasing the row hit rate and
maximizing the memory data bus utilization are the
major design goals of burst scheduling.

To consider the long-term effects of a scheduling
decision, Hur et al. proposed an adaptive history-based
memory scheduler [3], which tracks the access pattern
of recently scheduled accesses and selects memory
accesses matching the pattern of reads and writes. This
technique uses three history-based arbiters, each with a
history length of two. The arbiter uses such information
to schedule operations to match some pre-determined
mixture of reads and writes.

Zhang et al. [12] proposed a fine-grain priority
scheduling method, which splits and maps memory
accesses into different channels and returns critical data
first, to fully utilize the available bandwidth and
concurrency provided by Direct Rambus DRAM
system.

To optimize the memory system of SMT
architecture, Zhu et al. [13] proposed a thread-aware
DRAM optimization technique. They concluded that
increasing the number of threads tends to increase the
memory access concurrency and thus raise the pressure
on DRAM systems, whereas some exceptions do exist.
The application performance is sensitive to memory
channel organizations, e.g. independent channels may
outperform ganged organizations by up to 90%. The
DRAM latency reduction through improving row
buffer hit rate becomes less effective due to the
increased bank contentions.

Mutlu et al. [8] proposed a Stall-Time Fair
Memory scheduler (STFM) to provide quality of
service to different threads sharing the DRAM memory
system. This scheme can significantly reduce the
unfairness in the DRAM system while also improving
system throughput (i.e. weighted speedup of threads)
on a variety of workloads and systems. The goal of the

proposed scheduler is to “equalize” the DRAM-related
slowdown experienced by each thread due to
interference from other threads, without hurting overall
system performance.

The existing studies, except the STFM approach,
were not designed specifically considering the features
of a multi-core processor. In addition, the purpose of
STFM scheduler was to keep the fairness between
threads on multiple cores and did not focus on
facilitating an application running on a multi-core
processor. The major limitation of other studies is that
they did not take the source of memory requests into
consideration. As the number of cores within one
processor increases gradually, the role of memory
requests from different cores is distinct and of
significant importance. It is necessary to distinguish the
source of memory requests and make an optimal
scheduling based on their importance. We compare and
enhance bank-first and row-first schemes with core
awareness in this study, because bank-first scheme is
usually taken as an evaluation bench for memory
request scheduling [3][10], and row-first scheme was
proposed most recently with good performance [10].

3. Core-aware Memory Access Scheduling

In this section, we introduce a novel core-aware

memory access scheduling specifically designed for
multi-core processors, while keeping the merits of
classic memory scheduling schemes.

3.1 Core-aware memory scheduling

Figure 2 shows general memory architecture of
multi-core processors, where memory controller is
shared by multiple cores. In this architecture, when
multiple applications are running, requests from the
same application have a great possibility of accessing
the same row in the same bank, due to the principle of
locality and due to the large size of each row in one
bank (up to the page size, 8 KByte). The premise

behind our core-aware access scheduling scheme is to
optimize memory accesses by considering its source
and to improve the performance of applications. L2
cache can be shared by multiple cores or private to one
specific core (as shown in Figure 2). In either case,
memory controller and memory are shared.

The proposed core-aware memory scheduling
algorithm for memory controller is shown in Figure 3.
The essential idea of the core-aware scheduling is to
classify outstanding requests from the same core and
issue them together according to their source (which
core they are coming from). Core-aware scheduling
gives the highest priority to the requests from the same
core, because it is more likely that these requests
exhibit data locality. To prevent from starvation of
memory requests from other cores, we set a threshold
for the maximum number of continuous requests from
one core. A threshold register is used in the memory
controller to record the number of issued requests from
the same core, which is indicated by n in our algorithm.
If the number of continuous requests from current core
exceeds the preset threshold value, the scheduling
policy stops serving the requests from the current core,
and gives the highest priority to the requests from
another core. The selection of the next core is done in a
round-robin manner.

The main requirement of core-aware policy is to
retrieve the identification of the core that is sending a

Figure 2. Multicore architecture

Core 1

L1 Cache

Core 2

L1 Cache

......

…...

Core n

L1 Cache

DRAM

Multi-Core Processor

Memory Controller

L2 Cache L2 Cache …... L2 Cache

memory request to memory controller. While hardware
support for passing the identification of the source of
memory requests is trivial. We assume that each core
has a unique core identifier, and if a core issues a
request, the core identifier is recorded in the memory
request. The core id information can be stored in the
lowest address bits of a cache request, because these
bits are useless for a cache request. For example, the
lowest six address bits could be used in a 64 byte cache
controller. This design provides a straightforward but
effective approach to passing down the core identifier
to memory controller.

ALGORITHM: CASA /*core-aware scheduling algorithm*/

INPUT: Random sequence of memory access requests

from m cores

OUTPUT: Core-aware scheduled sequence of requests to

memory controller

BEGIN

k ← 0; /* k indicates the core id */

While true

n ← q;/*q is the number of requests to be scheduled*/

succeed ← 0;

Repeat

cid ← k mod m;

Select s = min(p, number of outstanding requests

from core cid) requests from core cid, and enqueue them

to the issue_queue; /* p is the size of issue_queue */

n ← n - s;

If (n = 0 OR (k mod m = 0)) Then succeed ← 1; /*

2nd condition prevents starvation and guarantees requests

are issued within at most one iteration */

k ← k+1;

Until succeed = 1

End While

END

The core-aware scheduling can effectively give
higher scheduling priority to the accesses from
applications in favor of better locality in application,

and thus reduces the waiting time of requests from
applications. Using the proposed scheduling, a core
with intensive accesses will get more opportunities to
process requests, and it is more apt than a regular
round-robin manner for a multi-core environment. In
addition to the hardware requirement to pass core
identifier information to the memory controller, the
proposed scheduling scheme requires a core-aware
selection process to determine which requests can enter
the issue-queue, but does not need any modification on
modern memory hierarchy. This core-aware selection
process can be achieved in many ways. For instance,
one way is to have a larger outer-queue and then select
core-aware requests from the outer-queue to the
issue-queue. These hardware cost is negligible,
whereas the memory access performance can be
significantly improved as demonstrated from the
simulation experiments.

3.2 Core-aware scheduling scheme

With the idea and the algorithm of taking the
request source into consideration, we enhance two
conventional scheduling policies, bank-first and
row-first policy, with core-awareness. We explore and
compare four memory scheduling policies, including
bank-first policy, row-first policy, and two new
policies, namely core-aware bank-first policy and
core-aware row-first policy, in this study. We give a
concrete example to demonstrate how these four
policies schedule access requests differently. We
assume that a sequence of memory requests is stored in
a memory queue. Each request has its bank, row and
core identifier as shown in Table 1. We will discuss the
scheduled result of each scheduling scheme.

Table 1. A sequence of memory requests

Sequence A B C D E F G H I J

Bank 1 1 2 3 5 4 3 4 3 1

Row 1 1 2 1 3 4 1 4 1 1

Core 1 2 1 2 1 3 1 1 2 1

Figure 3. Core-Aware Scheduling Algorithm

3.2.1 Bank-first policy
Bank-first policy [9] arranges all memory requests

by banks, and schedules them in a round-robin manner
according to the bank identifier. This policy is
beneficial because the requests to different banks can
be carried out simultaneously. For the request sequence
shown in Table 1, the sequence of issued requests by
the bank-first policy will be A-C-D-F-E-B-G-H-J-I.
3.2.2 Row-first policy

Row-first policy gives the highest priority to the
access to the same row of the same bank [10]. The
row-first policy essentially enhances the bank-first
policy by grouping the accesses to the same bank and
same row together. This optimization is beneficial in
reducing row misses. For the request sequence shown
in Table 1, the sequence of issued requests by the
row-first policy will be A-B-J-C-D-G-I-F-H-E.
3.2.3 Core-aware bank-first policy

The core-aware bank-first policy applies core-aware
scheduling into bank-first policy. It gives higher
priority to accesses from the same source and for data
from the same bank. This policy first arranges accesses
according to the destination bank, and then groups all
accesses from the same core together. In essence, this
policy is in favor of those accesses from the same
thread while still allowing concurrent bank accesses for
a high throughput. The core-aware bank-first policy
schedules application related memory requests firstly
and is of importance when a variety of applications
running simultaneously on a multi-core environment.
For the request sequence shown in Table 1, the
sequence of issued requests using the core-aware
bank-first policy will be A-C-D-F-E-J-I-H-B-G.
Request A and J access the same bank and come from
the same source, thus J is scheduled before B. The
same scheduling happens to request G and I.
3.2.4 Core-aware row-first policy

The core-aware row-first policy applies core-aware
scheduling into row-first policy, which gives a higher
priority to accesses from the same core in the same row.
It enhances the row-first policy by taking consideration

of the request source. For the requests shown in Table
1, the sequence of issued requests by this policy will be
A-J-B-C-D-I-G-F-H-E. The difference between the
result of this policy and the result of the row-first
policy resides in the distinction in handling of requests
A, B and J. According to the core-aware row-first
policy, since request A and J have the exactly same
source core and destination bank and row identifiers,
they are scheduled first and together, followed by
request B, which is distinguished from the scheduling
sequence of A-B-J according to the row-first policy.

4. Experimental Setup

Without vendor’s effort, it is not possible to modify
the internal structure of an integrated memory
controller to test the proposed scheduling policies.
Instead, we used a simulator with an accurate
representation of multi-core processors. We have
conducted experiments to simulate and evaluate the
four scheduling policies discussed above. The
experiments focused on whether and how the proposed
policies could improve the performance of parallel
applications in a multi-core environment.

4.1 Simulation Environment

We adopted Simics [6] and Wisconsin Multifacet

General Execution-driven Multiprocessor Simulator
(GEMS) [7] as our architecture simulator. Simics
provides a full-system functional simulation
infrastructure. The GEMS is a set of timing simulator
modules for modeling the timing of the memory system
and microprocessors. It is capable of characterizing and
evaluating the performance of multiprocessor hardware
systems. The default memory scheduling in the GEMS
adopts the bank-first policy to reorder memory requests.
We have enhanced the current GEMS implementation
by modifying the memory controller component and
integrating the other three policies. In our experiments,
we set the threshold value of the maximum number of

continuous requests from one core as 16 to prevent
from starvation. Our experimental observations
confirmed that this number is a proper threshold.

We configured the simulator to represent Sun
SPARC processor architecture with Solaris 10 as target
operating system. The summary of configuration for
the simulated multi-core system is shown in Table 2.
The memory parameters are set by referring to current
main memory technology [14] and experiments in
related research [10][13]. Please notice that Solaris 10
has its core scheduling schemes to schedule application
and system tasks to different cores. We have not
changed the task scheduling. We have only modified
the memory access scheduling.

4.2 Benchmarks

We selected NAS Parallel Benchmarks (NPB) 3.2

OpenMP version for our experiments. NPB suite was
developed for the performance evaluation of highly
parallel supercomputers. [2]. We chose the following
five classic kernel benchmarks to study the effect of
memory access scheduling policy [1][4]. Each kernel
benchmark was tested with size Class W.

EP: An embarrassingly parallel kernel, which
generates pairs of Gaussian random deviates according
to a specific scheme and tabulates the number of pairs
in successive square annuli. It provides an estimate of
the upper bound of achievable floating-point
performance.

DC: A Data Cube benchmark. This benchmark is
based on a data mining application and builds RB-tree
to sort tuples from a dataset.

CG: A conjugate gradient method benchmark. This
benchmark is used to compute an approximation of a
large, sparse and symmetric positive definite matrix.

MG: A simplified multi-grid kernel. It tests short
and long-distance data communication.

FT: A 3-D partial differential equation solution
using FFTs. This kernel performs the essence of many
“spectral” codes.

Table 2: Machine Configuration

Component Parameters

CPU 16 Sun SPARC processor cores,

each core is 2GHz 4-way issue

L1 I-cache 16 KB, 4-way L1 cache on each

core, 64 bytes cache line

L1 D-cache 16 KB, 4-way L1 cache on each

core, 64 bytes cache line

L2 cache 256 KB, 4-way cache on each

core, 64 bytes cache line

Cache Coherence

protocol

Directory and MESI protocol [2]

FSB 64 bit, 800MHz (DDR)

Main Memory 4GB DDR2 PC2 6400 (5-5-5), 64

bit, burst length 8

Memory page is 4 KB

Channel/Rank/Bank 2/4/4 (a total 32 banks)

SDRAM Row Policy Open Page

Address Mapping Page Interleaving

Memory Access Pool 32 queues for each bank, each

queue size is 16 entries

OS Solaris 10

We have tested our proposed schemes with three

sets of experiments, as shown in Table 3. The first set
evaluates single application with single thread, which
represents conventional single thread application
running on multi-core environment. The simulated
Solaris OS issues monitoring requests, which are not
related to applications. In the first set of applications,
memory requests compete with these OS related
requests. Separating application related requests and
giving them higher priority is expected to be beneficial
to improve performance. The second set tested an
application with multiple threads, and the third set
evaluated multiple applications running concurrently in
the system. In the third set, we randomly selected four
benchmarks and ran with one thread and four threads
respectively. In the last two sets of tests, multiple

threads compete in accessing memory with each other
while competing with OS related requests.

Table 3: Experiment Configuration
Set Benchmarks

Single application

with single thread

ep-1: EP running with one thread

dc-1: DC running with one thread

cg-1: CG running with one thread

mg-1: MG running with one thread

ft-1: FT running with one thread

Single application

with multiple

threads

ep-4: EP running with four threads

dc-4: DC running with four threads

cg-4: CG running with four threads

mg-4: MG running with four threads

ft-4: FT running with four threads

Multiple

applications

mix-1: dc-1, cg-1,mg-1 and ft-1

running concurrently

mix-4: dc-4, cg-4,mg-4 and ft-4

running concurrently

5. Performance Evaluation and Analysis

We compare the performance of memory scheduling

policies by analyzing the total number of memory
requests and the waiting latency. We compare the
number of memory requests, the latency of requests,
and the execution time of benchmarks for four

memory-scheduling policies: bank-first (bank),
row-first (row), core-aware bank-first (core-bank) and
core-aware row-first (core-row) policy. We take
bank-first as the base scheme and normalize the results
of other scheduling schemes according to the
performance of bank-first scheme.

5.1 Analysis of the number of memory requests

Figure 4 shows the number of memory requests

issued to DRAM for the first set of experiments and
Figure 5 shows those of the second and third sets of the
experiments. Note that these numbers are normalized to
the numbers of bank-first policy. From these figures, it
can be observed that the number of memory requests
under core-aware bank-first is the lowest for EP, CG
and FT, for both single-thread and four-thread
executions. The core-aware row-first scheme achieves
the lowest number of memory requests for DC and MG
for these two executions.

The reason for these trends is that all memory
requests of these applications are issued by some cores
with good memory locality. These requests get grouped
and are scheduled in bunch by using the core-aware
bank-first and core-aware row-first schemes. Therefore,
the overall efficiency is improved and fairness is

Figure 4. Number of memory requests for single

application with single thread. All values are

normalized to bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-1

dc
-1

cg
-1

m
g-

1

ft-
1

bank

row

core-bank

core-row

Figure 5. Number of memory requests for single

application with multiple threads and multiple

applications. All values are normalized to

bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-4

dc
-4

cg
-4

m
g-

4

ft-
4

m
ix

-1

m
ix

-4

bank

row

core-bank

core-row

maintained. The same reasoning applies to the results
of the case with multiple applications, where
core-aware bank-first and core-aware row-first
schemes produced less memory requests compared
with bank-first and row-first schemes when DC, CG,
MG and FT ran concurrently with one thread/four
threads.

Figure 4 and Figure 5 demonstrate that the row-first
scheme produced fewer memory requests than the
bank-first scheme when DC, MG and FT were
executed with one thread or four threads, because the
row-first scheme gives higher priority to the request
hitting the same row if the application has good locality.
There exist two exceptions: the row-first scheme
produced more memory requests than the bank-first
scheme when EP and CG were tested with one thread
or four threads. We believe that this is because the
row-first scheme does not distinguish memory requests
by core information and treats requests from different
cores equally, which results in that more requests from
OS are scheduled by row-first schemes compared with
bank-first scheme.

Compared with row-first scheme, the core-aware
row-first scheme reduced memory requests by 5% on
average for five benchmarks running with four threads,
as shown in Figure 5. This is mainly due to the
core-aware row-first scheme improving the row-first
policy by taking the request source into consideration.

5.2 Analysis of waiting latency

The waiting latency of memory request is the
waiting time due to blocked memory requests.
Different scheduling schemes produce different waiting
sequences of blocked requests, and these sequences
decide the waiting time.

Figure 6 illustrates the waiting latency under various
scheduling schemes, where all values are normalized to
the numbers of bank-first scheme again for the first set
of experiments. Figure 7 shows those results for the
second and third sets of experiments. When EP and CG
were executed with one thread or four threads, the
core-aware bank-first scheme had the smallest waiting
latency. As shown in Figure 7, compared with the
bank-first scheme when EP and CG ran with four
threads, the core-aware bank-first scheme decreases the
latency by up to 17% and 20%, respectively. The
traditional row-first scheme performed well in reducing
waiting time because it schedules all requests accessing
the same row together. However, if counting the effect
of requests from the operating system, the row-first
scheme may not perform well. The core-aware
bank-first scheme can reduce the waiting latency by
decreasing the total number of requests. It decreased
the number of requests by 5% and 6% respectively,
compared with the row-first scheme when EP and CG

Figure 6. Waiting latency for single application

with single thread. All values are normalized to

bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-1

dc
-1

cg
-1

m
g-

1

ft-
1

bank

row

core-bank

core-row

Figure 7. Waiting latency for single application

with multiple threads and multiple applications. All

values are normalized to bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-4

dc
-4

cg
-4

m
g-

4

ft-
4

m
ix

-1

m
ix

-4

bank

row

core-bank

core-row

were executed with four threads, and achieved the
smallest waiting latency in EP and CG experimental
tests as shown in Figure 5.

When DC, MG and FT were executed with one
thread or four threads, the core-aware row-first scheme
had the smallest waiting latency. As shown in Figure 7,
when DC, MG and FT ran with four threads, the
core-aware row-first decreased the latency by up to
25%, 22% and 23% compared with the bank-first
scheme, and by up to 10%, 5% and 5% compared with
the row-first scheme. The core-aware row-first scheme
adapts to the row-first scheme, except when requests
access the same row and the same bank, where the
policy schedules them by giving higher priority to
those requests with the same source.

In the case of running multiple applications
concurrently, i.e. case mix-1 and mix-4, the core-aware
row-first scheme had the smallest waiting latency. The
latency is decreased by up to 16% and 10% compared
with the bank-first scheme, as shown in Figure 7.

5.3 Analysis for execution time

Figure 8 demonstrates the execution time analysis

with various scheduling schemes for the first set of
experiments, where all values are normalized to the
performance of bank-first scheme. Figure 9 shows the
execution time analysis for the second and third sets of

experiments. Both figures demonstrate that the
core-aware schemes outperformed the bank-first and
the row-first schemes for all benchmarks.

The core-aware bank-first scheme had the best
performance when EP and CG were executed with one
thread and four threads. As shown in Figure 8, when
CG ran with one thread, the core-aware bank-first
scheme reduced the execution time by 19% compared
with the bank-first scheme, and by 15% compared with
the row-first scheme. The reason is that all memory
requests from CG were scheduled in bunch. For EP test
with one thread, the execution time reduction by
core-aware bank-first scheme was 12% compared with
the bank-first scheme.

For DC, MG, and FT experiments with one thread
and four threads, the core-aware row-first scheme had
the best performance. In Figure 9, for DC, MG, and FT
running with four threads, the execution time reduction
by core-aware row-first scheme are 16%, 17% and
20%, respectively, compared with the bank-first
scheme. The performance gain is 13%, 5% and 7%,
respectively for DC, MG, and FT compared with the
row-first scheme. The reason is that the core-aware
row-first scheme has the smallest waiting latency.

For mix-4 shown in Figure 9, the core-aware
row-first scheme achieves the best performance, and it
decreases the execution time by up to 11% and 7%

Figure 8. Execution time for single application

with single thread. All values are normalized to

bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-1

dc
-1

cg
-1

m
g-

1

ft-
1

bank

row

core-bank

core-row

Figure 9. Execution time for single application

with multiple threads and multiple applications. All

values are normalized to bank-first scheme.

0

0.2

0.4

0.6

0.8

1

1.2

ep
-4

dc
-4

cg
-4

m
g-

4

ft-
4

m
ix

-1

m
ix

-4

bank

row

core-bank

core-row

respectively, compared with the bank-first and
row-first schemes.

With core-aware bank-first scheme, the execution
time has reduced by up to 17% and 10% on average for
all five benchmarks running with one thread and four
threads respectively, as shown in Figures 8 and 9. The
performance improvement in the case with one thread
is better than that of four threads. This phenomenon,
we believe, is due to the impact of Solaris OS
scheduling of threads. When an application is executed
with four threads, the simulated Solaris OS randomly
schedules the four threads to different cores.
Depending on how the task is partitioned, each core
may or may not have a better locality than the average
of multiple cores. The core-aware schemes also
schedule more requests from the cores running with OS
daemon threads. Due to the increased system
management of parallel processing such as maintaining
consistency and synchronization, the performance
improvement with one thread is better than that with
four threads.

To summarize the observed results in Figure 9, the
proposed core-aware policies improve the performance
for all five benchmarks. Compared with the bank-first
and row-first policy, the core-aware row-first policy
reduced the execution time by 14% and 5% on average
for all five benchmarks running with four threads, and
by 10% and 5% on average for the two cases with
multiple applications running concurrently. These
performance gains are under the current Solaris’
multi-core task scheduling, which is not designed with
the consideration of memory access. We believe the
newly proposed care-aware memory access scheduling
strategy will achieve an even better performance if it is
integrated into task scheduling.

6. Conclusion and Future Work

As multi-core architecture has become the norm of

future high-performance processor chips, effective
memory access scheduling has become timely and

important for improving both application performance
and overall system performance. Memory access
scheduling in a multi-core environment is different
from that of its single-core counterpart. This study
investigated and evaluated various memory access
scheduling techniques in a multi-core environment. We
noticed that the source core of memory requests is an
important factor in scheduling data access, and we have
proposed novel core-aware memory access scheduling
schemes, including the core-aware bank-first policy
and the core-aware row-first policy, to consider
core-awareness factor and to address the limitations of
existing approaches.

We have performed comprehensive experiments to
evaluate existing scheduling policies and the newly
proposed policies. Experimental results confirmed that
memory scheduling policies have great influence on
memory waiting latency, and the proposed core-aware
scheduling schemes decreased the latency considerably.
For instance, when FT is running with four threads, the
core-aware row-first policy reduced the latency by up
to 23% compared with the traditional bank-first scheme,
and by up to 6% compared with the row-first scheme.
Experimental results also revealed that the proposed
core-aware schemes reduced the execution time
considerably. Compared with the bank-first and
row-first policy, the core-aware row-first policy
reduced the execution time by up to 20% and 7%
respectively for FT running with four threads, and by
up to 11% and 7% respectively for one mixed
benchmarks represented as multiple applications.

The proposed core-aware memory access
scheduling has a great potential. In this study, we have
observed a considerable performance improvement.
The performance can be improved further by making
Solaris OS schedule threads on cores properly. In the
current experiments, the OS schedules the threads
without core-aware information. We expect vendors
follow our idea and integrate core awareness into
multi-core memory access scheduling in a physical
memory controller. In the near future, we plan to

further explore OS task scheduling schemes with
core-aware information, and thus to improve the
effectiveness of our core-aware schemes further.

7. References

[1] Sadaf R. Alam, Richard F. Barrett, Jeffery A. Kuehn,

Philip C. Roth, and Jeffrey S. Vetter, “Characterization

of Scientific Workloads on Systems with Multi-Core

Processors”, IEEE International Symposium on

Workload Characterization, 2006.

[2] D. Bailey, et al., “NAS Parallel Benchmarks”, NAS

technique report RNR-94-007, NASA Ames Research

Center, 1994.

[3] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta,

Parallel Computer Architecture: A Hardware/Software

Approach, Morgan Kaufmann Press, 1998.

[4] Ibrahim Hur and Calvin Lin, “Adaptive History-Based

Memory Schedulers”, Proceedings of the 37th Annual

IEEE/ACM International Symposium on

Microarchitecture, 2004.

[5] Haoqiang Jin, Michael Frumkin, and Jerry Yan, “The

OpenMP Implementation of NAS Parallel Benchmarks

and its Performance”, NAS Technical Report

NAS-99-011, NASA Ames Research Center, 1999.

[6] Peter S. Magnusson et al., “Simics: A Full System

Simulation Platform”, IEEE Computer, Vol. 35, No. 2,

2002.

[7] Milo M.K. Martin, Daniel J. Sorin, et al.,

“Multifacet's General Execution-driven Multiprocessor

Simulator (GEMS) Toolset”, Computer Architecture

News, 2005.

[8] Onur Mutlu and Thomas Moscibroda, “Stall-Time Fair

Memory Access Scheduling for Chip Multiprocessors”,

Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007.

[9] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter

Mattson, and John D. Owens, “Memory Access

Scheduling”, Proceedings of the 27th International

Symposium on Computer Architecture, 2000.

[10] Jun Shao and Brian T. Davis, “A Burst Scheduling

Access Reordering Mechanism”, Proceedings of the

13th International Symposium on High-Performance

Computer Architecture, 2007.

[11] Wm. A. Wulf and Sally A. McKee, “Hitting the memory

wall: implications of the obvious”, Computer

Architecture News, March 1995.

[12] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang, “A

Permutation-based Page Interleaving Scheme to Reduce

Row-buffer Conflicts and Exploit Data Locality”,

Proceedings of the 33rd Annual International

Symposium on Microarchitecture, 2000.

[13] Zhichun Zhu and Zhao Zhang, “A Performance

Comparison of DRAM Memory System Optimizations

for SMT Processors”, Proceedings of the 11th

International Symposium on High-Performance

Computer Architecture, 2005.

[14] Micron Technology Incorporation. “1Gb DDR2

SDRAM Component: MT47H128M8B7-25E”, June

2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

