ILLINOIS |N5T|TUT§V
OF TECHNOLOGY

Transforming Lives.Inventing the Fufure.www.iit.edu

Scalable Computing Softwar e Laboratory Technical Report

Department of Computer Science

Illinois I nstitute of Technology

A Source-aware Interrupt Scheduling for Modern Parallel 1/0O Systems
Hongbo Zou, Xian-He Sun, Siyuan Ma, Xi Duan

{hzoul, sun, sma9, xduan}@iit.edu

May 2011

Technical Reportn,. [IT/CS-SCS2011-05

http://www.cs.iit.edu
10 West 31st Street, Chicago, IL 60616

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication idetof IT-SCS and will probably be
copyrighted if accepted for publication. It has hégsued as a Technical Report for early disseminadf its contents. In view of the transfer of
copyright to the outside publisher, its distribuatioutside of IIT-SCS prior to publication should lraited to peer communications and specific
requests. After outside publication, requests shbelfilled only by reprints or legally obtainedpées of the article (e.g. payment of royalties).

A Source-awar e Interrupt Scheduling for Modern Parallel 1/O Systems

Hongbo Zou, Xian-He Sun, Siyuan Ma and Xi Duan
Department of Computer Science, lllinois Institotdechnology, Chicago, IL, USA 60616
{hzoul, sun, sma9, xduan}@iit.edu

ABSTRACT

Recent technological advances are putting incregsedsure on CPU scheduling. On one hand, processamre more cores.
On the other hand, I/O systems have become morglermintensive research has been conducted oni/maity-core
scheduling; however, most of the studies followcitw@ventional approach and focus on the utilizattord load balance of
the cores. In this study, we focus on increasin@ dacality by bringing source information from I/i@to the core interrupt
scheduling process. The premise is to group infgs@associated for the same 1/0O request togethethersame core, and
prove that data locality is more important than eartilization for many applications. Based on tliisa, a source-aware
affinity interrupt-scheduling scheme is introducaad a prototype system, SAls, is implemented. Ewpat results show
that SAls is feasible and promising; bandwidth sh@\23.57% improvement in a 3-Gigabit NIC environtrend in the

optimal case without the NIC bottleneck, the baddwimprovement increases to 53.23%.

Keywords: Interrupt scheduling, source-aware, parallel 1/O.

1. INTRODUCTION

The peak throughput of processors has been imgratra phenomenal rate of 50% to 100% per yeangluhie last three decades [20].
Since 2004, the emergence of multi/many-core [6hitgctures has changed the landscape of comp@®gnd further accelerated these
improvements. Compared to processor performanceoiraments, data access performance (both laterctyp@amdwidth) has improved a
snail's pace. The memory speed has only increagedughly 9% each year. Additionally disk throughpas only doubled over the past
two decades [20]. This performance gap betweenegsms and 1/O, known as the 1/O-wall problem,resdjzted to continually expand in

the foresee future [20]. This gap has become thieadrissue limiting the sustained performancepafallel applications. Parallel /O

techniques can help relieve this problem by crgatmultiple data paths between processors and H@,isconsidered by many as the
primary solution to overcome the I/O-wall probldrawever, parallel I/O further complicates the alipaomplicated multi-core scheduling
and simply, ignoring the fact of parallelism in I#@stems is not an appropriate approach. In oaderap the full benefits of a parallel 1/O on
multi-core system, a reexamination of processoeduling is required. Scheduling schemes must beetto match the complications of
parallelism and adjust to data intensive applicetidn this study, we undertake a reexaminatiomtefrupt scheduling for parallel I/O on

multi/many-core systems.

Conventionally, interrupt scheduling distributesemupts to lightly loaded cores with considerat@mnonly core utilization, fairness and
power consumption [17]. Consequently, the core liagdan interrupt is likely not the core consumitig requested data (i.e. the core
running the application processes did not issu&/@eequest). This results in a transfer of de&veen the two cores local caches.

This problem is exacerbated further in parallel. Il®a Parallel File Systems (PFS), multiple sen@iles are employed to serve one 1/O
request in order to improve the I/O bandwidth. Tinisreased 1/0 bandwidth, consequently, incurs nideewvork Interface Card (NIC)
interrupts on the client side. In a conventionalddalanced system, interrupts are evenly disetbtd cores for handling, whereas these
interrupts may come from the same data requess. ifibivitably causes data movement among cache®rUuinel conventional scheduling
approach, parallel /0 leads to even more freqdata movement on the client side due to the inecehandwidth of the system. In addition,
when the bandwidth of parallel I/O increases, retdrdata often have to be swapped out of the LtAche. This in turn causes more

memory access. The I/O performance will be moraliesd due to this memory access.

Therefore, core-utilization based interrupt schieduis not an appropriate approach for interruptdiiag in parallel 1/0 systems. To
improve this algorithm, interrupts for the same t&guest, and for concurrent parallel 1/0 requests, be grouped onto the same core to
increase data locality. In this study, a noselrceaware interrupt scheduling scheme is proposed to optinhi@eperformance. This
scheduling scheme is based on sberce-awarddea, which correlates I/O interrupt handlerstteirt data consuming process.dource
awarenomenclature, the original I/O request is callegl $ource, and all the interrupts serving for teessource are called peer interrupts.
In this design and implementation, a single cohizsen to be the core where the data requestgsréceunning. Although the data request
process could be migrated to another core whikebtocked upon an 1/O operation, it is rare to Seeh a migration happen during the 1/0
blocking, especially in an 1/0 intensive systemr ffis reason, our scheme schedules the I/O iqgexifor the same source process onto the
core which runs the corresponding I/O request. Oube scarcity of process migration as mentiorExe, the scheme generally avoids the
data movement among the corddease note thapurceawareis distinct from processor affinity [28], which &data sharing correlation
between the core and the processes, if the rencaght data/states in the core could be used byrtleesses/threads in the future. Then
processor affinity directly describes the candidates to which interrupts could be delivered axetated.

Several challenges exist in theurceawarescheduling scheme, including:

« How to identify which process an I/O interrupt bais to;
« How to inform the I/O interrupt scheduler the Idoatof the process issuing the requests;

« How to provide a light-weight solution upon currentilti-core system;

These challenges have motivated this researchmisiite contribution of this paper is four-fold.

1) Conducted a quantitative study to reveal perfornegissues of interrupt scheduling in parallel I/O;
2) Designed a source-aware interrupt scheduling schiemparallel 1/0;
3) Implemented a source-aware I/O interrupt schedptetotype, named SAls;

4) Performed experimental testing to verify the feiligitand effectiveness of SAls;

Several interrupt scheduling schemes have beemgedpand implemented recently to guide the advapimegtammable interrupt controller
(APIC) [3][15] in optimized interrupt scheduling][34][15][17][22]. However, these interrupt scheihg strategies are mainly focusing on
improving cores utilization, rather than data litgalTherefore, thesourceawarel/O interrupt scheduling is a complement to thessting

solutions.

Because there is notdata locality issue associated with interrupt salied in parallel I/O write operations, our studyctises on parallel

/0 read. The rest of this paper is organized disvis: Section 2 surveys APIC interrupt managemeethanism and I/O Interrupt

scheduling on Multi-core. Section 3 introducesc¢bacept okourceawareinterrupt scheduling and its associated quantéagnalysis. The
generalsourceawareinterrupt scheduling scheme and one specific implgation are proposed in Section 4. Section 56apcesent and
analyze the experimental and simulation resulspeetively. In Section 7, we discuss related wdfksally, Section 8 concludes the paper.

2. BACKGROUND

2.1 APIC Mechanism

In modern computer system, the Advanced Programematierrupt Controller (APIC) provides interruptpport on X86 architecture
processors, such as Intel 64 and AMD 64. Theravasecomponents in the X86 APIC systems, the Lodal\and the 1/0 APIC [3][15].
Typically, each core has a Local APIC, and theesyshas a single I/O APIC component shared by thiipteudevices connected on a
peripheral bus. The main function of the I/0O AP$3a receive external interrupts events from isbeisited I/O devices (e.g. NIC, Hard disk
etc.) and route them to one or more Local APICEt&srupt messages. The Local APIC primarily aceé@pterrupts message sent from 1/0
APIC and delivers them to the associated coreuidhér handling. In general, I/O APIC routes theelirupts to the local APICs based on the
interrupt redirection table. This table identifighich cores could handle the interrupts for thecHjpedevice [30]. The I/O APIC extracts the
available cores information from the table and puigsto the interrupt message as the destinatibdress. The actual handling of I/O
interrupts takes place in the softirqg interrupetid [10], which is mostly performed on the core tlegeived the interrupt. To maximize
multi-core utilization and power consumption, saimterrupt scheduling schemes, such as irgbalarifje tiave been developed and applied
to dynamically change interrupt scheduling polidgwever, this balance scheduling may harm the lgat&D when interrupts are scattered
to the multiple lightly loaded cores rather thaa tores requesting data [8][10]. When the interhgptdling and the application are executed
on different cores, the system overhead will inseeas more 1/0 data access would be required dtiee timcreased amount of inter-core

data movements.

2.2 1/0 Interrupt Scheduling on Multi-core

Data Data Data

-
s
[e]
&
S
3

1' ayed z1

H H g

(@) (b) (c)

Figure 1. The data location with Different |/O Interrupt
Scheduling.

In general, interrupt scheduling schemes can esiiled into three types (shown in Figure 1) withagthout thesourceaware feature. In
Figure 1, (a) describes round-robin modes, in whiah incoming interrupts are handled by cores m.tThis mode is good for core
utilization or load balancing, but it damages tleminterrupsourceaware described earlier. This mode is the default in@rischeduling
configuration for the Linux with Intel processoh)(shows dedicated modes, in which there is a apeore to handle all the incoming
interrupts. This mode also ignoresurceaware of peer interrupts. For example, with an AMD pssm, the Linux default interrupt
scheduling is configured to operate in lowest jiijamode, this causes the incoming interrupts tdvledled only on core 7. The schemes

described in (a) and (b) make it difficult to maimtsourceawareon current multi-core systems. Scheme (c) illustrghe proposesburce

awareinterrupt scheduling mode, wheseurceawarescheduling arranges interrupts from the same egifgin process onto the same target
core. This mode guarantees that the interrupteal al& processed and consumed on the same coreh, imiproves the cache affectivity

and reduces inter-core data movement.

3. SOURCE-AWARE INTERRUPT SCHEDULING

To increase data locality in parallel I/Osaurceawareinterrupt scheduling scheme (calleolirceaware scheme) is proposed. It instructs
the I/O APIC to deliver the interrupt requeststie tore where the data request application présessning (named data consuming core).
The underlying assumption is every core has a dgslicprivate cache, which is generally true withrent and foreseeable multi-core
microprocessors. Figure 2 shows a simple casepi@iaxthe basic idea of treurceawarescheme. In this case, there is one I/O client and
n I/O server nodes (I/O servérto n). On the I/O client, there are computing cores (Coreto Corem) sharing one NIC and one 1/0 APIC.
The application processes (APs, from ARo AP N) are executing on the cores concurrently. If AR, AP B, and APC request the data
block from the PFS concurrently, the PFS will rattire data blocl, blockB, and blockC to the requested AP, respectively.

AP A APB APC

Al <Az B[<A;
R f 1 ;
Qa |(4: B B| <B, | 30C
Al o B G
— B,
T

FLOFYOF

,,,,,, vy
‘ App Arequested | |4,
data block 4~
L2 a :J

| App Brequested | _| > C;
pp Breq N <

I data block 5 | = G app Croguestd |
B c datablock C |

A;
e IRQg
Crr

Figure 2. Source-aware Interrupt Scheduling Design.

On the I/O client, if the received data strips e is (A, Ay, Az, ..., Ay), (B, By, Bs, ..., B), and (G, C,, G;, ..., G), there are two ways
for interrupts to be delivered. By default, the B®IC is instructed to use a balance scheme, himecmterrupts are spread to all the cores
based on their load information. In this case, daips within the same data request could be leanath totally different cores. This fact will
lead to inevitable data migration from the corediiag the interrupt, to the core consuming the dat&igure 2, the small arrow on the side
of data strips shows the data migration path antbagores. These migrations are mitigated if théCA&dopts thesourceaware scheme.
Here the data strip will be handled directly by tloee that hosts the AP and consumes the dataefilieame at the side of the core stands

for the result of thsourceawarescheduling.

With the addition of thesourceaware concept, there are four possible scheduling psili@ig select the core that generated the req(igst,
select the core which runs the process that pratdtiee /0O request (maybe different than (i) if aaleeduling may occurred during /O
blocking), (iii) select the least-loaded core, im) &elect a specific dedicated I/O core. The tast policies are the conventionao{rce

unaware scheduling approaches. The second sswceaware policy should be more efficient than the first. Wver, since the process

migration rarely happens during a blocking I/0, #xpected performance difference between thetfirstpolices is trivial. As a topic for

future study, the four presented policies couldhbegrated and the secosdurceawarepolicy could be implemented.

To clarify the advantage sburceawarescheduling scheme, a quantitative analysis isided as following.

3.1 Assumptionsfor Analysis

In a general PFS, there ag I/O client cores andiis I/O server nodes. A data Bloekwill be split intoNg data stripsXy, Xa, ..., XNg) over
the Ns I/O server nodes. When an application requestskBlo, the 1/0 server needs to return the data strigsFor simplicity, we assume
Nc can exactly dividdNs, and all data stripX; have the same size. Hence we canRuserepresenthe processing time of one data strip, and
M to represenits migration time from one processor core to aaotExperiments in latter sections show that ddtaation is much more
expensive than interrupt handling with a high sp@edti-core processor. Therefore, we can déém> P. For further analysis, 16, be the
total processing time of data strips on each chydge the total strip migration time between the cofgde the rest time spent on network

and server side. Boff},andTy could be calculated in terms BfandM.

Notice that interrupt scheduling can affdgtand Ty, but have no influence ovéi, becausély is a variable only related to the time of
network transmission and server response. It cam lle estimated th@k is equal under different interrupt scheduling paliAdditionally,
data strip processing and data strip migrationtegpen simultaneously. This overlapped part, refeasT,, is under the impact of many
factors besides the scheduling policy, hence harevaluate. However, as the processing and migraitoe becomes shorter, it is less
probable that they will happen concurrently. Souf interest lays only in the interrupt scheduling, what appear in this paper, we can

assume thalpis proportional taVlin(Ty, Ty).
By the above assumptions, the total time of anré@Quest can be decomposed into four parts by euugti). For various interrupt
scheduling policyTris a constanfl,andTy are variables; antl,is proportional to the minimum df, andTy.

T:TR+TP+TM_-|:) @)

It is still difficult to expressT,with P, partly due to the possible concurrency of multigtiép processing. With\c cores andNs strips, T,
could be at modtls x P if all the strips are handled by one core, or astE x (NgNc) if strip processing take the advantage ofNglcores.

Twis much easier to calculate. In most CPU desigly, @me strip migration can happen at any time. 8acan obtaiy, by:

T,, = M x#migration @

In the rest of this section, we are going to corapa different interrupt scheduling policies, maled andsourceaware For simplicity,

assume that the number of I/O servers is the neiltipthe number of cores, herfdg= a x N¢, where a is a positive integer.

3.2 Single /O Request

For balanced scheduling, interrupt will be disttézlievenly across different cores. So if all thteriupts are invoked closely, we will have
To=P x (NgNc) = P x o. But it is too optimistic. The time gap betweermteinterrupt could be large. Sg >= P x o. The faster the

network and storage server is; the cloggo its bottom boundary is.

The disadvantage of balanced scheduling is the auofiincurred strip migration. Since at the end oéquest, all the strips will be moved
to a single core, the cost of load balance is higie migration cost i$y =M x (Nsx(N¢- 1)/Nc). Meanwhile, notice thato= Min(Tp Ty)

andM >>P, we can deducé; <=T,.

According to above analysis, inequality (3) evadsahe efficiency of balanced scheduling.

T 2T+ Mxax(N.-1) 3)

Balance =

For sourceawareinterrupt scheduling, it has a higher strip hamgligost. By processing all the strips on only oore cwe havd,=P x Ng
On the other hand, there is no strip migration,cgigte all the strips are scheduled to the sameeatdhe very beginning. Consequently, the
total time can be expressed as:

T, =T #PxN, @

ource- aware

ThoughNsis slightly larger tharfN¢ - 1) x o, we can still draw the conclusion tfabances Tr >> T source-awars Tr DECAUS] >> P.

3.3 Multiple /O Request

Let Ngrbe the number of 1/O requests submitted by thetlEven in a light loaded systeM is generally larger thaNsg,
When several 1/0 requests on one client are dividéal smaller requests on the servers, there isnigvation cost forsourceaware
scheduling, and,increases t® x Nsx Ng. So, the evaluation becomes:

Ts =T PxNXN %)

ource- aware
Similar to the analysis ;fourceawarescheduling, the variable part of balanced schedusi increased by a factor g whereNy is given
by inequality (6). For this reason, we still ha\gance Tr >> T source-aware TR

T

Balance

>T .+ Mxax(N~1)xN_ (6)

Note that the time difference of the two methodsaw subject td\r, the number of I/O requests. Sirde= a x N¢, the difference between
Nsanda x (Nc - 1) is negligible. The time difference is propomil to three factors: the number of servég,(the extra time consumption
of data strip migration over strip processiMy®), and the number of requesid). Factor M-P) is entirely determined by hardware, hence
fails to gain our interests. So the other two fextare those affecting the potential performancprawements of thesourceaware

scheduling.

Although it seems sensible to enlarge the perfoomagain by simply increasinlys, an implicit connection between these two factors
invalidates such behavior. L8ize.qrepresents the size of an 1/O request, and thecawdbuild a coarse relationship betwégnandNsin

(7). When the client bandwidth is large enoughinanease of\g allows the client to exploit more benefits fr@murceaware scheduling.
When the bandwidth becomes a bottleneck, increddinignplies the decrease df; in (7), which will in turn reduce the advantage of

sourceawarescheduling.
N x Ng % Size,, < Bandwidth,, (7

3.4 Multiple Programson One Client

Now consider the case when more than one prograsam the client. Assume the number of progranisi@andNg/Np is the number of
requests issued by a single program. The analyslzalanced scheduling can largely follow the indiyg6). While sourceaware

scheduling is different. Depending on the relatdir andNc, there are two different scenarios.

3.4.1 Nc >=N p
For this case, onli¥pcores will get used during the interrupt handlitighe workload is heavy, interrupts will be hardlioncurrently. So
Tycould be as low & x Nsx Ng/Np. It is implying a shorter time cost compared tp (5

Te+ PXNgx N> T

>
Source awaré~

T4 P< Nx Ny N (8

3.4.2 Nc<Np

In this situation, all the cores will be busy presiag interrupts from different programs. For siigip, it is assumed\p is a multiple ofNc.
Each core will holdNs / Nc programs for execution. So the lower boundary dfecomes x Nsx Ng / Nc for both scheduling methods.
The balanced scheduling can almost always reastbthindary, while th&, of sourceaware scheduling varies according to the workload.
At the worst case, where no two cores are handiiggrupts simultaneouslify, can be as large &x Ngx Ng.

T

TB Source aware = (NC _1) X NR xax (M - P) 9)

alance

As to the strip migration cost of balanced schedylthe analysis in section 3.3 still works. Adafilly, the number of programs doesn't
affect the total migration cost, because all tlpiests from one program will eventually be transiéito the same core. Therefore, we can
express the performance difference of two schegual®inequality (9). Accordingly, & >> P, thesourceawarescheduling will still have

better performance.

The above analysis gives us an intuition of how approach affects the overall performance. As we s&e, thesourceaware method
generally shortens the response time. And it istneffective under the heavy workload scenario wherelient runsN¢ programs
simultaneously. Its effectiveness, however, dolysam the proportion ofrin the whole 1/0O request handling. If network péakdwidth is
a limitation, more efficient interrupt schedulingllwiot make much of a difference on the overaltfpenance. In fact, more efficient
interrupt handling can move the performance bagtt&rfrom interrupt handling to network. For thigsen, to explore the full potential of

sourceawareinterrupt handling, we adopt a combined implemtriaand simulation testing in the experiment secti

4. SAlslInterrupt Scheduler

With the above quantitative analysis, we propose\eelsourceawareinterrupt scheduling (SAIs) for parallel I/O imepts in this section.
A general SAls system design under Parallel Virkil System (PVFS) [26] is presented herein. P&& choice of implementation. The

design can be extended to other parallel file systas well.

4.1 System Design

SAls dynamically directs incoming interrupts to Hfénitive core based on the affinitive core |18ff(core_ig information. Theaff_core_id
is the identifier of the core that the applicatisrrunning on and the 1/0 request has been senfr@aut Theaff_core_idcould be put into
each 1/0 request and guide interrupt schedulingnwtinie data returns. SAls consists of three corepoments on the client side:

HintMessager, SrcParser, and IMComposer as shoWwigure 3.

« HintMessager — encapsulates #fie core_idinto data request (for example, we can use PVEStdiconveyaff _core_id in PVFS).

e SrcParser — analyzes the IP packet header anevestriheff core_idthat interrupt should be delivered.

¢ IMComposer — guides the 1/0 APIC/MSI to composeeiintpt message with thaff_core_idwhich describes the destination
address of the local APIC.

And, there is a core component on I/O server taaffutore_idinto the return I/O data packets (this is an aticomponent for different
implementations).

e Hintcapsuler — encapsulates #fé core_idinto every return data packet on the I/O server.

0 34 78 1516 1819 31
App A AppB) [Data Requests Version [Header Iength[Type of service Total Length
m m D Identification Flags Fragment Offset
Client Side oE O T 1/0 Server Time to live [Protocol Header Checksum
|_| |_| Hthessager O Source Address
_ \E] - O Destination Address
~-obg ‘\ O l
IMComposer > Interrupt Dellvery
| ® Ty HintCapsuler
H Outgoing T
ffffff Bl o
D NIC
Incoming 4[]
Packets T O : [copied[option class| _aff_core_id

-- Control Path [0 Interrupt Message
— DataPath [Data Packet

Figure 3. SAls System Architecture. Figure4. IP Packet Structurewith Aff_core_id.

Because SAls uses the application level informaidh core_id to instruct system level interrupt schedulings tmplementation of SAls
includes some modifications to the networking protpsystem interrupt scheduling, and parallel flstem. The modifications on I/O
server side could be involved into SAls, dependinghe implementation method. In our prototype,aose PVFS is employed to serve
application 1/0 requests, PVFS_hint message cawegoaff core id information. We only make some minor modificatioms the 1/0

server side in our prototype.

4.2 Implementation Mechanism

The detailed implementation mechanism of SAls uf&FS is shown in Figure 3. When an applicatiorcess, for example App A, needs
to request data from PVFS, thff_core_idwill be packed into data request by HintMessagea hint parameter (which is described by step
1 and 2). After that, App A sleeps to wait for #neival of return data. When the data requestdsived by 1/O server, HintCapsuler puts
aff_core_idinto all the return data packets (step 3). Bec®\4eS uses TCP/IP to transfer I/O data betweentddiede and 1/0 server nodes,
aff_core_idcould be encapsulated into a network packet tomeb the client side. To avoid the extra coshetwork protocol design, the
options field of the IP level will be reserved mneeyaff core_id An options field is an additional header fieldiwinaximum size of 32-bit
word which may follow the destination address fig2d]. The options field also may be an 8-bit sienpiptions field which could be
terminated with an EOL (0x00) option. In additimptions field of the IP packet head could be patsedlIC device driver on the client
side before the interrupt is generated. The detaiéscription is shown in Figure 4. The 8-bit sienpptions field consists of three sub-fields:
copied, option class, and option number. The valug-bit Copied field and 2-bit option class fiedde both set to 1 following TCP/IP
protocol description. With 5-bit option number flelescribing the affinitive core, a maximum=232 cores could be identified by SAls.

On the client side, the NIC device driver analyresincoming MAC frames and composes them as IRg@cWhen the IP packet is ready
to deliver to system IP module, SrcParser parsettipacket header to extraft core_idfrom options field in the NIC device driver. After
the aff_core_idextract operation, the NIC device driver issues softirq interrupt message, in whielf_core_idhas been added as the
destination address of the local APIC by IMCompdgesscribed by step 4 and 5). The interrupt mesiatieen delivered to the affinitive
core for processing (step 6). When the accordimg completes interrupt handling and packet prongssiter-core signals are sent to wake
the application process. To avoid the applicatioocess being migrated to another core when the m#tans, SAls enforces that the

application process should be bundled on the cbiehwequested data before data return. In a niljitahg#ata request causes multiple return

packets from multiple sever nodes at the same tbue,SAIs guides all the interrupts to the coresrasponding to theff_core_id

encapsulated in the packets.

5. Experimental Evaluation

The SAls scheduler has been integrated into tlemtclide kernel and NIC drivers to verify its bénédr parallel 1/O application. Our
performance evaluation is based on the analysiscantpares the four commonly used metrics: bandwicltiche miss rate, processor

utilization, and, cpu_clk_unhalted.

5.1 Experimental Setup

Our experiments were conducted on a 49-node Sentiiux-based cluster. This cluster is composednaf Sun-Fire 4240 head node and
48 Sun-Fire 2200 compute nodes. The head nodenfigaoed with two Quad-Core 2.7 GHz AMD Opteroni8er2384 processors (512KB
dedicated L2 cache per core), 8 GB memory and thr&sigabit Ethernet Ports with BCM5715C controllEBvery compute node is
configured with two Quad-Core 2.3 GHz AMD OpteroeriSs 2376 processors (512KB dedicated L2 cachegre), 8 GB memory and
three 1 Gigabit Ethernet Ports with BCM5715C cdigroThe head node has 4X 146GB 10K-RPM SAS haingesl. Each compute node
has a 250GB 7.2K-RPM SATA-II hard drive. The clustas been connected by the Cisco Catalyst 4948QA/000BASE-T switch. In our
testing, PVFS 2.8.1[26] was set up as parallelsfilstem which is accessed by the I/O client no¥&3was configured with one metadata
server node and variable 1/0 server nodes (from5t 32, 48 nodes) with a 64kdip size. The 1/O client is configured on thedheade.
Because parallel I/O read is the most frequentatjpers and TCP is the most widely used transpartopol in PVFS, our experiments

mainly focused on parallel file system read wifhGP configuration.

5.2 Experimental Description

The performance of SAls and Irgbalance are evaluated compared in our experiments with the runrmihdnterleaved or Random
Benchmark (IOR) [4]. IOR is a parallel file systdmanchmark which is developed by Lawrence Livermdational Laboratory to test the
performance of various parallel /0 patterns. Beeal©R includes general parallel /O operations\artbus real parallel I/O patterns, it is
widely accepted as a benchmark for parallel I/@ t&ach 1/0 operation in IOR writes or reads a iguaus block of buffer (transfer size up
to the entire memory available) to/from the patdlle system. Because every IOR request (theisipenfigured as transfer size) involves
parallel I/O, the return data generates multiplecoorent 1/0O interrupts. Based on the conventidwed balance core scheduling scheme data
needs to be merged on every IOR request. Therelfofe,is an ideal benchmark for the SAls performaeealuation. To make the
experiment match general application situationshaee added some computing tasks into IOR. Theswuating tasks encrypt the data
collected by every IOR request. IOR is availabl¢hwthree APIs: MPI-IO, POSIX, and HDF5. In the exgent, MPI-IO tests are
conducted on the client side parallel accessing3Vth different transfer sizes from 128KB, 512KBMB, to 2 MB. The number of
PVFS I/O server nodes number varies from 8, 16{B28. The strip size of every /O server nodé4&B. In the experiments, the client
side executes an IOR process to read a 10GB &z&dim PVFS. The performance has been measurépbyfile [25] and Linux inbuilt
“sar” system monitor tool [23]. Consistent resuite obtained across repeated runs. All resultepted in the paper are averaged with at
least three runs. Since no data locality issuebleas observed at the core interrupt scheduling Ievearallel /O write, our experiments

mainly focus on parallel I/O read.

5.3 Bandwidth Comparison

The bandwidth comparison experiments have beenucted with 1 Gigabit and 3 Gigabit NIC (combinedeth 1 Gigabit NICs). On the 1
Gigabit NIC, SAls employs multiple IOR processes dnGigabit NIC to parallel access PVFS. AlthougkisSshows better performance

than Irgbalance on I/O bandwidth with 1 Gigabit NiBe limited network bandwidth is a major bottlekeand reduces the potential
performance improvement of the application. Themf®&Als has moderately improved IOR /O bandwidith 1 Gigabit NIC. The

bandwidth peak speed-up ratio is 6.05%.

Bandwidth(MB/s)

32nodes
16 nodes
16 nodes

48 nodes

32nodes

16 nodes

128K 512K

Transfer Size

48 nodes

16 nodes
32nodes

48 nodes

H 23.00%
- 21.00%

- 19.00%
r 17.00%
r 15.00%
r 13.00%
- 11.00%

Speed-up(%)

r 9.00%

Figure 5. Bandwidth Comparison with 3-Gigabit NIC.

Figure 5 shows the performance improvement of $#ls 3 Gigabit NIC. The IOR processes are execotethe |1/O client side to access
data on the PVFS concurrently. Each process retmaladl0GB data from PVFS. It lists the I/O bandtivicomparison and speed-up under
the two scheduling schemes with various transfeessand number of /O servers. As we can see iar&if, SAls improves the I/O

bandwidth in all cases. Especially, when the nunabéO servers is increased to 48, the speed-agher a maximum of 23.57%. Note the

maximum bandwidth in Figure 5 doesn't exceed 3 Idigblence this result complies with the analysiséction 3.3. The analysis states that

the performance advantage of SAls can rise witmtheber of servers, if the bandwidth doesn't becarettleneck.

5.4 CacheMissRate Analysis

Figure 6 shows the ratio of L2 cache miss ratasa@he misses / # accesse}he two interrupt scheduling schemes with a ga®it NIC.
The experimental results expose the major caudedfandwidth improvement. As we discussed in #versd paragraph of the Introduction

Section, a cache miss leads to an extra data mowdieeveen the two cores. So reducing the numbeadfe misses caused by an 1/O

interrupt means a reduction of data movement. Hewewncreasing the number of I/O servers leads doennterrupts and higher 1/0
throughput on the client side. Therefore, even wittower cache miss rate, the 48 server's conftguraloes cause more cache misses,

which may lead to more data movement too. Figusiedivs that our method works well when the numbéi&erver's increases, since the

cache miss rate is smaller than that of the

Irgizaacheduling.

10.00%

Birgbalance
ESAls

8nodes [EFE7

g
=~ 8.00%
Q
- ol O
5o RENKs I K
3 YRELELEE. 51|
54.00% N S e NE e e
=l S0 sl =B sl
o MO OB B e e
o RRRNRRRRRR KB
g RNRRERERKNK
~
- £ ¢ 818 8 8 8 $
2 8 2% 88 3% 8

=
<

128K

Transfer Size

Figure 6.L 2 Cache Miss Rate Comparison with 1 Gigabit

NIC.

!
32 nodes y,,,,,,‘g-
L

!{;

1l6nodes [#2

L]
s
L]

8nodes [#F

L2 Cache Miss Rate (%)

32 nodes Yffffffifll
L1

A48 nodes |EAErRRArR
48nodes [EEEEEREER

N
<

20.00%

16.00%

12.00% -
8.00% |
4.00% -

0.00% -

Eirgbalance
[SAls

8nodes r////f//“
I

2

32nodes EEEEEEEEE

8nodes FRETEAY

L

8nodes [FEEEA
e

A8 nodes Firrrrrr]

16nodes EEEFEES

32nodes [£EAAAA
il

48 nodes [FEEEAR

‘ 512K ‘ M

Transfer Size

32nodes [ZArd
48 nodes [FAAA

Figure 7.L2 Cache Miss Rate Comparison with 3-Gigabit NIC.

In Figure 7, the L2 cache miss rates have been amdpusing a 3-Gigabit NIC. The results show thatdache miss rates have increased

with the increase of the network bandwidth, leavartgjg improvement space for SAls. In this expeninthe L2 miss rate is reduced almost

40% by SAls.

5.5 CPU Utilization Analysis

Although SAls improves the I/O bandwidth noticealslycomparison to Irgbalance, the improvement $s lan its potential as shown in

our analysis. To further explore the possible reasthe CPU total utilizations has been displayefigure 8.

In Figure 8, the CPU utilization is collected undesingle application running with a 1 Gigabit NThe CPU exposes its low utilization
with the maximum of 15.13%, whatever the interrsgdieduling scheme is selected. This is becaus¢hthéiandwidth of a 1 Gigabit NIC is
lower than the processing capacity of CPUs, evéh anly one core (2.7GHz). When the processorasgssing faster than NIC receiving
speed, the NIC will be the main bottleneck in daldlO access. Therefore, there are many more €Rlés idling to wait for the NIC to
receive data. Therefore, while the SAls schedubtii shows a better bandwidth than that of Irghat with 1Gigabit NIC, the
improvement is small. This observation also sugpthre rational of assumptions for equation (1), afds out the possibility that the

parallel interrupt handling for core utilizationudd offset the data movement cost.

17.00% 5

_ *g]glbalance 27.00% =&=|rgbalance

g —=SAls A g —=SAls A

c

o 13.00% < o

.‘3 \ o .g 22.00%

N ©

= N

g 9.00% 1 5 17.00%

& 2

o o

5.00% 12.00%
4 >4 ~ ~ ~ 4 4 4 b4 b4 b4 b4 b4 b4 b4 b4
/5332 33383338333 IR T R T
- wn al wn al wn - wn - (2} - wn - wn - wn
8nodes ‘ 16 nodes ‘ 32 nodes ‘ 48 nodes ‘ 8nodes 16nodes 32 nodes 48 nodes

Number of I/0 Server Nodes
Figure 8. CPU Utilization Comparison with 1 Gigabit NIC.

Number of I/O Server Nodes

Figure 9. CPU Utilization Comparison with 3-Gigabit NIC.

In Figure 9, the CPU utilization has been listethv@-Gigabit NIC. The results show that the Irghakaemploys more CPU cycles on data
movement. Although 3 Gigabit networking bandwidili sannot saturate all core computing capacitg increasing CPU utilization shows
a possible linear relation between CPU capacityratdiork speed. We will further verify this linealation by conducting a simulation in

Section 6.

5.6 CPU Waiting I/O Time Analysis

To further analyze the CPU utilization for I/O héind, the CPU_CLK_UNHALTED event has been collectédth mask 0x00 by Oprofile
in the experiments. This event provides the nunalb@tocks that the CPU is not in a halted statd.[BY our experiments, we collect this
event to analyze the halted time that CPU waitB@rdata. For the 1 Gigabit NIC experiment, thaulssare shown in Figure 10, SAls has a
maximum of 27.14% improvement on CPU_CLK_UNHALTEie¢. When a data-intensive parallel applicatiorthsas IOR, reads data
from the PVFS, the CPU halted cycles are mainlytrdmuted by two parts: 1. the time that the 1/0Oecin which 1/O interrupts are handled)
is halted and waited for data to be received byNhg& 2. the time that application core (in whi@DR is running) is halted and waited for
data when data misses in the cache. Obviously, Séisduling the 1/O interrupt to its affinitive digation core removes the time cost of
part 2. Therefore, SAls obtains a larger CPU uelaiime.

3000000

M Irgbalance 8000000
2500000 E¥SAls 7000000
6000000 -ESAls
5000000 -
4000000 -
3000000 -
2000000 -
1000000 -

0 -

M Irgbalance

A

2000000

(1e4 cycles)

(1e4 cycles)

|

1500000

(PR
)
|
PR
L1 |
128K R R R r s w7)

e |

P P 7]

o |

LA
LL TR

128K FAAEERR AP
128K s r

128K e

3
3
N
3
3
3
5
-
3
3
3

~

0

o~

-

1M (E2E

2M 2

CPU_CLK_UNHALTED
w
8
o
S
CPU_CLK_UNHALTED

8nodes ‘ 16 nodes ‘ 32nodes ‘ 48 nodes ‘

Number of I/0O Server Nodes Number of /O Server Nodes

Figure 10. CPU 1/O Wait Comparison with 1Gigabit NIC. Figure 11. CPU I/O Wait Comparison with 3-Gigabit NIC.

Figure 11 presents the CPU_CLK_UNHALTED eventsdampare the application’s waiting time for I/O reasith 3-Gigabit NIC. SAls has
a maximum of 48.57% improvement on CPU_CLK_UNHALTHEDe. The results verify that SAls reduces the walting time for each

read and increases the total I/O bandwidth.

5.7 Multiple Clients I/O Bandwidth Testing

Because thesourceaware interrupts scheduling mainly optimizes parall€ Performance on the client side, multiple clieatfprmance
testing has been conducted and analyzed in thisestibn to evaluate scalability. The experimentfigomed 8 I/O server nodes and a
variable number of client nodes (from 4, 8, 16 ot 56 nodes) with a 3 Gigabit NIC connection. fgwaient node ran multiple IOR
application processes (transfer size = 1M). The B&Ddwidth with the different interrupt schedulisghemes has been collected and

compared in Figure 12 (The bandwidth is a summétigewhole clients).

2300
Speed-up | 20.00%

=—SAls
=#=|rgbalance

2100

[16.00%
1900 1

12.00%

1700 -+

1500 -
r 8.00%

Speed-up (%)

5.38%
316% - 4.00%
T e E T B—- 0.00%
4 clients 8clients 16 24 2 48 56
clients clients clients clients clients

1300 1

1/0 Bandwidth (MB/s)

1100 1

R

900 -

Figure 12. M ultiple Clients /0 Bandwidth Comparison.

Figure 12 shows that SAIls has improved paralleld&ddwidth. When the number of clients is 8, thpromement is up to 20.46%. With the
further increase in number of clients, the I/O baidth decreases slowly. Therefore, 20.46% is thgimma improvement for 8 /O server
nodes in our experiment. Because the bandwidth k©8server nodes is saturated by 8 clients, tleeeamsing client nodes over 8 will
gradually reduce the bandwidth on a single cli€he drop in bandwidth implies a drophl, the number of requests. According to formula
(5) and (6) in Section lll, this in turn will rede¢he difference in effectiveness between SAlsiagizhlance scheduling as shown in Figure
12. When the number of client nodes is greater 888 /O nodes are not enough to serve the ineteparallel I/O requests. In these
overloaded worst cases, SAls still improves appbocaperformance slightly. The experimental resultsify thatsourceaware interrupt
scheduling improves or maintains the parallel l&fgrmance on the multiple clients’ situation. Hewe the peak network bandwidth of
the 1/0 servers will eventually limit the perfornwnbenefits of SAls. To understand the potentiafopmance improvement of SAls,

simulation is conducted in the following sectioroialer to remove the physical network constraint.

6. CacheData Migration Cost Simulation

Because the speed of NIC generating /O interrigptsuch slower than the speed of processors handhinterrupts on the client side in
our experiments, the experiments do not demonstregefull potential of our interrupts schedulingheme. To detect the possible
performance improvement brought égurceaware scheduling, we conduct a simulation in memoryual@ate data movement cost. In our
simulation node (the head node of the Sun-FirexX-inased cluster), the system configures 4X 2GB DBR2 Single Rank Memory, which
could provide 5333 MB/s (about 41.66 Gigabit/s)kpkeandwidth [19] for the parallel I/O access. Bessmathe main contribution of SAIs is
removing the extra data movement cost incurrechtsriiupts scheduling, our simulation focused ompkegesourceawareto avoid cache
misses and reduce data movement. In additionnteerupt handling cost depends on the interruptgssing routine rather than scheduling
scheme, thus the interrupt handling cost is a enhsost to any interrupt scheduling. The datagssiog method of SAls is simulated by a
pair of threads (named Si-SAls), in which one ttrparallel read data strips from multiple differéfgs on a RAM disk [31] in the memory
and the other one combines the returned data stgesher into the requested data. Si-SAls emplogsystem resource sharing feature of
the threads to keep sburceaware We use two independent processes (named Si-émyba) to simulate the Irgbalance data processing
method completing the same job as Si-SAls. Thepaddent processes are possible to be scheduleeixandted on separated cores. The
major performance issue, extra data movement, éas teproduced by our simulation (shown in Figi8e The multiple /O nodes are
simulated with different files stored in memory.cBd/O thread or process read includes 64KB daiafsbm every file. The transfer size is
1M, which has been verified to be the best bufiee 1 our previous testing. The simulation resatts obtained across repeated runs. All

results are averaged with at least three runs.

Si-SAls | Si-Irgbalance
ff r 60.00%
| EZ7A Speed-up
Core1 Core 8 Core 7| [Core 2 Core 7| (Core 8 BN _e—sisas. L co.00%
g g g g | g g g g E k4 ——Si-Irgbalance
—* 7 | T L) T < L [40.00%
< 3000 F 2 *
‘Cache‘ ‘cache‘ | ‘cache‘ ‘Cache‘ ‘Cache‘ ‘cache‘ F N TR CE -~ B R AN G L e e e e e e Ly = 30.00% o
] E
2 <
| 2 EEE o N® - 2000% @
I [=3
I I S o < e Wg_m ! 1000%
~
| ey ey g e T 0.00%
l 2000 T -10.00%
| Q d ' d d d d g d o o o o e
RELFLFLFLFLFIFTLFLLLLS
LA SIS U SHE OSSN SIS S SN S S
| NOAR T W oY ¥ AT oY oF a6t AT Y
o RAES AN N
Figure 13. Memory Parallel 1/0 Access Simulation Design. Figure 14. Simulation 1/0 Bandwidth Comparison.

Figure 14 shows the testing results of the simufatin Figure 14, the bandwidth reaches up to Z&®B/s (about 27.94 Gigabit/s) when
the CPU utilization is 49.47%. And, the correspogdspeed-up is up to 53.23%. The L2 cache missheeeduced 51.37% on this peak
bandwidth improvement. When the application numéguals the number of cores, the CPU capacity isratetl by applications and
utilization reaches 99.47%. After the CPU keepif% utilization, Si-SAls and Si-Irgbalance sustalimost the same performance (about
2500MB/s or 19.53 Gigabit/s) for the parallel /@ the all case. With the results of simulation, seaclude that two Quad-Core 2.7 GHz
AMD Opteron Series 2384 processors (head node gsoceonfiguration) could handle parallel /O baitvup to 27.94 Gigabit/s and
19.53 Gigabit/s on average.

Analysis and experimental results show that SAlgely promising. It has its merit. On the other haSAls has its limitations. SAls is

designed for parallel I/O systems. It is not a gehmterrupt scheduling. Its effectiveness depemashe assumption that the underlying
system is 1/O intensive and that the system hastylaf network bandwidth. SAls may serve well asoaplement of existing processor
scheduling schemes for datacenters with high-speggorks connections and for data intensive apidica. But in general, extending the

sourceawareconcept and integratirgpurceawarescheduling with existing interrupts scheduling heetdsms is a subject of future study.

7. Related Works

The prevalent interrupt scheduling schemes addpyecurrent multi-core OSes are round-robin and add modes. Round-robin mode
distributes interrupts from I/O APIC to local APIGs turn, and, dedicated mode delivers the incomimgrrupts to a fixed core.
Irgbalance[17] is a intelligent interrupt schedglioadable module, which makes interrupts scatieevery possible core based on the cores’
load statistics. Actually, Irgbalance is a variahtround robin scheduling modin addition, a patent of interrupt load distributisystem
proposed by Toshikazu Nakagawa [35] gave antherrinit scheduling method with the consideratioprotessor load balance. While the
existing works have shown good potential on CPlization, uncoordinated attempts to distribute@iinipts to different core can also result

in some bad side effects [37].

Several processor data locality research efforie baen conducted for network 1/O performance. &mesearch efforts partly exploited the
potential scenario and cost of data movement amores. The impact of the data movement incurrepdgllelization strategies of packet
processing on the general-purpose monolithic O%bkan analyzed by Salehi et al. [18] and Willmainal.§29]. As for multi-core systems,
Foong et al. [1][2][5] and Narayanaswamy et al[9Bhave shown the in-depth analysis of processda docality problem, but there
analysis has not been considered for parallel itl@tons. To enable users tuning applicationsgrarénce to keep data locality and reduce
data movement above multi-core systems, VTune §h6] autopin [34] have been developed by Intel andi(g et al. Though these tools
suggest an optional data-core mapping, they caletett the application core information and chahgsourceaware automatically while
processes are running. In addition, the latest Etkernet Controller 82575/82576 or 82598/82594] [dllows assigning interrupts to
processor cores manually. But, the assignmenaii stvhich is too inflexible to meet the changettod data request source. Effective and
adaptive load balancing on multiprocessor systeassbeen studied in [33][36]. Brecht et al. propoaetkdicated processor core packet
processing solution to improve data locality [38]it this solution sacrificed the parallelism. Semgl et al. have suggested a user-level
library called SyMMer [36], which monitors the sgst loads changing and re-schedules the MPI apiplicptocesses running for keeping
data locality. In contrast, our study is distindnéid from the existing researches in the sensevinatroposed a noveburceawareinterrupt
scheduling scheme, which uses the source informatfoparallel-I/O to optimize core interrupt schiig. The basic idea is that the
interrupts associated for the same 1/O requesh éviey come from different file servers, shote grouped together to one core. This
simple idea carries a long way, since data loca@itpnuch more important in performance than coileation in modern computers. The

sourceawareinterrupt scheduling scheme reduces cache missedada movements between caches.

There are also research which improve the proceksarlocality in intra-node communication [11][12jowever, these optimizations are
good for data exchange among cores rather thaddteelocality of interrupt scheduling. Suggestiofskeeping data locality for high-
performance networking has been proposed recan{§][i13][24][32]. These systems can also benebif SAls to achieve high parallel

1/0 bandwidth with less system modification ancgration.

8. Conclusion and Future Works

We have proposed a nowaurceawareaffinity interrupt scheduling scheme and prototytenith a new scheduler called SAls for parallel
1/0 systems. SAls groups interrupts associatedHersame 1/O request together to be handled orsahee core. The new scheme ties
interrupt processing and data consumption, to edache miss rate and data movement on clientEigeerimental results show that SAls
obtains noticeable better /0O bandwidth than thfathe conventional utilization based scheduling n@dsms. SAls, which has been
integrated into the Linux kernel, has reportedraprovement up to 23.57% in the 3-Gagebit NIC camfi¢jon of our testing environment.

To explore the full potential of tr@urceawarescheduling, simulations are also conducted thabve the NIC bottleneck. The simulation

results show that SAls can improve the 1/0O bandwigt to 53.23% accompanied with 51.37% cache matesreduction. The successful
implementation of SAIS shows that the newly proposeurceaware affinity mechanism is feasible and effective. Tdmealysis and
experimental results demonstrate the potentiabafceawareinterrupt scheduling for data intensive applicagiovhere network bandwidth

is not the performance bottleneck.

The proposedourceawareinterrupt scheduling is very promising and leaxla tonsiderable performance improvement. Howetvisrjust
a beginning. To put thsourceaware interrupts scheduling in actual use, we need rsturdies. We list four different interrupts handling
policies in Section 3. Our current study is on pokcy with one special application, parallel I/@érrupts, in mind. Our current result is not
a general solution of interrupt scheduling. It iscamplement and alternative. In the future, we péaextend thesourceaware concept to

other applications and to study the integratiodifiérent policies and scheduling algorithms faohust, general solution.

9. REFERENCES

[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Aysit of the Impact of Processor Affinity on NetwoRerformance,’In
Proceeding of the 12th IEEE International Confereion NetworkgICON 2004), November 16-19, 2004.

[2] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelamd A. Lopez-Estrada, “Architectural Charactditraof Processor Affinity in
Network Processing,In Proceeding of the IEEE International Symposium Rerformance Analysis of Systems and Software
(ISPASS 2005), May 16, 2005.

[3] AMD, “AMD64 Architecture Programmer’s Manual Volun2e System Programming”, AMD Corporation, 2009.
[4] ASC Sequoia Benchmark Codes, IOR summary, https:lfal.gov/sequoia/benchmarks/#ior.

[5] B. Veal and A. Foong, “Performance Scalability oMallti-Core Web Server,In Proceeding of the ACM/IEEE Symposium on
Architectures for Networking and Communications&ws(ANCS’07), Dec. 2007.

[6] E. Lindholm, J. Nickolls, S. Oberman, and J. Montry'NVIDIA Tesla: A Unified Graphics and Computingrchitecture,” In
Proceedingof the 41st Annual IEEE/ACM International SymposiumMieroarchitecture(MICRO-41), Nov. 2008.

[7]1 F. Inoue, H. Ohsaki, Y. Nomoto, and M. Imase, “Omitnizing iISCSI Throughput using Multiple Connecitiowith Automatic
Parallelism Tuning,”In Proceedings of the"5IEEE International Workshop on Storage Network hitecture and Parallel 1/Os
(SNAPI), Sep. 2008.

[8] G. Narayanaswamy, P. Balaji, and W. Feng, “An Asialyof 10-Gigabit Ethernet Protocol Stacks in Mdte Environments,n
Proceedings of the ¥5Annual IEEE Symposium on High-Performance Intenests(Hot Interconnects - '07), August 22-24, 2007.

[9] G. Narayanaswamy, P. Balaji, and W. Feng, “Impddietwork Sharing in Multi-core Architectureslit Proceedings of the 17
International Conference on Computer Comunicatiangd NetworkgICCCN '08), Aug. 2-7, 2008.

[10] H.-C. Jang and H.-W. Jin, “MiAMI: Multi-Core Awar®rocessor Affinity for TCP/IP over Multiple Networlnterfaces,”In
Proceedings of the fMEEE Symposium on High Performance Interconn@dtg Interconnects - '09), Aug. 26-27, 2009.

[11] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “LiMIGupport for High-Performance MPI Intra-Node Comioation on Linux
Cluster,”In Proceedings of the 2005 International Confereandarallel ProcessinglCPP-05), Jun. 2005.

[12] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “Ligbtght Kernel-Level Primitives for High-PerformandéPl Intra-Node
Communication over Multi-Core Systemdi’ Proceeding of IEEE International Conference daster ComputingCluster 2007),
Sep. 2007.

[13] H. Sivakumar, S. Bailey, and R Grossman, “PSock&tse Case for Application-level Network Stripingr f®ata Intensive
Applications using High Speed Wide Area NetworkB)’ Proceedings of the International Conference Kigh Performance
Computing, Networking, Storage and Analy§i€ 2000), Nov., 2000.

[14] Intel, “Assigning Interrupts to Processor Cores ngsian IntelR 82575/82576/82598/82599 Ethernet Controller,”
http://download.intel.com/design/network/applnot€835.pdf , Sep. 2009.

[15] Intel, “Intel 64 and IA-32 Architectures Softwareeteloper's Manual Volume 3A: System Programming dguiPart 1,” Intel
Corporation, Mar., 2010.

[16] Intel, “VTune Performance Analyzer”, http://softweantel.com/en-us/intel-vtune/.
[17] Irgbalance, http://irgbalance.org/.

[18] J. D. Salehi, J. F. Kurose, and D. Towsley, “Théeé&iveness of Affinity-Based Scheduling in Multimessor Network Protocol
Processing”|EEE/ACM Transactions on Networkingol. 4(4), Aug., 1996.

[19] “JEDEC standard: DDR2 SDRAM Specification,” JESCZP-Nov. 2009.

[20] J. Hennessy and D. Patterson. Computer Architecfuf@uantitative Approach. Thé4dition, Morgan Kaufmann, 2006.
[21] Jon Postel, “Internet Protocol-DARPA Internet PeogrProtocol Specification”, RFC 791, Sept. 1981.

[22] Linux Cross Reference, http://Ixr.linux.no/.

[23] Linux man page - sar, http:/linux.die.net/man/t./sa

[24] “Lustre File System Networking: High-Performanceattges and Flexible Support for a Wide Array of Waks”, A White Paper
from Lustre File Systems, Jan., 2008.

[25] Oprofile, http://oprofile.sourceforge.net/.
[26] Parallel Virtual File System, http://www.pvfs.org/.

[27] “Performance Monitoring Events AMD Family 11h
Processors”,http://developer.amd. com/cpu/CodeAﬂat;deanalystI|nux/Documents/CodeAnalyst Linux-teipes_faml1h.htm.

[28] “Processor Affinity White Paper for Multiple CPU I8uling,” TMurgent Technologies, Nov. 3, 2003.

[29] P. Willmann, S. Rixner, and A. Cox, “An EvaluatiofiNetwork Stack Parallelization Strategies in Maod®perating System/[h
Proceedings USENIX Annual Technical Confereitay 30 — June 3, 2006.

[30] R. Love, “Linux Kernel Development,”‘?Edition,” Novell Press, ISBN-10: 0672327201, 2005.

[31]] RAM disk — Linux Kernel Documentation: Using the RA disk block device with Linux,
http://mww.mjmwired.net/kernel/Documentation/ranidist/

[32] S. Miura, T. Okamoto, T. Boku, T. Hanawa, and MtoS&RI2N: High-bandwidth and fault-tolerant netwawrith multi-link Ethernet
for PC clusters,In Proceedings ofEEE International Conference on Cluster Computi@guster 2008), Sep., 2008.

[33] T. Brecht, G. Janakiraman, B. Lynn, V. Saletore,T¥rner, “Evaluating Network Processing Efficiengith Processor Partitioning
and Asynchronous I/O}h Proceedings of the EuroSys 20@¢r. 18-21, 2006.

[34] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitiguto-pin — Automated Optimization of Thread-to-€dPinning on Multicore
Systems, Transactions on High-Performance Embedded Architestand Compilersvol. 3(4), 2008.

[35] T. Nakagawa, “Interrupt Load Distribution System &hared Bus Type Multiprocessor System,” Paterntws 6,237,058 B1, May.
2001.

[36] T. Scogland, P. Balaji, W. Feng and G. Narayanaswd#symmetric Interactions in Symmetric Multi-coi®ystems: Analysis,
Enhancements and Evaluationii Proceedings of the International Conference ftigh Performance Computing, Networking,
Storage and AnalysiSC 2008), Nov., 2008.

[37] V. Anand and B. Hartnet. “TCP/ IP Network StackfBenance in Linux Kernel 2.4 and 2.31 Proceedings of the Linux Symposium,
Ottawa June 2002Jun. 2002.

[38] X.-H. Sun and Y. Chen, “Reevaluating Amdahl's Lamtlie Multicore Era,'In Proceedings of Journal of Parallel and Distriledt
Computing vol. 70 (2), Feb., 2010.

