

Scalable Computing Software Laboratory Technical Report

Department of Computer Science

Illinois Institute of Technology

Technical Report No. IIT/CS-SCS2011-05

http://www.cs.iit.edu

10 West 31st Street, Chicago, IL 60616

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IIT-SCS and will probably be
copyrighted if accepted for publication. It has been issued as a Technical Report for early dissemination of its contents. In view of the transfer of
copyright to the outside publisher, its distribution outside of IIT-SCS prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. payment of royalties).

A Source-aware Interrupt Scheduling for Modern Parallel I/O Systems

Hongbo Zou, Xian-He Sun, Siyuan Ma, Xi Duan

{hzou1, sun, sma9, xduan}@iit.edu

May 2011

A Source-aware Interrupt Scheduling for Modern Parallel I/O Systems

Hongbo Zou, Xian-He Sun, Siyuan Ma and Xi Duan

Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA 60616

{hzou1, sun, sma9, xduan}@iit.edu

ABSTRACT

Recent technological advances are putting increased pressure on CPU scheduling. On one hand, processors have more cores.

On the other hand, I/O systems have become more complex. Intensive research has been conducted on multi/many-core

scheduling; however, most of the studies follow the conventional approach and focus on the utilization and load balance of

the cores. In this study, we focus on increasing data locality by bringing source information from I/O into the core interrupt

scheduling process. The premise is to group interrupts associated for the same I/O request together on the same core, and

prove that data locality is more important than core utilization for many applications. Based on this idea, a source-aware

affinity interrupt-scheduling scheme is introduced and a prototype system, SAIs, is implemented. Experiment results show

that SAIs is feasible and promising; bandwidth shows a 23.57% improvement in a 3-Gigabit NIC environment and in the

optimal case without the NIC bottleneck, the bandwidth improvement increases to 53.23%.

Keywords: Interrupt scheduling, source-aware, parallel I/O.

1. INTRODUCTION

The peak throughput of processors has been improving at a phenomenal rate of 50% to 100% per year during the last three decades [20].

Since 2004, the emergence of multi/many-core [6] architectures has changed the landscape of computing [38] and further accelerated these

improvements. Compared to processor performance improvements, data access performance (both latency and bandwidth) has improved a

snail’s pace. The memory speed has only increased by roughly 9% each year. Additionally disk throughput has only doubled over the past

two decades [20]. This performance gap between processors and I/O, known as the I/O-wall problem, is predicted to continually expand in

the foresee future [20]. This gap has become the critical issue limiting the sustained performance of parallel applications. Parallel I/O

techniques can help relieve this problem by creating multiple data paths between processors and I/O, and is considered by many as the

primary solution to overcome the I/O-wall problem. However, parallel I/O further complicates the already complicated multi-core scheduling

and simply, ignoring the fact of parallelism in I/O systems is not an appropriate approach. In order to reap the full benefits of a parallel I/O on

multi-core system, a reexamination of processor scheduling is required. Scheduling schemes must be refined to match the complications of

parallelism and adjust to data intensive applications. In this study, we undertake a reexamination of interrupt scheduling for parallel I/O on

multi/many-core systems.

Conventionally, interrupt scheduling distributes interrupts to lightly loaded cores with consideration of only core utilization, fairness and

power consumption [17]. Consequently, the core handling an interrupt is likely not the core consuming the requested data (i.e. the core

running the application processes did not issue the I/O request). This results in a transfer of data between the two cores local caches.

This problem is exacerbated further in parallel I/O. In a Parallel File Systems (PFS), multiple server nodes are employed to serve one I/O

request in order to improve the I/O bandwidth. This increased I/O bandwidth, consequently, incurs more Network Interface Card (NIC)

interrupts on the client side. In a conventional load balanced system, interrupts are evenly distributed to cores for handling, whereas these

interrupts may come from the same data request. This inevitably causes data movement among caches. Under the conventional scheduling

approach, parallel I/O leads to even more frequent data movement on the client side due to the increased bandwidth of the system. In addition,

when the bandwidth of parallel I/O increases, returned data often have to be swapped out of the L1/L2 cache. This in turn causes more

memory access. The I/O performance will be more penalized due to this memory access.

Therefore, core-utilization based interrupt scheduling is not an appropriate approach for interrupt handling in parallel I/O systems. To

improve this algorithm, interrupts for the same I/O request, and for concurrent parallel I/O requests, can be grouped onto the same core to

increase data locality. In this study, a novel source-aware interrupt scheduling scheme is proposed to optimize I/O performance. This

scheduling scheme is based on the source-aware idea, which correlates I/O interrupt handlers to their data consuming process. In source-

aware nomenclature, the original I/O request is called the source, and all the interrupts serving for the same source are called peer interrupts.

In this design and implementation, a single core is chosen to be the core where the data request process is running. Although the data request

process could be migrated to another core while it is blocked upon an I/O operation, it is rare to see such a migration happen during the I/O

blocking, especially in an I/O intensive system. For this reason, our scheme schedules the I/O interrupts for the same source process onto the

core which runs the corresponding I/O request. Due to the scarcity of process migration as mentioned above, the scheme generally avoids the

data movement among the cores. Please note that source-aware is distinct from processor affinity [28], which is a data sharing correlation

between the core and the processes, if the remnant cache data/states in the core could be used by the processes/threads in the future. Then

processor affinity directly describes the candidate cores to which interrupts could be delivered and executed.

Several challenges exist in the source-aware scheduling scheme, including:

• How to identify which process an I/O interrupt belongs to;

• How to inform the I/O interrupt scheduler the location of the process issuing the requests;

• How to provide a light-weight solution upon current multi-core system;

These challenges have motivated this research. The main contribution of this paper is four-fold.

1) Conducted a quantitative study to reveal performance issues of interrupt scheduling in parallel I/O;

2) Designed a source-aware interrupt scheduling scheme for parallel I/O;

3) Implemented a source-aware I/O interrupt scheduler prototype, named SAIs;

4) Performed experimental testing to verify the feasibility and effectiveness of SAIs;

Several interrupt scheduling schemes have been proposed and implemented recently to guide the advanced programmable interrupt controller

(APIC) [3][15] in optimized interrupt scheduling [3][14][15][17][22]. However, these interrupt scheduling strategies are mainly focusing on

improving cores utilization, rather than data locality. Therefore, the source-aware I/O interrupt scheduling is a complement to these existing

solutions.

Because there is not a data locality issue associated with interrupt scheduling in parallel I/O write operations, our study focuses on parallel

I/O read. The rest of this paper is organized as follows: Section 2 surveys APIC interrupt management mechanism and I/O Interrupt

scheduling on Multi-core. Section 3 introduces the concept of source-aware interrupt scheduling and its associated quantitative analysis. The

general source-aware interrupt scheduling scheme and one specific implementation are proposed in Section 4. Section 5 and 6 present and

analyze the experimental and simulation results, respectively. In Section 7, we discuss related works. Finally, Section 8 concludes the paper.

2. BACKGROUND

2.1 APIC Mechanism

In modern computer system, the Advanced Programmable Interrupt Controller (APIC) provides interrupt support on X86 architecture

processors, such as Intel 64 and AMD 64. There are two components in the X86 APIC systems, the Local APIC and the I/O APIC [3][15].

Typically, each core has a Local APIC, and the system has a single I/O APIC component shared by the multiple devices connected on a

peripheral bus. The main function of the I/O APIC is to receive external interrupts events from its associated I/O devices (e.g. NIC, Hard disk

etc.) and route them to one or more Local APICs as interrupt messages. The Local APIC primarily accepts interrupts message sent from I/O

APIC and delivers them to the associated core for further handling. In general, I/O APIC routes the interrupts to the local APICs based on the

interrupt redirection table. This table identifies which cores could handle the interrupts for the specific device [30]. The I/O APIC extracts the

available cores information from the table and puts it into the interrupt message as the destination address. The actual handling of I/O

interrupts takes place in the softirq interrupt thread [10], which is mostly performed on the core that received the interrupt. To maximize

multi-core utilization and power consumption, some interrupt scheduling schemes, such as irqbalance [17], have been developed and applied

to dynamically change interrupt scheduling policy. However, this balance scheduling may harm the parallel I/O when interrupts are scattered

to the multiple lightly loaded cores rather than the cores requesting data [8][10]. When the interrupt handling and the application are executed

on different cores, the system overhead will increase as more I/O data access would be required due to the increased amount of inter-core

data movements.

2.2 I/O Interrupt Scheduling on Multi-core

In general, interrupt scheduling schemes can be classified into three types (shown in Figure 1) with or without the source-aware feature. In

Figure 1, (a) describes round-robin modes, in which the incoming interrupts are handled by cores in turn. This mode is good for core

utilization or load balancing, but it damages the peer interrupt source-aware described earlier. This mode is the default interrupt scheduling

configuration for the Linux with Intel processor. (b) shows dedicated modes, in which there is a special core to handle all the incoming

interrupts. This mode also ignores source-aware of peer interrupts. For example, with an AMD processor, the Linux default interrupt

scheduling is configured to operate in lowest priority mode, this causes the incoming interrupts to be handled only on core 7. The schemes

described in (a) and (b) make it difficult to maintain source-aware on current multi-core systems. Scheme (c) illustrates the proposed source-

Figure 1. The data location with Different I/O Interrupt

Scheduling.

aware interrupt scheduling mode, where source-aware scheduling arranges interrupts from the same application process onto the same target

core. This mode guarantees that the interrupted data are processed and consumed on the same cores, which improves the cache affectivity

and reduces inter-core data movement.

3. SOURCE-AWARE INTERRUPT SCHEDULING

To increase data locality in parallel I/O, a source-aware interrupt scheduling scheme (called source-aware scheme) is proposed. It instructs

the I/O APIC to deliver the interrupt requests to the core where the data request application process is running (named data consuming core).

The underlying assumption is every core has a dedicated private cache, which is generally true with current and foreseeable multi-core

microprocessors. Figure 2 shows a simple case to explain the basic idea of the source-aware scheme. In this case, there is one I/O client and

n I/O server nodes (I/O server 1 to n). On the I/O client, there are m computing cores (Core 1 to Core m) sharing one NIC and one I/O APIC.

The application processes (APs, from AP A to AP N) are executing on the n cores concurrently. If AP A, AP B, and AP C request the data

block from the PFS concurrently, the PFS will return the data block A, block B, and block C to the requested AP, respectively.

On the I/O client, if the received data strips sequence is (A1, A2, A3, …, An), (B1, B2, B3, …, Bn), and (C1, C2, C3, …, Cn), there are two ways

for interrupts to be delivered. By default, the I/O APIC is instructed to use a balance scheme, hence the interrupts are spread to all the cores

based on their load information. In this case, data strips within the same data request could be handled on totally different cores. This fact will

lead to inevitable data migration from the core handling the interrupt, to the core consuming the data. In Figure 2, the small arrow on the side

of data strips shows the data migration path among the cores. These migrations are mitigated if the APIC adopts the source-aware scheme.

Here the data strip will be handled directly by the core that hosts the AP and consumes the data. The red frame at the side of the core stands

for the result of the source-aware scheduling.

With the addition of the source-aware concept, there are four possible scheduling polices: (i) select the core that generated the request, (ii)

select the core which runs the process that produced the I/O request (maybe different than (i) if a rescheduling may occurred during I/O

blocking), (iii) select the least-loaded core, or (iv) select a specific dedicated I/O core. The last two policies are the conventional (source-

unaware) scheduling approaches. The second is a source-aware policy should be more efficient than the first. However, since the process

Figure 2. Source-aware Interrupt Scheduling Design.

migration rarely happens during a blocking I/O, the expected performance difference between the first two polices is trivial. As a topic for

future study, the four presented policies could be integrated and the second source-aware policy could be implemented.

To clarify the advantage of source-aware scheduling scheme, a quantitative analysis is included as following.

3.1 Assumptions for Analysis

In a general PFS, there are NC I/O client cores and NS I/O server nodes. A data Block X will be split into NS data strips (X1, X2, …, XNS) over

the NS I/O server nodes. When an application requests Block X , the I/O server i needs to return the data strips Xi. For simplicity, we assume

NC can exactly divide NS, and all data strip Xi have the same size. Hence we can use P to represent the processing time of one data strip, and

M to represent its migration time from one processor core to another. Experiments in latter sections show that data migration is much more

expensive than interrupt handling with a high speed multi-core processor. Therefore, we can deem M >> P. For further analysis, let Tp be the

total processing time of data strips on each core; TM be the total strip migration time between the cores; TR be the rest time spent on network

and server side. Both Tp and TM could be calculated in terms of P and M.

Notice that interrupt scheduling can affect Tp and TM, but have no influence over TR, because TR is a variable only related to the time of

network transmission and server response. It can then be estimated that TR is equal under different interrupt scheduling policy. Additionally,

data strip processing and data strip migration can happen simultaneously. This overlapped part, referred as TO, is under the impact of many

factors besides the scheduling policy, hence hard to evaluate. However, as the processing and migration time becomes shorter, it is less

probable that they will happen concurrently. So if our interest lays only in the interrupt scheduling, as what appear in this paper, we can

assume that TO is proportional to Min(Tp, TM).

By the above assumptions, the total time of an I/O request can be decomposed into four parts by equation (1). For various interrupt

scheduling policy, TR is a constant; Tp and TM are variables; and TO is proportional to the minimum of Tp and TM.

R P M OT T T T T= + + − (1)

It is still difficult to express Tp with P, partly due to the possible concurrency of multiple strip processing. With NC cores and NS strips, Tp

could be at most NS × P if all the strips are handled by one core, or at least P × (NS/NC) if strip processing take the advantage of all NC cores.

TM is much easier to calculate. In most CPU design, only one strip migration can happen at any time. So we can obtain TM by:

#MT M migration= × (2)

In the rest of this section, we are going to compare two different interrupt scheduling policies, balanced and source-aware. For simplicity,

assume that the number of I/O servers is the multiple of the number of cores, hence NS = α × NC , where α is a positive integer.

3.2 Single I/O Request

For balanced scheduling, interrupt will be distributed evenly across different cores. So if all the interrupts are invoked closely, we will have

Tp = P × (NS/NC) = P × α. But it is too optimistic. The time gap between each interrupt could be large. So Tp >= P × α. The faster the

network and storage server is; the closer Tp to its bottom boundary is.

The disadvantage of balanced scheduling is the number of incurred strip migration. Since at the end of a request, all the strips will be moved

to a single core, the cost of load balance is high. The migration cost is TM = M × (NS ×(NC - 1)/NC). Meanwhile, notice that TO = Min(TP, TM)

and M >> P, we can deduce TO <= Tp.

According to above analysis, inequality (3) evaluates the efficiency of balanced scheduling.

(1)Balance R CT T M Nα≥ + × × − (3)

For source-aware interrupt scheduling, it has a higher strip handling cost. By processing all the strips on only one core, we have Tp = P × NS.

On the other hand, there is no strip migration cost, since all the strips are scheduled to the same core at the very beginning. Consequently, the

total time can be expressed as:

Source aware R ST T P N− = + × (4)

Though NS is slightly larger than (NC - 1) × α, we can still draw the conclusion that TBalanced - TR >> TSource-aware - TR because M >> P.

3.3 Multiple I/O Request

Let NR be the number of I/O requests submitted by the client. Even in a light loaded system, NR is generally larger than NS,

When several I/O requests on one client are divided into smaller requests on the servers, there is no migration cost for source-aware

scheduling, and Tp increases to P × NS × NR. So, the evaluation becomes:

Source aware R S RT T P N N− = + × × (5)

Similar to the analysis of source-aware scheduling, the variable part of balanced scheduling is increased by a factor of NR , where NR is given

by inequality (6). For this reason, we still have TBalanced - TR >> TSource-aware- TR.

(1)Balance R C RT T M N Nα≥ + × × − × (6)

Note that the time difference of the two methods is now subject to NR, the number of I/O requests. Since NS = α × NC , the difference between

NS and α × (NC - 1) is negligible. The time difference is proportional to three factors: the number of servers (NS), the extra time consumption

of data strip migration over strip processing (M-P), and the number of requests (NR). Factor (M-P) is entirely determined by hardware, hence

fails to gain our interests. So the other two factors are those affecting the potential performance improvements of the source-aware

scheduling.

Although it seems sensible to enlarge the performance gain by simply increasing NS, an implicit connection between these two factors

invalidates such behavior. Let Sizereq represents the size of an I/O request, and then we can build a coarse relationship between NR and NS in

(7). When the client bandwidth is large enough, an increase of NS allows the client to exploit more benefits from source-aware scheduling.

When the bandwidth becomes a bottleneck, increasing NS implies the decrease of NR in (7), which will in turn reduce the advantage of

source-aware scheduling.

ClientreqSR BandwidthSizeNN ≤×× (7)

3.4 Multiple Programs on One Client

Now consider the case when more than one program runs on the client. Assume the number of programs is NP, and NR/NP is the number of

requests issued by a single program. The analysis of balanced scheduling can largely follow the inequality (6). While source-aware

scheduling is different. Depending on the relation of NP and NC, there are two different scenarios.

3.4.1 NC >= NP

For this case, only NP cores will get used during the interrupt handling. If the workload is heavy, interrupts will be handled concurrently. So

Tp could be as low as P × NS × NR/NP. It is implying a shorter time cost compared to (5):

/R S R Source aware R S R PT P N N T T P N N N−+ × × ≥ ≥ + × × (8)

3.4.2 NC < NP

In this situation, all the cores will be busy processing interrupts from different programs. For simplicity, it is assumed NP is a multiple of NC.

Each core will hold NP / NC programs for execution. So the lower boundary of Tp becomes P × NS × NR / NC for both scheduling methods.

The balanced scheduling can almost always reach this boundary, while the Tp of source-aware scheduling varies according to the workload.

At the worst case, where no two cores are handling interrupts simultaneously, Tp can be as large as P × NS × NR.

)()1(PMNNTT RCawareSourceBalance −×××−≥− − α

(9)

As to the strip migration cost of balanced scheduling, the analysis in section 3.3 still works. Additionally, the number of programs doesn't

affect the total migration cost, because all the requests from one program will eventually be transferred to the same core. Therefore, we can

express the performance difference of two scheduling as inequality (9). Accordingly, as M >> P, the source-aware scheduling will still have

better performance.

The above analysis gives us an intuition of how our approach affects the overall performance. As we can see, the source-aware method

generally shortens the response time. And it is most effective under the heavy workload scenario where a client runs NC programs

simultaneously. Its effectiveness, however, does rely on the proportion of TR in the whole I/O request handling. If network peak bandwidth is

a limitation, more efficient interrupt scheduling will not make much of a difference on the overall performance. In fact, more efficient

interrupt handling can move the performance bottleneck from interrupt handling to network. For this reason, to explore the full potential of

source-aware interrupt handling, we adopt a combined implementation and simulation testing in the experiment section.

4. SAIs Interrupt Scheduler

With the above quantitative analysis, we propose a novel source-aware interrupt scheduling (SAIs) for parallel I/O interrupts in this section.

A general SAIs system design under Parallel Virtual File System (PVFS) [26] is presented herein. PVFS is a choice of implementation. The

design can be extended to other parallel file systems as well.

4.1 System Design

SAIs dynamically directs incoming interrupts to the affinitive core based on the affinitive core ID (aff_core_id) information. The aff_core_id

is the identifier of the core that the application is running on and the I/O request has been sent out from. The aff_core_id could be put into

each I/O request and guide interrupt scheduling when the data returns. SAIs consists of three core components on the client side:

HintMessager, SrcParser, and IMComposer as shown in Figure 3.

• HintMessager – encapsulates the aff_core_id into data request (for example, we can use PVFS_hint to convey aff_core_id in PVFS).

• SrcParser – analyzes the IP packet header and retrieves the aff_core_id that interrupt should be delivered.

• IMComposer – guides the I/O APIC/MSI to compose interrupt message with the aff_core_id which describes the destination
address of the local APIC.

And, there is a core component on I/O server to put aff_core_id into the return I/O data packets (this is an optional component for different

implementations).

• Hintcapsuler – encapsulates the aff_core_id into every return data packet on the I/O server.

Because SAIs uses the application level information (aff_core_id) to instruct system level interrupt scheduling, the implementation of SAIs

includes some modifications to the networking protocol, system interrupt scheduling, and parallel file system. The modifications on I/O

server side could be involved into SAIs, depending on the implementation method. In our prototype, because PVFS is employed to serve

application I/O requests, PVFS_hint message can convey aff_core_id information. We only make some minor modifications on the I/O

server side in our prototype.

4.2 Implementation Mechanism

The detailed implementation mechanism of SAIs under PVFS is shown in Figure 3. When an application process, for example App A, needs

to request data from PVFS, the aff_core_id will be packed into data request by HintMessager as a hint parameter (which is described by step

1 and 2). After that, App A sleeps to wait for the arrival of return data. When the data request is received by I/O server, HintCapsuler puts

aff_core_id into all the return data packets (step 3). Because PVFS uses TCP/IP to transfer I/O data between client side and I/O server nodes,

aff_core_id could be encapsulated into a network packet to return to the client side. To avoid the extra cost on network protocol design, the

options field of the IP level will be reserved to convey aff_core_id. An options field is an additional header field with maximum size of 32-bit

word which may follow the destination address field [21]. The options field also may be an 8-bit simple options field which could be

terminated with an EOL (0x00) option. In addition, options field of the IP packet head could be parsed by NIC device driver on the client

side before the interrupt is generated. The detailed description is shown in Figure 4. The 8-bit simple options field consists of three sub-fields:

copied, option class, and option number. The value of 1-bit Copied field and 2-bit option class field are both set to 1 following TCP/IP

protocol description. With 5-bit option number field describing the affinitive core, a maximum 25 = 32 cores could be identified by SAIs.

On the client side, the NIC device driver analyzes the incoming MAC frames and composes them as IP packets. When the IP packet is ready

to deliver to system IP module, SrcParser parses the IP packet header to extract aff_core_id from options field in the NIC device driver. After

the aff_core_id extract operation, the NIC device driver issues one softirq interrupt message, in which aff_core_id has been added as the

destination address of the local APIC by IMComposer (described by step 4 and 5). The interrupt message is then delivered to the affinitive

core for processing (step 6). When the according core completes interrupt handling and packet processing, inter-core signals are sent to wake

the application process. To avoid the application process being migrated to another core when the data returns, SAIs enforces that the

application process should be bundled on the core which requested data before data return. In a nutshell, a data request causes multiple return

Figure 4. IP Packet Structure with Aff_core_id.

Figure 3. SAIs System Architecture.

packets from multiple sever nodes at the same time, but SAIs guides all the interrupts to the cores corresponding to the aff_core_id

encapsulated in the packets.

5. Experimental Evaluation

The SAIs scheduler has been integrated into the client side kernel and NIC drivers to verify its benefit for parallel I/O application. Our

performance evaluation is based on the analysis and compares the four commonly used metrics: bandwidth, cache miss rate, processor

utilization, and, cpu_clk_unhalted.

5.1 Experimental Setup

Our experiments were conducted on a 49-node Sun-Fire Linux-based cluster. This cluster is composed of one Sun-Fire 4240 head node and

48 Sun-Fire 2200 compute nodes. The head node is configured with two Quad-Core 2.7 GHz AMD Opteron Series 2384 processors (512KB

dedicated L2 cache per core), 8 GB memory and three 1 Gigabit Ethernet Ports with BCM5715C controller. Every compute node is

configured with two Quad-Core 2.3 GHz AMD Opteron Series 2376 processors (512KB dedicated L2 cache per core), 8 GB memory and

three 1 Gigabit Ethernet Ports with BCM5715C controller. The head node has 4X 146GB 10K-RPM SAS hard drives. Each compute node

has a 250GB 7.2K-RPM SATA-II hard drive. The cluster has been connected by the Cisco Catalyst 4948 10/100/1000BASE-T switch. In our

testing, PVFS 2.8.1[26] was set up as parallel file system which is accessed by the I/O client node. PVFS was configured with one metadata

server node and variable I/O server nodes (from 8 to 16, 32, 48 nodes) with a 64KB strip size. The I/O client is configured on the head node.

Because parallel I/O read is the most frequent operations and TCP is the most widely used transport protocol in PVFS, our experiments

mainly focused on parallel file system read with a TCP configuration.

5.2 Experimental Description

The performance of SAIs and Irqbalance are evaluated and compared in our experiments with the running of Interleaved or Random

Benchmark (IOR) [4]. IOR is a parallel file system benchmark which is developed by Lawrence Livermore National Laboratory to test the

performance of various parallel I/O patterns. Because IOR includes general parallel I/O operations and various real parallel I/O patterns, it is

widely accepted as a benchmark for parallel I/O test. Each I/O operation in IOR writes or reads a contiguous block of buffer (transfer size up

to the entire memory available) to/from the parallel file system. Because every IOR request (the size is configured as transfer size) involves

parallel I/O, the return data generates multiple concurrent I/O interrupts. Based on the conventional load balance core scheduling scheme data

needs to be merged on every IOR request. Therefore, IOR is an ideal benchmark for the SAIs performance evaluation. To make the

experiment match general application situations, we have added some computing tasks into IOR. These computing tasks encrypt the data

collected by every IOR request. IOR is available with three APIs: MPI-IO, POSIX, and HDF5. In the experiment, MPI-IO tests are

conducted on the client side parallel accessing PVFS with different transfer sizes from 128KB, 512KB, 1 MB, to 2 MB. The number of

PVFS I/O server nodes number varies from 8, 16, 32, to 48. The strip size of every I/O server node is 64KB. In the experiments, the client

side executes an IOR process to read a 10GB size file from PVFS. The performance has been measured by Oprofile [25] and Linux inbuilt

“sar” system monitor tool [23]. Consistent results are obtained across repeated runs. All results presented in the paper are averaged with at

least three runs. Since no data locality issue has been observed at the core interrupt scheduling level in parallel I/O write, our experiments

mainly focus on parallel I/O read.

5.3 Bandwidth Comparison

The bandwidth comparison experiments have been conducted with 1 Gigabit and 3 Gigabit NIC (combined three 1 Gigabit NICs). On the 1

Gigabit NIC, SAIs employs multiple IOR processes and 1 Gigabit NIC to parallel access PVFS. Although SAIs shows better performance

than Irqbalance on I/O bandwidth with 1 Gigabit NIC, the limited network bandwidth is a major bottleneck and reduces the potential

performance improvement of the application. Therefore, SAIs has moderately improved IOR I/O bandwidth with 1 Gigabit NIC. The

bandwidth peak speed-up ratio is 6.05%.

Figure 5 shows the performance improvement of SAIs with 3 Gigabit NIC. The IOR processes are executed on the I/O client side to access

data on the PVFS concurrently. Each process reads a total 10GB data from PVFS. It lists the I/O bandwidth comparison and speed-up under

the two scheduling schemes with various transfer sizes and number of I/O servers. As we can see in Figure 5, SAIs improves the I/O

bandwidth in all cases. Especially, when the number of I/O servers is increased to 48, the speed-up reached a maximum of 23.57%. Note the

maximum bandwidth in Figure 5 doesn't exceed 3 Gigabit. Hence this result complies with the analysis in section 3.3. The analysis states that

the performance advantage of SAIs can rise with the number of servers, if the bandwidth doesn't become a bottleneck.

5.4 Cache Miss Rate Analysis

Figure 6 shows the ratio of L2 cache miss rates (# cache misses / # accesses) of the two interrupt scheduling schemes with a 1 Gigabit NIC.

The experimental results expose the major cause of the bandwidth improvement. As we discussed in the second paragraph of the Introduction

Section, a cache miss leads to an extra data movement between the two cores. So reducing the number of cache misses caused by an I/O

interrupt means a reduction of data movement. However, increasing the number of I/O servers leads to more interrupts and higher I/O

throughput on the client side. Therefore, even with a lower cache miss rate, the 48 server’s configuration does cause more cache misses,

which may lead to more data movement too. Figure 6 shows that our method works well when the number of I/O server’s increases, since the

cache miss rate is smaller than that of the Irqbalance scheduling.

In Figure 7, the L2 cache miss rates have been compared using a 3-Gigabit NIC. The results show that the cache miss rates have increased

with the increase of the network bandwidth, leaving a big improvement space for SAIs. In this experiment, the L2 miss rate is reduced almost

40% by SAIs.

Figure 7. L2 Cache Miss Rate Comparison with 3-Gigabit NIC.

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

128K 512K 1M 2M

L
2

 C
a

c
h

e
 M

is
s

R
a

te
 (

%
)

Transfer Size

Irqbalance

SAIs

Figure 6. L2 Cache Miss Rate Comparison with 1 Gigabit
NIC.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

128K 512K 1M 2M

L
2

 C
a

c
h

e
 M

is
s

R
a

te
 (

%
)

Transfer Size

Irqbalance

SAIs

Figure 5. Bandwidth Comparison with 3-Gigabit NIC.

9.00%

11.00%

13.00%

15.00%

17.00%

19.00%

21.00%

23.00%

150

170

190

210

230

250

270

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

8
 n

o
d

e
s

1
6

 n
o

d
e

s

3
2

 n
o

d
e

s

4
8

 n
o

d
e

s

128K 512K 1M 2M

S
p
e
e
d
-u
p
(%

)

B
a
n
d
w
id
th
(M

B
/s
)

Transfer Size

Speed-up

SAIs

Irqbalance

5.5 CPU Utilization Analysis

Although SAIs improves the I/O bandwidth noticeably in comparison to Irqbalance, the improvement is less than its potential as shown in

our analysis. To further explore the possible reasons, the CPU total utilizations has been displayed in Figure 8.

In Figure 8, the CPU utilization is collected under a single application running with a 1 Gigabit NIC. The CPU exposes its low utilization

with the maximum of 15.13%, whatever the interrupt scheduling scheme is selected. This is because that the bandwidth of a 1 Gigabit NIC is

lower than the processing capacity of CPUs, even with only one core (2.7GHz). When the processor is processing faster than NIC receiving

speed, the NIC will be the main bottleneck in parallel I/O access. Therefore, there are many more CPU cycles idling to wait for the NIC to

receive data. Therefore, while the SAIs scheduling still shows a better bandwidth than that of Irqbalance with 1Gigabit NIC, the

improvement is small. This observation also supports the rational of assumptions for equation (1), and rules out the possibility that the

parallel interrupt handling for core utilization could offset the data movement cost.

In Figure 9, the CPU utilization has been listed with 3-Gigabit NIC. The results show that the Irqbalance employs more CPU cycles on data

movement. Although 3 Gigabit networking bandwidth still cannot saturate all core computing capacity, the increasing CPU utilization shows

a possible linear relation between CPU capacity and network speed. We will further verify this linear relation by conducting a simulation in

Section 6.

5.6 CPU Waiting I/O Time Analysis

To further analyze the CPU utilization for I/O handling, the CPU_CLK_UNHALTED event has been collected with mask 0x00 by Oprofile

in the experiments. This event provides the number of clocks that the CPU is not in a halted state [27]. In our experiments, we collect this

event to analyze the halted time that CPU waits on I/O data. For the 1 Gigabit NIC experiment, the results are shown in Figure 10, SAIs has a

maximum of 27.14% improvement on CPU_CLK_UNHALTED time. When a data-intensive parallel application, such as IOR, reads data

from the PVFS, the CPU halted cycles are mainly contributed by two parts: 1. the time that the I/O core (in which I/O interrupts are handled)

is halted and waited for data to be received by the NIC; 2. the time that application core (in which IOR is running) is halted and waited for

data when data misses in the cache. Obviously, SAIs scheduling the I/O interrupt to its affinitive application core removes the time cost of

part 2. Therefore, SAIs obtains a larger CPU unhalted time.

Figure 9. CPU Utilization Comparison with 3-Gigabit NIC.

12.00%

17.00%

22.00%

27.00%

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

8 nodes 16 nodes 32 nodes 48 nodes

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of I/O Server Nodes

Irqbalance

SAIs

Figure 8. CPU Utilization Comparison with 1 Gigabit NIC.

5.00%

9.00%

13.00%

17.00%

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

8 nodes 16 nodes 32 nodes 48 nodes

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of I/O Server Nodes

Irqbalance

SAIs

Figure 11 presents the CPU_CLK_UNHALTED events to compare the application’s waiting time for I/O read with 3-Gigabit NIC. SAIs has

a maximum of 48.57% improvement on CPU_CLK_UNHALTED time. The results verify that SAIs reduces the I/O waiting time for each

read and increases the total I/O bandwidth.

5.7 Multiple Clients I/O Bandwidth Testing

Because the source-aware interrupts scheduling mainly optimizes parallel I/O performance on the client side, multiple client performance

testing has been conducted and analyzed in this subsection to evaluate scalability. The experiment configured 8 I/O server nodes and a

variable number of client nodes (from 4, 8, 16 nodes to 56 nodes) with a 3 Gigabit NIC connection. Every client node ran multiple IOR

application processes (transfer size = 1M). The I/O bandwidth with the different interrupt scheduling schemes has been collected and

compared in Figure 12 (The bandwidth is a summary of the whole clients).

Figure 12 shows that SAIs has improved parallel I/O bandwidth. When the number of clients is 8, the improvement is up to 20.46%. With the

further increase in number of clients, the I/O bandwidth decreases slowly. Therefore, 20.46% is the maximal improvement for 8 I/O server

nodes in our experiment. Because the bandwidth of 8 I/O server nodes is saturated by 8 clients, the increasing client nodes over 8 will

gradually reduce the bandwidth on a single client. The drop in bandwidth implies a drop in NR, the number of requests. According to formula

(5) and (6) in Section III, this in turn will reduce the difference in effectiveness between SAIs and irqbalance scheduling as shown in Figure

12. When the number of client nodes is greater than 32, 8 I/O nodes are not enough to serve the increased parallel I/O requests. In these

overloaded worst cases, SAIs still improves application performance slightly. The experimental results verify that source-aware interrupt

scheduling improves or maintains the parallel I/O performance on the multiple clients’ situation. However, the peak network bandwidth of

the I/O servers will eventually limit the performance benefits of SAIs. To understand the potential performance improvement of SAIs,

simulation is conducted in the following section in order to remove the physical network constraint.

Figure 10. CPU I/O Wait Comparison with 1Gigabit NIC.

0

500000

1000000

1500000

2000000

2500000

3000000

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

8 nodes 16 nodes 32 nodes 48 nodes

C
P

U
_

C
L
K

_
U

N
H

A
LT

E
D

 (
1

e
4

 c
y

c
le

s)

Number of I/O Server Nodes

Irqbalance

SAIs

Figure 12. Multiple Clients I/O Bandwidth Comparison.

14.82%

20.46%

16.23%

8.72%

5.38%

3.16%

1.39%

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

900

1100

1300

1500

1700

1900

2100

2300

4 clients 8 clients 16

clients

24

clients

32

clients

48

clients

56

clients

S
p

e
e

d
-u

p
 (

%
)

I/
O

 B
a

n
d

w
id

th
 (

M
B

/
s)

Speed-up

SAIs

Irqbalance

Figure 11. CPU I/O Wait Comparison with 3-Gigabit NIC.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

1
2
8
K

5
1
2
K

1
M

2
M

8 nodes 16 nodes 32 nodes 48 nodesC
P

U
_

C
L
K

_
U

N
H

A
LT

E
D

 (
1

e
4

 c
y

c
le

s)

Number of I/O Server Nodes

Irqbalance

SAIs

6. Cache Data Migration Cost Simulation

Because the speed of NIC generating I/O interrupts is much slower than the speed of processors handling I/O interrupts on the client side in

our experiments, the experiments do not demonstrate the full potential of our interrupts scheduling scheme. To detect the possible

performance improvement brought by source-aware scheduling, we conduct a simulation in memory to evaluate data movement cost. In our

simulation node (the head node of the Sun-Fire Linux-based cluster), the system configures 4X 2GB DDR2-667 Single Rank Memory, which

could provide 5333 MB/s (about 41.66 Gigabit/s) peak bandwidth [19] for the parallel I/O access. Because the main contribution of SAIs is

removing the extra data movement cost incurred by interrupts scheduling, our simulation focused on keeping source-aware to avoid cache

misses and reduce data movement. In addition, the interrupt handling cost depends on the interrupt processing routine rather than scheduling

scheme, thus the interrupt handling cost is a constant cost to any interrupt scheduling. The data processing method of SAIs is simulated by a

pair of threads (named Si-SAIs), in which one thread parallel read data strips from multiple different files on a RAM disk [31] in the memory

and the other one combines the returned data strips together into the requested data. Si-SAIs employs the system resource sharing feature of

the threads to keep it source-aware. We use two independent processes (named Si-Irqbalance) to simulate the Irqbalance data processing

method completing the same job as Si-SAIs. The independent processes are possible to be scheduled and executed on separated cores. The

major performance issue, extra data movement, has been reproduced by our simulation (shown in Figure 13). The multiple I/O nodes are

simulated with different files stored in memory. Each I/O thread or process read includes 64KB data strip from every file. The transfer size is

1M, which has been verified to be the best buffer size in our previous testing. The simulation results are obtained across repeated runs. All

results are averaged with at least three runs.

Figure 14 shows the testing results of the simulation. In Figure 14, the bandwidth reaches up to 3576.58 MB/s (about 27.94 Gigabit/s) when

the CPU utilization is 49.47%. And, the corresponding speed-up is up to 53.23%. The L2 cache miss rate has reduced 51.37% on this peak

bandwidth improvement. When the application number equals the number of cores, the CPU capacity is saturated by applications and

utilization reaches 99.47%. After the CPU keeping 100% utilization, Si-SAIs and Si-Irqbalance sustain almost the same performance (about

2500MB/s or 19.53 Gigabit/s) for the parallel I/O for the all case. With the results of simulation, we conclude that two Quad-Core 2.7 GHz

AMD Opteron Series 2384 processors (head node processor configuration) could handle parallel I/O bandwidth up to 27.94 Gigabit/s and

19.53 Gigabit/s on average.

Analysis and experimental results show that SAIs is very promising. It has its merit. On the other hand, SAIs has its limitations. SAIs is

designed for parallel I/O systems. It is not a general interrupt scheduling. Its effectiveness depends on the assumption that the underlying

system is I/O intensive and that the system has plenty of network bandwidth. SAIs may serve well as a complement of existing processor

scheduling schemes for datacenters with high-speed networks connections and for data intensive applications. But in general, extending the

source-aware concept and integrating source-aware scheduling with existing interrupts scheduling mechanisms is a subject of future study.

Figure 14. Simulation I/O Bandwidth Comparison.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2000

3000

S
p

e
e

d
-u

p
 (%

)

I/
O

 B
an

d
w

id
th

 (
M

B
/

s)

Speed-up

Si-SAIs

Si-Irqbalance

Figure 13. Memory Parallel I/O Access Simulation Design.

7. Related Works

The prevalent interrupt scheduling schemes adopted by current multi-core OSes are round-robin and dedicated modes. Round-robin mode

distributes interrupts from I/O APIC to local APICs in turn, and, dedicated mode delivers the incoming interrupts to a fixed core.

Irqbalance[17] is a intelligent interrupt scheduling loadable module, which makes interrupts scatter on every possible core based on the cores’

load statistics. Actually, Irqbalance is a variant of round robin scheduling mode. In addition, a patent of interrupt load distribution system

proposed by Toshikazu Nakagawa [35] gave anther interrupt scheduling method with the consideration of processor load balance. While the

existing works have shown good potential on CPU utilization, uncoordinated attempts to distributed interrupts to different core can also result

in some bad side effects [37].

Several processor data locality research efforts have been conducted for network I/O performance. These research efforts partly exploited the

potential scenario and cost of data movement among cores. The impact of the data movement incurred by parallelization strategies of packet

processing on the general-purpose monolithic OS has been analyzed by Salehi et al. [18] and Willmann et al. [29]. As for multi-core systems,

Foong et al. [1][2][5] and Narayanaswamy et al. [8][9] have shown the in-depth analysis of processor data locality problem, but there

analysis has not been considered for parallel I/O situations. To enable users tuning applications performance to keep data locality and reduce

data movement above multi-core systems, VTune [16] and autopin [34] have been developed by Intel and T. Klug et al. Though these tools

suggest an optional data-core mapping, they cannot detect the application core information and change the source-aware automatically while

processes are running. In addition, the latest Intel Ethernet Controller 82575/82576 or 82598/82599 [14] allows assigning interrupts to

processor cores manually. But, the assignment is static, which is too inflexible to meet the change of the data request source. Effective and

adaptive load balancing on multiprocessor systems has been studied in [33][36]. Brecht et al. proposed a dedicated processor core packet

processing solution to improve data locality [33], but this solution sacrificed the parallelism. Scogland et al. have suggested a user-level

library called SyMMer [36], which monitors the system loads changing and re-schedules the MPI application processes running for keeping

data locality. In contrast, our study is distinguished from the existing researches in the sense that we proposed a novel source-aware interrupt

scheduling scheme, which uses the source information of parallel-I/O to optimize core interrupt scheduling. The basic idea is that the

interrupts associated for the same I/O request, even if they come from different file servers, should be grouped together to one core. This

simple idea carries a long way, since data locality is much more important in performance than core utilization in modern computers. The

source-aware interrupt scheduling scheme reduces cache misses and data movements between caches.

There are also research which improve the processor data locality in intra-node communication [11][12]. However, these optimizations are

good for data exchange among cores rather than the data locality of interrupt scheduling. Suggestions of keeping data locality for high-

performance networking has been proposed recently in [6][13][24][32]. These systems can also benefit from SAIs to achieve high parallel

I/O bandwidth with less system modification and integration.

8. Conclusion and Future Works

We have proposed a novel source-aware affinity interrupt scheduling scheme and prototyped it with a new scheduler called SAIs for parallel

I/O systems. SAIs groups interrupts associated for the same I/O request together to be handled on the same core. The new scheme ties

interrupt processing and data consumption, to reduce cache miss rate and data movement on client side. Experimental results show that SAIs

obtains noticeable better I/O bandwidth than that of the conventional utilization based scheduling mechanisms. SAIs, which has been

integrated into the Linux kernel, has reported an improvement up to 23.57% in the 3-Gagebit NIC configuration of our testing environment.

To explore the full potential of the source-aware scheduling, simulations are also conducted that remove the NIC bottleneck. The simulation

results show that SAIs can improve the I/O bandwidth up to 53.23% accompanied with 51.37% cache miss rate reduction. The successful

implementation of SAIS shows that the newly proposed source-aware affinity mechanism is feasible and effective. The analysis and

experimental results demonstrate the potential of source-aware interrupt scheduling for data intensive applications where network bandwidth

is not the performance bottleneck.

The proposed source-aware interrupt scheduling is very promising and leads to a considerable performance improvement. However, it is just

a beginning. To put the source-aware interrupts scheduling in actual use, we need more studies. We list four different interrupts handling

policies in Section 3. Our current study is on one policy with one special application, parallel I/O interrupts, in mind. Our current result is not

a general solution of interrupt scheduling. It is a complement and alternative. In the future, we plan to extend the source-aware concept to

other applications and to study the integration of different policies and scheduling algorithms for a robust, general solution.

9. REFERENCES

[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Analysis of the Impact of Processor Affinity on Network Performance,” In
Proceeding of the 12th IEEE International Conference on Networks (ICON 2004), November 16-19, 2004.

[2] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelan, and A. Lopez-Estrada, “Architectural Characterization of Processor Affinity in
Network Processing,” In Proceeding of the IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS 2005), May 16, 2005.

[3] AMD, “AMD64 Architecture Programmer’s Manual Volume 2: System Programming”, AMD Corporation, 2009.

[4] ASC Sequoia Benchmark Codes, IOR summary, https://asc.llnl.gov/sequoia/benchmarks/#ior.

[5] B. Veal and A. Foong, “Performance Scalability of a Multi-Core Web Server,” In Proceeding of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS’07), Dec. 2007.

[6] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A Unified Graphics and Computing Architecture,” In
Proceeding of the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-41), Nov. 2008.

[7] F. Inoue, H. Ohsaki, Y. Nomoto, and M. Imase, “On Maximizing iSCSI Throughput using Multiple Connections with Automatic
Parallelism Tuning,” In Proceedings of the 5th IEEE International Workshop on Storage Network Architecture and Parallel I/Os
(SNAPI), Sep. 2008.

[8] G. Narayanaswamy, P. Balaji, and W. Feng, “An Analysis of 10-Gigabit Ethernet Protocol Stacks in Multicore Environments,” In
Proceedings of the 15th Annual IEEE Symposium on High-Performance Interconnects (Hot Interconnects - ’07), August 22-24, 2007.

[9] G. Narayanaswamy, P. Balaji, and W. Feng, “Impact of Network Sharing in Multi-core Architectures,” In Proceedings of the 17th
International Conference on Computer Comunications and Networks (ICCCN ’08), Aug. 2-7, 2008.

[10] H.-C. Jang and H.-W. Jin, “MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces,” In
Proceedings of the 17th IEEE Symposium on High Performance Interconnects (Hot Interconnects - ’09), Aug. 26-27, 2009.

[11] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux
Cluster,” In Proceedings of the 2005 International Conference on Parallel Processing (ICPP-05), Jun. 2005.

[12] H.-W. Jin, S. Sur, L. Cai, and D. K. Panda, “Lightweight Kernel-Level Primitives for High-Performance MPI Intra-Node
Communication over Multi-Core Systems,” In Proceeding of IEEE International Conference on Cluster Computing (Cluster 2007),
Sep. 2007.

[13] H. Sivakumar, S. Bailey, and R Grossman, “PSockets: The Case for Application-level Network Striping for Data Intensive
Applications using High Speed Wide Area Networks,” In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2000), Nov., 2000.

[14] Intel, “Assigning Interrupts to Processor Cores using an Intel ○R 82575/82576/82598/82599 Ethernet Controller,”
http://download.intel.com/design/network/applnots/319935.pdf , Sep. 2009.

[15] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1,” Intel
Corporation, Mar., 2010.

[16] Intel, “VTune Performance Analyzer”, http://software.intel.com/en-us/intel-vtune/.

[17] Irqbalance, http://irqbalance.org/.

[18] J. D. Salehi, J. F. Kurose, and D. Towsley, “The Effectiveness of Affinity-Based Scheduling in Multiprocessor Network Protocol
Processing”, IEEE/ACM Transactions on Networking, Vol. 4(4), Aug., 1996.

[19] “JEDEC standard: DDR2 SDRAM Specification,” JESD79-2F, Nov. 2009.

[20] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. The 4th edition, Morgan Kaufmann, 2006.

[21] Jon Postel, “Internet Protocol-DARPA Internet Program Protocol Specification”, RFC 791, Sept. 1981.

[22] Linux Cross Reference, http://lxr.linux.no/.

[23] Linux man page - sar, http://linux.die.net/man/1/sar.

[24] “Lustre File System Networking: High-Performance Features and Flexible Support for a Wide Array of Networks”, A White Paper
from Lustre File Systems, Jan., 2008.

[25] Oprofile, http://oprofile.sourceforge.net/.

[26] Parallel Virtual File System, http://www.pvfs.org/.

[27] “Performance Monitoring Events - AMD Family 11h
Processors”,http://developer.amd.com/cpu/CodeAnalyst/codeanalystlinux/Documents/CodeAnalyst-Linux-help/pmes_fam11h.htm.

[28] “Processor Affinity White Paper for Multiple CPU Scheduling,” TMurgent Technologies, Nov. 3, 2003.

[29] P. Willmann, S. Rixner, and A. Cox, “An Evaluation of Network Stack Parallelization Strategies in Modern Operating System,” In
Proceedings USENIX Annual Technical Conference, May 30 – June 3, 2006.

[30] R. Love, “Linux Kernel Development, 2nd Edition,” Novell Press, ISBN-10: 0672327201, 2005.

[31] RAM disk – Linux Kernel Documentation: Using the RAM disk block device with Linux,
http://www.mjmwired.net/kernel/Documentation/ramdisk.txt/

[32] S. Miura, T. Okamoto, T. Boku, T. Hanawa, and M. Sato, “RI2N: High-bandwidth and fault-tolerant network with multi-link Ethernet
for PC clusters,” In Proceedings of IEEE International Conference on Cluster Computing (Cluster 2008), Sep., 2008.

[33] T. Brecht, G. Janakiraman, B. Lynn, V. Saletore, Y. Turner, “Evaluating Network Processing Efficiency with Processor Partitioning
and Asynchronous I/O,” In Proceedings of the EuroSys 2006, Apr. 18-21, 2006.

[34] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “auto-pin – Automated Optimization of Thread-to-Core Pinning on Multicore
Systems,” Transactions on High-Performance Embedded Architectures and Compilers, Vol. 3(4), 2008.

[35] T. Nakagawa, “Interrupt Load Distribution System for Shared Bus Type Multiprocessor System,” Patent no.: US 6,237,058 B1, May.
2001.

[36] T. Scogland, P. Balaji, W. Feng and G. Narayanaswamy, “Asymmetric Interactions in Symmetric Multi-core Systems: Analysis,
Enhancements and Evaluation,” In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2008), Nov., 2008.

[37] V. Anand and B. Hartnet. “TCP/ IP Network Stack Performance in Linux Kernel 2.4 and 2.5,” In Proceedings of the Linux Symposium,
Ottawa June 2002, Jun. 2002.

[38] X.-H. Sun and Y. Chen, “Reevaluating Amdahl's Law in the Multicore Era,” In Proceedings of Journal of Parallel and Distributed
Computing, vol. 70 (2), Feb., 2010.

