

From Grid to Pervasive Computing

Where is the breakthrough of next IT boom?

Xian-He Sun

Scalable Computing Software Laboratory

Department of Computer Science Illinois Institute of Technology Sun@iit.edu

April 7, 2004

Scalable Computing Software (SCS) Lab.

Pervasive Computing Environments at SCS

Outline

- Introduction
- Pervasive Computing
 - Context-awareness and mobility
 - Case study: Context-aware infrastructure
- Grid Computing
 - Service and open service architecture
 - Case study: Resource management
- Conclusion

Introduction

The Three Waves of Computing Revolutions

First Wave

- Hardware, silicon chip
- Lasted 10-15 years into the 90s
- Silicon Valley
- Open system versus closed system
- "Coopetition" versus competition

Second Wave

- •Software, video game
- •Begin mid-80s into the 90s
- •Everywhere, Microsoft
- •Distribution versus technology

The Third Wave of Computing Revolutions

- Network, communication, and interconnectivity
- Begin in the late 90s until now
- Machine/machine, software/software, people/people
- Anytime, anywhere, WWW
- The communications landscape is shifting

What is the next?

 Grid computing? Pervasive computing? Ubiquitous computing?

Evolution of Computing

Bigger becomes even bigger Smaller becomes ever smaller, & connected

approx; 50m x 65m x 17m

1.4m x1m x 2m

Japan's Earth Simulator
640 processor nodes (PNs)
Each PN is a system with 8 vector-type arithmetic processors (APs)
Peak performance 40Tflops

Evolution of Computing

Embedded Systems: What is the new

- Devices become smaller and more powerful
- Devices are coordinated via network
- From "autonomous computing" to coordinated "humancenter computing"

Coordinated Embedded System – Smart Space

Pervasive Computing

- Computers have become an embed intrinsic part of a sophisticated, networked, pervasive and ubiquitous computing environments around humans.
- Pervasive Computing: create a ubiquitous environment that combines processors and sensors with network technologies (wireless and otherwise) and intelligent software to create an immerse environment to improve life.

Pervasive Computing Applications

Some Current Projects

AHRI: www.cc.gatech.edu/fce/ahri Aura: www-2.cs.cmu.edu/~aura/ Endeavour: endeavour.cs.berkeley.edu/ HawkTour: http://www.cs.iit.edu/~scs/ Portolano: portolano.cs.washington.edu/ "Oxyen": http://oxygen.lcs.mit.edu "Smart Space": http://www.nist.gov/smartspace/

Sentient Computing: www.uk.research.att.com/spirit/ Cooltown: www.cooltown.com EasyLiving: research.microsoft.com/easyliving WebSphere Everyplace: www-3.ibm.com/software/pervasive

Technical Challenges, & current achievements

Context Aware Interfaces Context aware	Dialog processing, Pen input, Geometry sensitive devices, Gaze tracking, Gesture recognition, Speaker identification, Acoustic imaging, Camera array processing, Speech recognition, Sensor fusion, etc	
Mobility and	Directory services, Security management, Wireless	
Networking	protocols, Service discovery, Mobile session management,	
Continuously	Remote sensors, Cross-network service	
Pervasive Devices Coordination	Smart notebooks, Portable sensors, Electronic books, Palm top computers, Smart badges/tags	
Information	Visual document indexing, Spoken document indexing,	
Access	Distributed multimedia data bases, Spoken document	
Locate	retrieval, Text retrieval	

Software Challenges

Context Aware Embedded System

- Context
 - Useful information other than user input
- Context Awareness
 - Ability to *capture*, *understand* and *adapt* to surrounding context information
- Context aware embedded system
 - Capture context information via 'embedded' devices
 Takes action without explicit user input
 - Improves user experience by achieving collaboration and integration of embedded systems

Role of Context

Traditional Class Environment

- Professor T informs students about the updated course website for lecture slides
- They need to bring the slides in the class for better understanding
- Some of the students either did not read the notification
- some of them forgot about it before the class

Smart Class Environment

• If

- Professor T is moving towards the projector and
- lights in the room are off
- Then the environment pervasively transfers the presentation slides from the professor's handheld device to students' handheld device
- The projector starts the presentation

Challenges of Context Awareness

- Context awareness: aware of the user's state and surroundings and help the system to adapt its behavior accordingly
 - How does the system represent context internally?
 - How frequently does the system need to consult contextual information
 - What are the minimal services that an environment must provide?
 - What are the relative merits of different location-sensing technologies
 - Trade off between awareness and transparency

Mobility in Pervasive Computing

- User Mobility: Providing users with a uniform view of their preferred working environments
- Terminal Mobility: Allowing devices to transparently move and connect to different points of attachment
 - Network mobility
 - Code mobility, computing mobility
- Mobile Access: Dynamic adaptation of mobileaware resource and service
 - Service mobility

Role of Mobility

- Any time, any where service
- Device, network mobility
- Adaptation, context aware
- Application software versus infrastructure system

Case Study: Context Aware System

Scarlet: the IIT context aware infrastructure

- Separate infrastructure functionality with application-specific functionality
- Functional Requirements
 - Context collection, Context Storage/Management, Context Subscription/Delivery, Context Analysis/Composition Ability
- Non Functional Requirements
 - Scalability, Modularity, Cross platform, Security, Extensibility, Ability to Evolve, Quality of Service, Fault Tolerance, Mobility, User Friendly Interface

Separation of Application and Infrastructure

The Scarlet System

Sample Applications

- Service Browser
- Wireless Strength Monitor
- Television Assistant
- Tour Guide

Evolution of Computing

Distributed Computing: What is the new

- Supercomputers become ever powerful
- Communities of "Virtual organizations" are formed
- No VO possesses all required skills and resources
- From "community sharing" to "information grid"

Integrated VOs: the Grid

Mimic the electrical power grid

Increased Higher Quality Efficiency of Service Increased Reduced Productivity Complexity & Cost Improved Resiliency

The Grid Computing

- Infrastructure ("middleware" & "services") for establishing, managing, and evolving multi-organizational federations
- Mechanisms for creating and managing workflow within such federations
- Three key criteria
 - Coordinates distributed resources ...
 - using standard, open, general-purpose protocols and interfaces ...
 - to deliver non-trivial qualities of service.

Grid Computing Application NEESgrid

More Information of Grid

S S C

- The Globus Alliance®: www.globus.org
- Global Grid Forum: www.ggf.org
- GlobusWORLD: www.globusworld.org
- GCC 2003
 - http://www.cs.sjtu.edu.cn/gcc2003/index.htm
- Projects:
 - The <u>EcoGRID</u> (Economy Grid) project at Monash University
 - The Legion project at the University of Virginia
 - The Polder project at the University of Amsterdam
 - The MOL project at the University of Paderborn

The Challenge of Resource Integration

Standardization and Service

Why Open Standards Matter

- Ubiquitous adoption demands open, standard protocols
 - Standard protocols enable *interoperability*
 - Avoid product/vendor lock-in
 - Enables innovation/competition on end points
- Further aided by open, standard APIs
 - Standard APIs enable *portability*
 - Allow implementations to port to different vendor platforms
- Open architecture and specification (infrastructure)
 - Internet and Web as exemplars
 - Web Service as a basis

Web Services

- XML-based distributed computing technology
- Web service = a server process that exposes typed ports to the network
- Described by the Web Services Description Language, an XML document that contains
 - Type of message(s) the service understands & types of responses & exceptions it returns
 - "Methods" bound together as "port types"
 - Port types bound to protocols as "ports"
- A WSDL document completely defines a service and how to access it

Open Grid Services Architecture

- Everything is a service
- A standard substrate: the Grid service
 - A Grid service is a Web service
 - Standard interfaces and behaviors that address key distributed system issues: naming, service state, lifetime, notification
- Supports standard service specifications
 - Agreement, data access & integration, workflow, security, policy, diagnostics, etc.
 - Target of current & planned GGF efforts
- Supports arbitrary application-specific services based on these & other definitions

Challenges of OGSA

- From Web services
 - Standard interface definition mechanisms
 - Address discovery & invocation of persistent services
 - Evolving set of other standards: security, etc.
- From Grids (Globus Toolkit)
 - Service semantics, reliability & security models
 - Support transient services, created/destroyed dynamically
 - Lifecycle management, discovery, other services
 - Interfaces to the states of distributed activities
 E.g. workflow, video conf., dist. data analysis
- A framework for the definition & management of composable, interoperable services

OGSI Specification

- Defines fundamental interfaces (using extended WSDL) and behaviors that define a Grid Service
- Defines basic patterns of interaction
- Specification focuses on:
 - Naming and bindings (basis for virtualization)
 - Lifecycle (basis for fault resilient state management)
 - Information model (basis for monitoring & discovery)
 - Service Groups (basis for registries & collective svcs)
 - Base Fault type
- Foundation to develop application specific services

Open Grid Services Infrastructure (OGSI)

Open Grid Services Architecture

Users in Problem Domain X

Applications in Problem Domain X

Application & Integration Technology for Problem Domain X

Generic Virtual Service Access and Integration Layer

Job Submission	Brokering	Workflow	Structured Data
Registry	Banking	Authorisation	Integration

Data TransportResource UsageTransformationStructured Data Access

OGSI: Interface to Grid Infrastructur

Web Services: Basic Functionalit

Compute, Data & Storage Resource: Structured Data

Distributed

Virtual Integration Architecture

Relational XML Semi-structured

Grid Service: Resource Management

- Discovery/characterization
 - Find relevant service providers
- Diversity in resource type, local managers, policy
 - Requires normalized remote interface
- Limited knowledge, abstraction
 - Impact of local users, other VOs
 - Hidden policy, operational issues
- Virtualization
 - 3rd party providers, brokers, mediators
- Coordination

Example: Resources Management

The Globus approach (Argonne, UC & USC)

An Agreement Based Approach

- Service level agreements (SLA) to abstract resource
 - You are what you negotiate
- Resource SLA (RSLA), i.e. reservation
 - A promise of resource availability
 - Client must utilize promise in subsequent SLAs
- Task SLA (TSLA), i.e. execution
 - A promise to perform a task
 - Complex task requirements
 - May reference an RSLA (implicit binding)
- Binding SLA (BSLA), i.e. claim
 - Binds a resource capability to a TSLA
 - May reference an RSLA (otherwise obtain implicitly)
 - May be created lazily to provision the task

Resource Lifecycle

- S0: Start with no SLAs
- S1: Create SLAs – TSLA or RSLA
- S2: Bind task/resource
 Explicit BSLA
 - Implicit provider schedule
- S3: Active task
 - Resource consumption
- Backtrack to S0
 - On task completion
 - On expiration
 - On failure

Community Scheduling Example

- Individual users
 - Require service
 - Have application goals
- Community schedulers
 - Broker service
 - Aggregate scheduling
- Individual resources
 - Provide service
 - Have policy autonomy
 - Serve above clients

Summary

- IT extreme success is the disappear of computer!
- Bigger machines become even bigger forming the computing Grid, computing in remote
- Small computing devices become even smaller forming the smart space, devices invisible
- Smart space is the interface, Grid is the backbone
- Both Grid and Pervasive Computing are in their infancy stage but real

Questions?

- Web triggered the last IT boom. Would Web Service (Grid) leads to another boom?
- How Pervasive technologies would improve the quality of life?
- What is the killer technology?
- What are the killer applications?
- Dedicated, special purpose Grid and pervasive service
 - High physics application, utility computing, the eco-system, etc.
 - Where is the triggering special service?

The View of Future Computing

Human-centered

Conclusion

- The technical foundation of next IT boom is emerging
- It may need the change of computing infrastructure and concept, and may start slow
- Waiting for the killer applications
- www.cs.iit.edu/~scs/

