
9

Evaluating the Combined Effect of Memory Capacity
and Concurrency for Many-Core Chip Design

YU-HANG LIU, ACM Member, IEEE Member
XIAN-HE SUN, ACM Senior Member, IEEE Fellow Computer Science Department,
Illinois Institute of Technology, Institute of Computing Technology, Chinese Academy of Sciences

Modern memory systems are structured under hierarchy and concurrency. The combined impact of hierarchy
and concurrency, however, is application dependent and difficult to describe. In this article, we introduce
C2-Bound, a data-driven analytical model that serves the purpose of optimizing many-core design. C2-Bound
considers both memory capacity and data access concurrency. It utilizes the combined power of the newly
proposed latency model, concurrent average memory access time, and the well-known memory-bounded
speedup model (Sun-Ni’s law) to facilitate computing tasks. Compared to traditional chip designs that lack
the notion of memory capacity and concurrency, the C2-Bound model finds that memory bound factors
significantly impact the optimal number of cores as well as their optimal silicon area allocations, especially
for data-intensive applications with a non-parallelizable sequential portion. Therefore, our model is valuable
to the design of next-generation many-core architectures that target big data processing, where working sets
are usually larger than the conventional scientific computing. These findings are evidenced by our detailed
simulations, which show, with C2-Bound, the design space of chip design can be narrowed down significantly
up to four orders of magnitude. C2-Bound analytic results can be either used in reconfigurable hardware
environments or, by software designers, applied to scheduling, partitioning, and allocating resources among
diverse applications.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Cache Memories; D.3.3 [Computer Systems
Organization]: Performance of Systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Memory wall, data stall time, memory bound, data access concurrency,
Sun-Ni’s law, chip design, concurrent average memory access time (C-AMAT)

ACM Reference Format:
Yu-Hang Liu and Xian-He Sun. 2017. Evaluating the combined effect of memory capacity and concurrency
for many-core chip design. ACM Trans. Model. Perform. Eval. Comput. Syst. 2, 2, Article 9 (March 2017), 25
pages.
DOI: http://dx.doi.org/10.1145/3038915

This work is supported in part by the National Science Foundation under grants CCF-1536079, CNS-
1162540, and CCF-0937877; the National High Technology Research and Development Program (“863”
Program) of China under grant 2015AA015303; and the National Natural Science Foundation of China
under grants 61521092 and 61272132.
Authors’addresses: Y.-H. Liu is current with the Institute of Computing Technology, Chinese Academy of
Sciences, No. 6 Kexueyuan South Road Zhongguancun, Haidian District Beijing, China, 100190; email:
liuyuhang@ict.ac.cn; X.-H. Sun is with the Department of Computer Science, Illinois Institute of Technology,
Chicago, IL, US, 60616; email: sun@iit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 2376-3647/2017/03-ART9 $15.00
DOI: http://dx.doi.org/10.1145/3038915

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

http://dx.doi.org/10.1145/3038915
http://dx.doi.org/10.1145/3038915

9:2 Y.-H. Liu and X.-H. Sun

1. INTRODUCTION

As data are the objects and results of computation, the role of memory capacity and
concurrency is increasingly important for data-intensive applications in the “big data”
era. The interaction between capacity and concurrency is subtle, and their combined
effect has not been fully explored [Liu and Sun 2015a]. In this study, we provide a better
understanding of this interaction and, more importantly, apply the understanding
successfully to chip design space exploration.

The design of many-core processor is an important and challenging task. An on-chip
multiprocessor (CMP) is an integrated circuit that consists of two or more independent
processing units (called “cores”) to read and execute program instructions. The design
space exploration of on-chip multiprocessors is to investigate potential configurations of
the integrated circuit with diverse goals regarding to performance, power consumption,
and simultaneous processing of multiple tasks. In recent years, on-chip multiprocessors
have become the mainstream of microprocessors that underpin the pivotal computing
infrastructure [Borkar 2007]. In the meantime, the number of cores is continuously
increasing on processors. This incease imposes additional challenge to the already
extremely huge design space of CMP that is composed of intractable combinations of a
large number of architecture parameters for the optimization [Ipek et al. 2008].

The essence of design is to find the optimal values of architectural parameters that
form a design space. Microprocessor architectural design space exploration (DSE) is
often investigated using a simulation or emulation of various target architectures.
Therefore, architecture researchers heavily rely on software simulator and Field Pro-
grammable Gate Array (FPGA) emulator for performance evaluation of processor archi-
tectures. However, as shown in Table I, the simulation speed is extremely slow, a typical
slowdown of the real execution time in the order of 105 to 106. As a result, simulating a
relatively small program that takes 1min to execute requires approximately one month
to a year to simulate [Eeckhout 2010]. The huge design space and the low simulation
speed prevent computer architects from thoroughly exploring the intractable design
space. The traditional brute-force algorithm of first-simulate-then-compare becomes
challenging if not infeasible.

Effectively dealing with the notoriously difficult DSE problem has become the key
of multi-core design in practice. Prediction and Ranker methods were two of the most
advanced works for quickly finding the optimal architacture in DSE [Ipek et al. 2008;
Chen et al. 2014]. The basis of the methods was machine-learning technologies, in-
cluding artificial neural network (ANN) and boost prediction. While still in need of
substantial time for training and predicting, the machine-learning technologies encap-
sulated the detailed interactions between various architecture components and these
interaction information can assist architects in understanding the system design. In
this article, we want to explicitly show the relationship among the basic architecture
and application parameters for better understanding and optimizing, especially in the
initial phase of the DSE process.

Analytical modeling is extremely fast compared to other methods and explicitly de-
picts the interactions among the architecture components. In practice, an analytical
model should capture the most important features of the architecture with a limited
number of measurable parameters. If a model has too many parameters or has immea-
surable parameters, then it will not be useful. We will keep this point in mind in our
discussion.

A variety of analytical models have been presented recently [Cassidy and Andreou
2009; Cassidy et al. 2011; Cassidy and Andreou 2012; Hill and Marty 2008; Woo and
Lee 2008; Sun and Chen 2010] to address these challenges. For example, Cassidy
and Andreou incorporate sequential data access delay in terms of average memory
access time (AMAT) into Amdahl’s law [Cassidy and Andreou 2009; Cassidy et al.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:3

Table I. The Speed of Different Simulators

Simulator ISA Micro-architecture Speed
Intel X86 Core 2 1–10KHz
AMD X86 Opteron 1–10KHz
IBM Power Power5 200KIPS
PTLSim X86 AMD Athlon 270KIPS
Sim-outorder Alpha Alpha 21264 740KIPS
GEMS Sparc Generic 69KIPS
GEM5 X86, Alpha, MIPS, etc. Generic 100–200KIPS

2011; Cassidy and Andreou 2012] while Hill and Marty apply Amdahl’s concepts to
multicore architectures based on a hardware cost model [Hill and Marty 2008]. Woo
and Lee follow up with the consideration of energy efficiency [Woo and Lee 2008]. In
contrast, Sun and Chen consider the impact of memory capacity for many-core design,
but they do not explicitly incorporate data access concurrency in their analysis [Sun
and Chen 2010]. Although these works, more or less, optimize the design space of CMP
in different forms, few of them explore the memory concurrency. As a consequence,
data access patterns in these studies are exploited from a sequential perspective using
the AMAT metric, which cannot truly reflect the current situation. In addition, most of
these studies are also short on the consideration of memory capacity impact on problem
sizes as well, which is another important factor in the design space of CMP.

As data access delay is dominating the overhead in modern big-data processing, it
has become the most preeminent performance bottleneck of computing systems. For
example, the processor stall time due to data access typically contributes 50% to 70%
of the total application execution time [Hardavellas et al. 2007; Somogyi et al. 2009].
Therefore, incorporating data access patterns into performance models becomes vitally
important. In fact, memory concurrency as the main form of data access patterns has
become a more prevalent factor to the design of efficient memory systems (e.g., multi-
port, multi-banked, pipelined cache, non-blocking cache, runahead, and simultaneous
multithread). Meanwhile, in addition to data concurrency, in scalable computing prob-
lem size increases with computing resources, and the increase is usually bounded by
the available memory size [Sun and Ni 1990; Woo et al. 1995; Bienia et al. 2008].
Hence, the assumption that the problem size is fixed would cause misleading results.
As a result, it is crucial to include memory concurrency and memory capacity consid-
erations in the many-core DSE in order to keep up with the increasing importance of
modern memory systems and the emerging of data intensive applications. To the best
of our knowledge, we propose for the first time to simultaneously consider data access
concurrency and memory capacity to explore the design space of CMP.

Memory wall and memory bound are two well-known performance constraints [Sun
and Ni 1990; Wulf and McKee 1995]. C-AMAT is a new model that unifies the com-
bined impact of data locality and concurrency on data access. Thus, applying C-AMAT to
many-core design is a natural choice [Sun and Wang 2014; Sun 2014]. In the meantime,
Sun-Ni’s law is a generalization of Amdahl’s law and Gustafson’s law [Sun and Ni 1990;
Amdahl 1967; Gustafson 1988]. While these scalable laws are well studied, they are
traditionally discussed in the context of supercomputing. The Sun-Nis law (memory-
bounded speedup) is originally designed for scalability study, where each node (chip)
has a fixed memory, so increasing the number of node will increase the memory size
proportionally and give a speed up bound under the physic memory bound. The details
of the memory hierarchy and sequential (single node) performance variation, however,
are not considered in Sun-Ni’s law. Therefore, applying Sun-Ni’s law for many-core pro-
cessor design is challenging and has practical significance. In this article, we present

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:4 Y.-H. Liu and X.-H. Sun

C2-Bound, a data-driven analytical model that incorporates both memory concurrency
and memory capacity factors as well as both execution time and scalability measure-
ment for many-core design. The essence of this model is to take advantage of both the
C-AMAT and Sun-Ni’s law to optimize the design space of CMP. In particular, this
study makes the following contributions:

—The C2-Bound model is proposed to consider both memory locality and concurrency at
the same time. To this end, we derive program-specific model parameters from traces
and consider adaptively reshaping (through allocating, scheduling) the underlying
architecture.

—The C2-Bound model considers the problem sizes that are bounded by variable mem-
ory capacities. When the number of cores, N, is changed, the on-chip cache capacity
will be adjusted correspondingly, and then the problem size will be scaled to a dif-
ferent value. We termed it as the problem size scale function g(N) and found g(N)
is a vital factor in balancing the number of cores and the size of the caches. When
g(N) < O(N), few cores but large caches are needed; when g(N) ≥ O(N), more cores
and smaller caches are preferred. These results can significantly narrow the large
design space and they can only be got from analytical model rather than from an
architect’s intuition.

—The C2-Bound model presents an interface between analysis and simulation. With
the Analysis plus Simulation (APS) algorithm, the newly proposed DSE model has
been integrated into the GEM5 simulator to supervise simulation [Binkert et al.
2011]. The APS approach drastically reduces the number of required simulations.
Representative results for diverse applications confirm the feasibility and correctness
of the newly proposed analytical model for many-core processor design. The C2-Bound
model has been implemented as an automatic tool to find an application-specific
optimal architecture.

—Based on the C2-Bound model, a few important but subtle concepts have become
clear mathematically. The memory bound effect of “big data” has been revealed an-
alytically. Meanwhile, the difference between “high performance computing” (HPC)
and “high throughput computing” (HTC) has been explored and formalized clearly.
As these concepts are fundamental and widely used in the computing community,
the formula and quantification in this work will be of significant importance.

The remainder of this article is organized as follows. The next section provides
some preliminary knowledge of C-AMAT and Sun-Ni’s law. Section 3 then proposes
the data-driven C2-Bound analytical model for many-core design. Section 4 presents
application specific design exploration case studies. Section 5 further discusses memory
concurrency and memory capacity-bounded problem size. Section 6 reviews related
work in many-core design exploration. Finally, Section 7 concludes this study and
discusses potential future work.

2. MEMORY BOUNDS IN TERMS OF LATENCY AND CAPACITY

In this article, unless otherwise stated, a memory system is the whole memory hi-
erarchy rather than only the main memory. Latency and capacity are two bounds of
memory on the achievable computing performance. C-AMAT, a new performance met-
ric, accounts for concurrency at both the component and system levels for modern
memory design [Sun and Wang 2014; Sun 2014; Liu and Sun 2015b]. C-AMAT rep-
resents measures and analyzes data access delay from a single program perspective.
In contrast, Sun-Ni’s law highlights the impact of memory bounded problem sizes on
parallel speedup [Sun and Ni 1990]. Both Amdahl’s law [Amdahl 1967] and Gustafson’s
law [Gustafson 1988] are the special cases of Sun-Ni’s law.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:5

2.1. C-AMAT

The conventional memory metric AMAT formulation is shown in Equation (1)
[Hennessy and Patterson 2012], where H is the hit time of data accesses, MR is the miss
rate, and AMP is the average miss penalty. AMP is the sum of all miss access latencies
divided by the total number of misses. AMAT does not consider the concurrency of data
accesses in terms of either hits or misses, based on the assumption that data accesses
are sequential, one after another; further, AMAT does not take into account that with
concurrent accesses, hits and misses may coexist within the same cycle. The sequential
assumption governing AMAT worked well in the past but applies less accurately for
modern processor architectures and memory systems where concurrency is paramount.
For example, in an out-of-order processor, when a miss occurs, other instructions can
be executed while the memory system is servicing the miss. Moreover, concurrency fea-
tures such as multi-port, multi-bank, and multi-rank allow multiple outstanding reads
and writes to co-exist at a given time in the memory system, depending on the under-
lying hardware support. Therefore, some of the data access latencies can be hidden,

AMAT = H + MR × AMP. (1)

To cover the concurrent read and write properties of modern memory systems, the C-
AMAT model is proposed in Equation (2) [Sun and Wang 2014]. The first parameter H
is the same as that in AMAT. The second parameter CH represents hit concurrency; the
third parameter CM represents the pure miss concurrency. CH can be contributed by
caches with multi-port, multi-bank or pipelined structures. CM can be contributed by
non-blocking cache structures. In addition, out-of-order execution, multi-issue pipeline,
multi-threading, and CMP can all increase CH and CM. The pure miss rate, pMR,
differs from the conventional MR. pMR is the ratio of the number of pure (rather than
conventional) misses over the total number of accesses. A pure miss here means that
a miss contains at least one miss cycle that does not have any hit access activity [Sun
and Wang 2014]. pAMP is the average number of pure miss cycles per miss access,

C-AMAT = H
CH

+ pMR × pAMP
CM

. (2)

As shown in Equation (3), the ratio of AMAT and C-AMAT is the data access concur-
rency, which will be abbreviated to C,

C = AMAT
C-AMAT

. (3)

Generally, C is greater than or equal to 1. When C = 1, we can say there exists no
concurrency. At this time, CH = 1, CM = 1, pMR = MR, and pAMP = AMP. Therefore,
AMAT can be seen a special case of C-AMAT. In our later discussion, we will use
Equation (3) to denote the data access concurrency.

Figure 1 demonstrates C-AMAT concept. There are five different memory accesses,
and each access contains three cycles for cache hit operations. If it is a miss, then
additional miss penalty cycles will be required. The number of miss penalty cycles is
uncertain, depending on where the missed data can be obtained from and its contention
impact during the data access. Accesses 1, 2, and 5 are hit accesses; Accesses 3 and
4 are miss accesses. Access 3 has a 3-cycle miss penalty; Access 4 has only a 1-cycle
miss penalty. When considering the access concurrency, only Access 3 contains 2 pure
miss cycles. Although Access 4 has 1 miss cycle, this cycle is not a pure miss cycle
because it overlaps with the hit cycles of Access 5. Therefore, according to our new
definition of (concurrent) pure miss rate, the pure miss rate of the five accesses is 0.2,
instead of 0.4, that of the conventional non-concurrent version. When miss cycles are
overlapping with hit accesses, the processor will not stall; the processor can continue

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:6 Y.-H. Liu and X.-H. Sun

Fig. 1. A demo of C-AMAT and pure miss.

processing the data provided by the hit accesses. According to Equation (2), C-AMAT
is 8 cycles of 5 accesses or 1.6 cycles per access, whereas by Equation (1) AMAT is
3 + 0.4 × 2 or 3.8 cycles per access. The difference between C-AMAT and AMAT is
the contribution of concurrent data access. In this example, concurrency has increased
memory performance to 2.375-fold.

In Figure 1, there are 4 hit phases, namely Hit phases 1, 2, 3, and 4, which contain
2, 4, 3, and 1 concurrent hit cache assesses with lasting cycle 2, 1, 2, 1, respectively.
Therefore, CH = 2 × 2/6 + 4 × 1/6 + 3 × 2/6 + 1 × 1/6 = 5/2. And there is only
1 pure miss phase with 1 pure miss concurrency which lasts for 2 cycles. Therefore
CM = 1 × 2/2 = 1; pAMP = 2/1 =2; pMR = 1/5. Thus, formula (2) is equal to

C-AMAT = H
CH

+ pMR × pAMP
CM

= 3
5/2

+ 1
5

× 2
1

= 1.6.

The value of the parameters is in performance analysis and optimization. The in-
valuable contribution of C-AMAT is that it provides an unified formulation to capture
the joint performance impact of locality and concurrency.

2.2. Sun-Ni’s Law

Realizing that the problem size may be constrained by memory capacity, Sun-Ni’s law
was proposed in 1990 [Sun and Ni 1990]. Assume each computing node is a processor-
memory pair. Increasing the number of processors, N, then, will increase the memory
capacity as well. Assume h(x) is the relationship between problem size and memory
capacity size; that is,

W = h(M) and W ′ = h(N × M), (4)

where M is the memory capacity of one node, W is the original problem size, and W ′ is
the scaled problem size.

Let g(N) be the function that reflects the parallel problem increase factor as the
memory capacity increases N times (in the next subsection, we will present detailed
examples to illustrate g(N)). By definition,

g(N) = W ′/W. (5)

Then we have

g(N) = h(N × M)/h(M) = h(N × h−1(W))/h(M). (6)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:7

Thus memory capacity-bounded speedup is

SpeedupSun-Ni = fseq × W + (1 − fseq) × h(N × h−1(W))

fseq × W + (1− fseq)×h(N×h−1(W))
N

. (7)

fseq is the sequential portion of the problem size. Note that for any power function
h(x) = axb and for any rational numbers a and b [Sun and Ni 1990], we have

h(N × x) = a(N × x)b = Nb × axb = Nb × h(x) = g(N) × h(x). (8)

Therefore,

SpeedupSun-Ni = fseq × W + (1 − fseq) × g(N) × W

fseq × W + (1− fseq)×g(N)×W
N

. (9)

That is, Equation (10) holds,

SpeedupSun-Ni = fseq + (1 − fseq) × g(N)

fseq + (1− fseq)×g(N)
N

, (10)

where g(1) = 1. Taking g(N) = N3/2 as an example, the speedup is

SpeedupSun-Ni = fseq + (1 − fseq) × N3/2

fseq + (1 − fseq) × N1/2 = O(N). (11)

When g(N) = 1, Equation (10) is Amdahl’s law. When g(N) = N, Equation (10)
is Gustafson’s law. Because Amdahl’s law [Amdahl 1967] as well as Gustafson’s
law [Gustafson 1988] both can be seen as the special cases of Sun-Ni’s law [Sun and Ni
1990], we will use Sun-Ni’s law in Equation (10) as the basis for our further discussion.

To make this more understandable, we take some applications as examples to il-
lustrate the role of g(N). The dense matrix multiplication is a well-known routine
frequently found in applications. For dense matrices with dimension n, the computa-
tion requirement of matrix multiplication is 2n3 and the memory requirement is 3n2.
Thus,

W = 2n3 and M = 3n2. (12)

Writing W as a function of M, we have Equation (13),

W = h(M) =
(

2M
3

)3/2

. (13)

Therefore,

W ′ = h(N × M) =
(

2NM
3

)3/2

= N3/2 × h(M). (14)

That is,

g (N) = h(N × M)/h (M) = N3/2. (15)

In a similar manner, given the computation complexity and memory complexity,
we can get the g(N) value for any application. g(N) represents the data reuse rate
when memory is scaled N times. Table II shows the values of some applications. As
will be shown later, g(N) significantly impacts the optimal CMP configuration for
different phases of an application and diverse applications. The merit of this work
is that it presents an Analytical plus Simulation method to automatically obtain the
quantitative solution before detailed simulation.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:8 Y.-H. Liu and X.-H. Sun

Table II. The g(N) Factors of Some Applications

Application Computation Memory g(N)
Dense matrix multiplication N3 N2 N3/2

Band sparse matrix multiplication N N N
Stencil N N N
Fast Fourier Transform N Nlog2 N 2N

Fig. 2. The impact of process level concurrency and memory level concurrency on program running time.

3. THE C2-BOUND CMP DSE MODEL

We formalize the many-core design space exploration as an optimization problem.
Note that object function and constraints are needed for an optimization problem. We
will follow a framework that is similar to that of Cassidy and Andreou to model the
optimization problem [Cassidy and Andreou 2009; Cassidy et al. 2011; Cassidy and
Andreou 2012]. In this section, we first present the execution time object function and
constraints for optimization. Then, we propose the methodology for automatic collection
of the needed parameter values and then resolve the optimization problem. Last, we
will discuss how the analytical results can facilitate simulation.

3.1. Impact of C-AMAT on Data Stall Time

Given a fixed problem size, the impact of memory-level concurrency and process-level
concurrency can be illustrated in Figure 2, where the x-axis is time, and the y-axis is the
amount of work being done in parallel. Subgraph (a) shows the case when there is only
one process (p = 1) and no memory concurrency (C = 1). Subgraph (b) shows the case
when multiple processes are available (p = N) but still without memory concurrency

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:9

(C = 1). Subgraph (c) shows the highest concurrent case when multiple processes are
available (p = N) with memory concurrency (C > 1). The shadowed area is the total
amount of operations done. The sum of the length of all the shadowed rectangles is the
time it would take to run.

Quantifying the combined effect of the memory level concurrency and process level
concurrency, as demonstrated in Figure 2, is difficult due to the entangled interaction
between data access patterns and underlying computing system. What makes the
problem become even more challenging is that the problem size is usually a function
of the available memory capacity.

In this study, the bound impact of memory concurrency and memory capacity on
achievable many-core performance are examined. The model proposed is called the
C2-Bound, where C2 denotes the consideration of both data access concurrency and
“memory” capacity. Note that the memory capacity here is on-chip memory capacity
(more discussion will be presented in Section 5).

Cassidy and Andreou have developed an objective function that links multiprocessor
performance gains to data access delay and energy consumption [Cassidy and Andreou
2012]. We will follow the same discussion flow as theirs, that is, first propose object
function and physical constraints and then do the optimization.

3.2. Execution Time Object Function

Let problem size (in terms of the dynamic Instruction Count) be IC. Equation (16) is
the classic formulation of Central Processing Unit (CPU) time of sequential processing
in terms of data stall time [Hennessy and Patterson 2012],

CPU-time = IC × (CPIexe + data-stall-time) × Cycle-time. (16)

Equation (17) is the conventional data stall time formula based on AMAT [Hennessy
and Patterson 2012],

Data-stall-time = fmem × AMAT. (17)

The AMAT-based Equation (17) only considers memory locality but not concurrency.
Equation (17) no longer holds true when data access concurrency exists.

Recently, we have extended Equation (17) to consider both locality and concur-
rency [Liu and Sun 2015b]. The extended C-AMAT-based execution time is Equa-
tion (18). The overlapRatioc-m is the ratio of computation and memory access overlap-
ping time over total memory active time. A rigorous proof has been made [Liu and
Sun 2015b] with regard to the correctness and generality of Equation (18) for a single
processor. However, two questions remain for our C2-Bound: (1) extension to multipro-
cessors and (2) the consideration of memory capacity,

T = IC × (CPIexe + fmem × C-AMAT × (1 − overlapRatioc-m)) × Cycle-time. (18)

We take Equation (18) as the start point to study the scalability issues. According to
Sun-Ni’s law, the execution time object function can be formed as Equation (19),

JD = T1 + g(N) × TN

N
. (19)

T1 is the execution time of the serial part of the workload IC1. TN is the sequential
execution time of parallel part of the workload IC2. The portion of IC1 to IC is fseq and
the portion of IC2 to IC is 1 − fseq. That is,

IC1 = IC × fseq and IC2 = IC × (1 − fseq).

As the parallel degree i can be from 1 to N, Equation (19) can be generalized as
follows. For the brevity of discussion, we use the simple version as Equation (19), but

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:10 Y.-H. Liu and X.-H. Sun

Fig. 3. Chip multiple processors.

in real CMP DSE we have implemented the generalized version,

JD =
N∑

i=1

(g(i) × Ti/i).

According to Sun-Ni’s Law, the problem size IC can be scalable with memory capacity,
and recall that the memory capacity is increasing linearly with N, so the following
relation holds true, where IC0 is the problem size when N = 1,

IC = g(N) × IC0. (20)

Therefore, combining Equation (18), (19), and (20), we can derive Equation (21) as
the object function for application execution time

JD = IC0 × (CPIexe + fmem×C-AMAT× (1−overlapRatioc-m))
(

fseq + g(N) × (1 − fseq)
N

)
.

(21)
Equation (21) will be used as the object function for optimization. In Equation (21),

the features of data access patterns have been denoted by C-AMAT, especially data
access concurrency within a single core. Now we move onto developing the constraints
for the optimization problem.

3.3. Physical Constraints

Figure 3 shows a schematic illustration of CMP architecture. There are three basic
components: the NoC-connected cores, the fixed function logic (timing, test, and debug),
memory controllers, and input/output (I/O) interfaces. The cores each access their own
subset of a coherent or non-coherent L2 cache to provide high-bandwidth L2 cache
access.

Pollack’s rule states that “the microprocessor performance increase due to microar-
chitecture advance is roughly proportional to the square root of the increase in com-
plexity” [Borkar 2007],

CPIexe ∝ A0
−1/2

.

We use the rule to model the computing performance of a processor core as shown in
Equation (22),

CPIexe = k0 A0
−1/2 + φ0. (22)

Assume the chip has Aarea in total. For the brevity of discussion, we also assume the
processor core is symmetric. As shown in Equation (23), all the cores have equal pri-
vate areas. The case for asymmetric and dynamic multicore processors can be derived
following Equation (24),

A = N(A0 + A1 + A2) + Ac, (23)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:11

A = Ac +
N∑

i=1

(A0i + A1i + A2i), (24)

where N is the number of cores in CMP, A0 is the area of a processors core (excluding
its private cache), and A1 is the area of the private cache of a processor. A2 is the
area of the L2 cache allocated for a given processor. Ac is the area allocated for the
shared functions including shared caches, interconnections, memory controllers, test
and debug, and so on.

The relation between MR and cache capacity has been explored by Hartstein et al.
[2008]. The relation also holds true for pMR and cache capacity, since in most cases the
gap between MR and pMR is very small [Liu and Sun 2015b]. For different data access
patterns, pure miss rate has different sensitivities to the allocated cache size. This
sensitivity difference can be descripted by Equation (25). The higher value of ε implies
that pMR is more sensitive to cache area Ai. When ε is close to zero, the sensitivity
will be very small. Equation (25) links C-AMAT value and cache size. Thus, the object
function Equation (2) and constraint function Equation (23) are linked,

pMRi ∝ Ai
−ε

. (25)

The upper bound of concurrency, C, is limited by a few microarchitecture parameters,
such as instruction window size, reorder buffer (ROB) size and miss status holding
registers (MSHR) capacity in each cache layer [Chou et al. 2004]. When the upper
bound of C increases, the A0, A1, A2, and Ac all will be increased. For simplicity, we
assume that the increase of A0, A1, A2, and Ac are the same, and thus we do not need
to model the area cost of increasing C.

Now that the object function and constraints considering both C-AMAT and Sun-Ni’s
Law have been discussed, we are ready to solve the optimization problem.

3.4. Optimization Problem and Solving

Given that the total silicon area of the chip is fixed, the allocation of the silicon for
core logic, L1 cache, and L2 cache will influence the application performance. The law
of diminishing marginal utility should be considered into the allocation. Based on the
object function (Equation (21)) and physical constraints (Equation (23)), we formalize
the CMP DSE as an optimization problem shown in Equation (26),

Min Equation(21) s.t. Equation(23). (26)

We solve the optimization problem using the method of Lagrange multipliers,
minimizing

L(A1, A2, λ, N) = JD + λ[N(A0 + A1 + A2) + Ac − A]. (27)

Differentiating Equation (27) with respect to A0, A1, A2, λ, and N, we can build a set
of nonlinear equations. When using tools to analyze Equation (27), we find that

∂L
∂N

> 0 if and only if g(N) ≥ O(N). (28)

Therefore, the optimization falls into two cases. (1) When g(N) ≥ O(N), the workload
size, and thus execution time, increases with N, so a single core has the shortest T
and there is no need to explore the optimal N. In a given N, however, we can find the
optimal cache size parameters A0, A1, and A2. (2) When g(N) < O(N), the workload
size increase speed g(N) is lower than N, and we can find the optimal core number N
to minimize execution time T , and its corresponding A0, A1, and A2.

Equation (28) gives us an opportunity to formalize the difference of HPC and HTC
mathematically. Performance is always deemed the reciprocal of execution time, so

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:12 Y.-H. Liu and X.-H. Sun

Fig. 4. C-AMAT detector.

from the HPC perspective, the goal of optimization is to minimize execution time.
However, when the workload size is scalable, the optimum execution time increases
with the workload proportionally. From the HTC perspective, the goal of optimization
is to maximize W/T . Here W is the size of “big data.”

When workload size is fixed, maximizing W/T is equivalent to minimizing T . In
general, maximizing W/T is a common goal of the two cases. Maximizing W/T will
boost data processing speed, which is vital for big data analysis.

3.5. APS Methodology

The analytic model Equation (27) provides a good theoretical result for CMP design,
but in engineering design we often needs a more accurate design layout based on
simulation. In the following, we discuss how the C2-Bound model can guide CMP
simulation.

We propose the automatic APS method for C2-Bound-based CMP DSE. The APS
method follows a “characterization + optimization + simulation” flow. The characteri-
zation collects the input parameters for the optimization. The input information can
be obtained directly from an application development manual, analyzed by a compiler,
or profiled by hardware detection structures.

Figure 4 illustrates the C-AMAT analyzer, which is a hardware detection system.
The Hit Concurrency Detector (HCD) counts the total hit cycles and records each hit
phase in order to calculate the average hit concurrency. The HCD also notifies the Miss
Concurrency Detector (MCD) whether a current cycle has a hit access. Therefore, with
the hit information from HCD and the miss information from MSHR, MCD is able to
obtain the total number of pure miss cycles.

We have successfully collected all the needed input parameters for an application
running on physical machines using Performance Application Programming Interface
(PAPI) [Browne et al. 2000] and HPCToolkit [Adhianto et al. 2010]. Moreover, we also
achieved the same goal with the help of GEM5 and DRAMSim2 simulators [Binkert
et al. 2011; Rosenfeld et al. 2011].

Taking the parameters as inputs, Figure 5 shows the optimization flow. The left
column lists the four steps: the input, formalization, solving, and the output, while
the right column presents the implementation details. Note that the solution of the
nonlinear equations can be found using Newton’s method. We have implemented an
efficient solver for the nonlinear equation set.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:13

Fig. 5. Analytical methodology overview.

Fig. 6. APS algorithm.

The solver can be integrated with a simulator to guide detailed evaluation. Only the
adjacent regions in the design space near the solution presented by the C2-Bound model
are worth the time-consuming simulation. We formally present the APS algorithm in
Figure 6.

APS is the collaboration of analytical modeling and detailed simulation. The optimal
core count and the space allocation between processing and caches are determined by
the optimization model. Once these fundamental parameters are fixed, the skeleton
of CMP becomes clear. Based on the skeleton, microarchitecture parameters such as
issue width and ROB size can be efficiently evaluated via simulation, since the design
space has been narrowed significantly.

In next section, the detailed results of the verification and case studies are presented.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:14 Y.-H. Liu and X.-H. Sun

Table III. Default Configurations of Processor Structure

Parameter Configurations
Number of cores Up to 16
Clock frequency 2.4GHz

Non-blocking enabled Out of order
Issue-width decode/retire up to four instructions

Pipeline depth 15 stages
ROB size 128-entry

Number of MSHRs 16
Number of targets per MSHR 4

Branche predictor Fetch up to 4 branches

Fig. 7. Core allocation for multiple tasks in a CMP.

4. VALIDATION AND CASE STUDY

The state-of-the-art cycle-accurate simulator GEM5 [Binkert et al. 2011] and DRAM-
Sim2 [Rosenfeld et al. 2011] are integrated to provide an appropriate memory perfor-
mance simulation. As shown in Table III, we model a detailed four-way out-of-order
processor with a 128-entry reorder buffer, a two-level cache hierarchy. The memory hi-
erarchy provides enough hardware to support high concurrency, which is similar to an
Intel Core i7 system [Levinthal 2009]. We also implemented on-line detecting structure
for the C-AMAT analyzer shown in Figure 4.

We used benchmark suites, SPLASH-2 and PARSEC, which have several input
datasets at different scales [Woo et al. 1995; Bienia et al. 2008]. Aided by Sim-
Point [Hamerly et al. 2004], 10 billion dynamic instructions for each benchmark were
simulated to collect statistics.

Recent product announcements show a trend toward aggressive integration of many
cores on a single chip to maximize throughput. However, efficiently utilizing rich re-
sources is not easy. The behavior of an application changes phase by phase during its
execution. There is no fixed hardware configuration that can work best for all the pos-
sible behaviors. Each design has its own pros and cons, depending on the interaction
between the data access patterns and the underlying memory system.

Fortunately, most programs have periodic behaviors and their data access patterns
are predictable [Hamerly et al. 2004]. With a set of lightweight counters, we are able
to deploy proper optimization techniques to timely adapt to the underlying data access
pattern changes of an application.

C2-Bound analytic results can be either used in reconfigurable hardware environ-
ments or by software designers and applied to scheduling, partitioning, and allocating
resources among diverse applications. Figure 7 includes three applications. As the se-
quential portion fseq is very large and memory concurrency C is very low, the first

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:15

Fig. 8. Fixed problem size scaling (g(N) = 1, fmem = 0.3).

Fig. 9. Fixed problem size scaling (g(N) = 1, fmem = 0.9).

application need the least number of cores and thus the benefit for allocating more
cores to the first application is marginal. On the other hand, the second application
has a low fseq and a high C. Therefore, it is sensible to assign more cores to the second
application. The third application falls somewhere between these two extremes. In this
manner, the application demand can be well matched into the underlying hardware.

In the following section, we will discuss the optimal core numbers in two cases.
One case is when problem size is fixed, that is, g(N) = 1; the second case is when
workload is super linearly scalable, that is g(N) = N3/2, which is representive for a
large number of scientific applications. In each case, we will discuss three levels of
memory concurrency: One has no memory concurrency, that is, C = 1, and one has a
moderate memory concurrency, C = 4; the last is high memory concurrency, C = 8.

The purpose in this section is not to present all the results of the model but only
to verify its correctness and effectiveness. We have implemented the model online to
perceive the changing of the application data access patterns.

4.1. Case Study I: Problem Size Is fixed g (N) = 1

In the first case, we keep the workload size fixed, that is, g(N) = 1. Therefore, the
analysis can be focused on the impact of data access patterns in terms of C-AMAT.

Assume the sequential portion of a parallel algorithm is fseq. The optimal system
scale N can be found for different fseq values. As shown in Figures 8 and 9, mem-
ory concurrency with 1, 4, and 8, show different optimal core number requirements,
especially when the value of fseq is small.

Memory concurrency is a vital factor influencing the scalability of a system. When
fseq increases, the optimal system scale decreases. In the extreme case, if 99.5% of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:16 Y.-H. Liu and X.-H. Sun

Fig. 10. The W/T of fixed problem size scaling (g(N) = 1, fmem = 0.3).

Fig. 11. The W/T of fixed problem size scaling (g(N) = 1, fmem = 0.9).

the program is parallelizable, hundreds of cores are needed. However, if only a small
portion of the program can be parallelized, only dozens of cores are needed, and adding
more cores has no benefit and may counterproductive. The results obtained here show
that our model successfully reflects the Amdahl’s law.

Memory concurrency shows significant impact on the execution time, T . Higher C
implies more reduction of T . This impact is especially significant when the sequential
portion f is small. For example, as shown in Figure 8, when fseq is 0.5%, the speedup
ratio of T (C = 1) over T (C = 8) is 5.25; on the other hand, when fseq is 50%, the
speedup ratio of T (C = 1) over T (C = 8) is 2.38. The reason is simple. It is just
Amdahl’s law applied to data access. When fseq is smaller, more cores will be needed,
and there will be more opportunities to achieve high memory concurrency, since more
cores can issue more data accesses concurrently.

Comparing Figures 8 and 9, we find that when data access frequency fmem is higher,
fewer cores are needed. This implies that when the workload size is fixed, if the data
access frequency becomes higher, then more die area should be invested on cache and
the number of cores needed should be reduced due to resource contention.

Based on the same data of Figures 8 and 9, now let us examine the throughput
W/T , the ratio of problem size W over execution time T . As shown in Figure 10, by
increasing fseq, the ratio is decreased. Note that we have already selected the optimal
core numbers and optimally allocated the silicon resource for architecture components.
The decreasing trend of W/T is the result of the fixed problem size. This fact illustrates
the importance of g(N), the scale function of the memory-bounded problem size.

Comparing Figures 10 and 11, we find that when data access frequency fmem in-
creases, the throughput W/T decreases. That shows intensive data access can decrease
computation efficiency.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:17

Fig. 12. The problem size W and execution time T of memory bounded scaling (g(N) = N3/2, fmem = 0.3).

Fig. 13. The problem size W and execution time T of memory bounded scaling (g(N) = N3/2, fmem = 0.9).

Fig. 14. The W/T of memory bounded scaling (g(N) = N3/2, fmem = 0.3).

4.2. Case Study II: Problem Size Increases with Scale Function g (N) = N3/2

In the second case, we scale up the problem size with the underlying function g(N) =
N3/2.

Figures 12 and 13 show the problem size W and the execution time T of memory
bounded scaling when g(N) = N3/2 and data access frequency fmem is 0.3 or 0.9. Com-
paring Figures 12 and 13, we find that the execution time (T) increases with data access
frequency fmem. Figures 14 and 15 show the throughput (W/T) values correspondingly.
Comparing Figures 14 and 15, we find that the throughput (W/T) decreases with data
access frequency fmem.

When there is no memory concurrency (C = 1), the scalability curve of the execu-
tion time T is close to the problem size curve. On the other hand, higher memory

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:18 Y.-H. Liu and X.-H. Sun

Fig. 15. The W/T of memory bounded scaling (g(N) = N3/2, fmem = 0.9).

concurrency leads to a better scalability in terms of execution time. For example, as
shown in Figures 12 and 13, when N is 1,000, the speedup ratio of T (C = 8) over
T (C = 1) is very significant. This tells us that, even with a fixed number of processing
cores, improving data access performance via memory concurrency can obtain signifi-
cant speedup. This fact is very important for the design of future supercomputers.

Based on the same data of Figures 12 and 13, Figures 14 and 15 show the curve
of W/T . It can be seen that when g(N) ≥ O(N), higher memory concurrency makes
many-core computing more efficient in terms of increasing throughput W/T . When
there is no memory concurrency (C = 1), about 100 cores are enough to achieve the best
throughput. When N is more than 100, the ratio of W over T remains approximately
the same. However, when memory concurrency increases, W/T first increases and then
fluctuates.

This fact can be explained as follows. At the beginning, the workload size increases
with the number of cores, N. Since the N value is not significantly large, the cache
hierarchy is not a bottleneck. Therefore, the increasing speed of T is lower than that
of workload size W . However, when N becomes very large in CMPs, due to a fixed
total area, increasing N requires the reduction of the cache size per core, which will
increase cache miss after a threshold and thus decrease W/T . As W/T first increases
and then fluctuates, we can find an optimal point to achieve the best throughput to
foster the utilization of many-core processors. The die area tradeoff between computing
and memory is an application of the Sun-Ni’s law. The difference is that now we have
extended it to CMP with the additional consideration of memory hierarchy.

The results presented in Figure 12 to 15 demonstrate the importance of memory
concurrency and its relation with the number of cores. In general, more cores correspond
to smaller cache area; the results for area allocation for cache are not presented here
due to the page limitation but can be obtained at the same time with the optimization
of the number of cores.

Therefore, the optimal core count N and the space allocation between processing and
caches A1 and A2 all have been determined by our optimization model as shown in
Equation (27). Since these are the most fundamental parameters of CMP, the skeleton
of CMP becomes clear. Based on the skeleton, microarchitecture parameters such as
issue width and ROB size can be efficiently evaluated via detailed simulation since the
design space has been narrowed significantly.

Using the cycle-accurate simulator GEM5 [Binkert et al. 2011], we have done a
DSE to find the optimal chip configurations for the fluidanimate benchmark from
PARSEC[Bienia et al. 2008]. The fluidanimate is a computer animation application
with large working sets. Six parameters (A0, A1, A2, N, issue width, and ROB size) are
considered and each parameter has 10 optional values, so the whole design space size

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:19

Fig. 16. The number of simulations and the total length of simulation time.

is one million (106). As shown in Figure 16, with the help of the C2-Bound analysis,
we do not need to run simulations to explore the A0, A1, A2, and N parameters. For
the rest of the parameters, issue width and ROB size, only 100 (102) simulations are
needed. Therefore, the design space has been narrowed significantly by up to four
orders of magnitude, from one million to one hundred. To evaluate the accuracy of
the APS method, we run simulations to traverse the full design space, which use 128
Intel Xeon processors running for 4 weeks. Then we get performance data for each of
the 106 different configurations, with which the APS performance data are compared,
and the error is 5.96%. When concurrency is not considered, that is, when AMAT is
used rather than C-AMAT, the error is increased to 112%; when capacity effect is not
considered, the error is increased to 31%; when neither concurrency nor capacity effect
is considered, the error is 178%. Therefore, the C2-Bound accurately reflects the time
model of modern processors.

The error 5.96% of C2-Bound may come from the following aspects. The first is
Pollack’s rule in Equation (22), which shows the transformation ratio of computing over
die area. The second is Hartstein’s rule in Equation (25), which indicates the translation
ratio of miss rate over die area size. Both formulas are empirical equations rather than
laws. The third is measurement and transfer delay of performance counters. When the
counter value can be measured and transferred effectively and in a timely manner,
the error can be narrowed significantly. Finally, part of the error may be due to the
assumption that area allocation does not change when the upper bound of concurrency
increases.

Note that APS only used about 1h with 8 processors rather than 4 weeks with 128
processors. The full space simulation used 82kh while APS only uses 8h. The speedup
is 10.25kilofold. Compared to the time saving, the 5.96% error is acceptable.

We also use the well-known machine-learning method ANN [Ipek et al. 2008] to
predict the performance data in the huge design space. To achieve the same prediction
accuracy (5.96% error), ANN needs 613 times of simulation while APS uses 100 times.
Therefore, APS used only 16.3% of the simulation time to achieve the same prediction
accuracy as ANN, and APS achieves 6.13-fold speedup.

5. DISCUSSIONS

For a many-core processor, a fundamental question is which layer of a memory hierar-
chy is the primary performance “bound” vital for many-core performance. To answer
this question, we should consider three factors, latency, bandwidth, and capacity, si-
multaneously. Figure 17 shows a general many-core memory hierarchy, where Sun-Ni’s
law can be applied to each layer of the hierarchy for memory bounded analysis.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:20 Y.-H. Liu and X.-H. Sun

Fig. 17. The CMP memory hierarchy.

Fig. 18. The APC values at each layer of a memory hierarchy.

Initially, the interactions among the three factors are not straightforward. Fortu-
nately, the Access Per memory-active Cycle (APC) metric can be used to represent the
combined impact of latency and bandwidth [Wang and Sun 2014]. More interestingly,
the previously used metric C-AMAT equals 1/APC [Sun and Wang 2014].

Data APC is a new metric to measure memory systems performance, which can be ap-
plied on each memory layer and considers both memory locality and concurrency [Wang
and Sun 2014]. In Figure 18, the APC1 is the APC value of the L1 cache, APC2 is that
of last level cache (LLC), and APC3 is that of main memory. As a big gap between the
performance of on- and off-chip cache has been shown in Figure 18, it is reasonable
to conclude that in our C2-Bound model the memory bound is the “on-chip memory
bound.” The “on-chip memory” herein is LLC for inclusive caches or the sum of all the
on-chip caches for exclusive caches.

It is important to determine the optimal memory bounded problem size. The problem
size differs with working set size. An application with a large problem size may not
have a large working set. Assuming that the on-chip memory size allocated to a given
application is X, the working set size [Denning 1968] is Y , and the problem size is Z,
we can obtain the maximum value of the “LLC-bounded” problem size via solving the
optimization problem shown in Equation (29),

Max Z s.t. Y ≤ X. (29)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:21

Note that the X value is the memory size allocated to an application. When multiple
applications are running together, the X value of an application may be smaller than
the total physical memory size.

The rationale behind Equation (29) is that, to fit the working set into on-chip memory,
we should keep the working set size no more than the on-chip cache size; otherwise the
chip performance will be decreased significantly [Denning 1968, 2005]. Assuming that
the optimal on-chip memory bounded problem size is a, where a = arg Max Z s.t. Y ≤
X, and that the real problem size is b = Z, the following two cases exist:

(1) If b is not bigger than a, then the application performance will be processor bound.
The working set of the application is captured on chip, thus the application requires
few off-chip accesses, which will cause the application performance to be insensitive
to on-chip memory capacity and concurrency.

(2) If b is bigger than a, then the application performance will be limited by the rate
that the data can be moved between the processor and the DRAM. Now, cache
capacity and data access concurrency will impact the application performance more
significantly. A “big data” application is deemed a large working set application and
is likely to fall into this case. Therefore, Equation (29) shows the meaning of “big
data” by quantifying the memory bound effect. To our knowledge, Equation (29) is
the first analytical model for determining the optimal memory bounded problem
size.

Applications may move between these two cases phase by phase, since their data
access behaviors may be dynamic. Therefore, reconfigurable hardware or management
software (for scheduling, partitioning, and allocating) is called for to achieve the dy-
namic matching between application and underlying hardware. To facilitate the imple-
mentation, an associated methodology in Figure 4 has been given to obtain the needed
parameters online to facilitate the C2-Bound model being used for these purposes.

Our model considers two new parameters: “data access concurrency” and “memory
capacity-bounded problem size.” The introduction of “data access concurrency” is based
on the fact that concurrent data access exists at each layer of a memory hierarchy, and
its impact should be considered in many-core design. The parameter memory capacity-
bounded problem size is a vital factor in the scalability study, where increasing the
number of cores is a common design choice of many-core design. The inclusion of these
two new parameters makes the newly proposed C2-Bound model significantly more
appropriate for DSE than the existing locality-only and/or problem size fixed models
for modern application-specific many-core design.

6. RELATED WORK

The many-core design exploration is a process to find an architecture with features that
can well match application characteristics and then to utilize chip space efficiently
to achieve excellent performance. Simulation and analytical modeling are the two
basic approaches to accomplish this purpose. However, the simulation is costly and
slow, typically a 1min execution of a real machine requires approximately 1 month
to a year to simulate [Eeckhout 2010] an order of 105-to-106 increase in execution
time. The huge design space and the high simulation cost prevent computer architects
from exploring the intractable design space thoroughly. The conventional brute-force
simulate-compare design process becomes painfully slow, if not infeasible, to find an
optimal multicore architecture.

While simulation is an important step towards implementation, analytical methods
can rapidly narrow the system design space prior to the detailed simulation. They
illuminate high-level design tradeoffs and present solutions for optimal performance
and efficiency.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:22 Y.-H. Liu and X.-H. Sun

As an analytical approach, the C2-Bound analytical model introduced in this study is
effective and new. Based on the C2-Bound model, the newly proposed APS tool adopts
an integrated analysis and simulation approach to utilize the merits of both methods.
It has reduced the total simulation time significantly in an order of four folds.

Researchers have been investigating analytical methods for optimizing CMP ar-
chitectures, in which some methods used in the machine-leaning domain have been
used for analytical modeling such as genetic algorithms (GA) [Thompson and Pimentel
2013] and response surface modeling (RSM) [Palermo et al. 2009]. The GA and RSM
are both closed-form expressions. As a result, the impacts of problem size and memory
concurrency cannot be explicitly discussed.

Some open-form expressions were proposed without considering the variations of
problem size and memory concurrency. Notably, the work by Hill and Marty uses a
measure of processor performance to augment Amdahl’s law and applies it to evaluate
symmetric, asymmetric, and dynamic multi-core processors [Hill and Marty 2008].
In their work, the problem size is assumed to be fixed and the impact of memory
concurrency is ignored.

Sun and Ni proposed the memory-bounded parallel speedup model, which is also
known as Sun-Ni’s law, in 1990 [Sun and Ni 1990]. The law shows that the scalabil-
ity of computing is bounded by the problem size that is limited by memory capacity.
The law that is valid for supercomputing also presents insights for CMP design. How-
ever, it needs to be revisited taking into account of the data access delay besides the
problem size as well as to consider the CMP features, especially the physical resource
constraints [Li et al. 2006].

With the consideration of memory-bounded problem size, Sun and Chen discussed
the Sun-Ni’s law based on the same CMP cost model presented by Hill and Marty and
obtained very different and more optimistic results [Sun and Chen 2010]. Their results
are important in locality based system design. Data access concurrency, however, was
not explicitly incorporated.

Cassidy and Andreou incorporated sequential data access delay in terms of AMAT
into Amdahl’s law [Cassidy and Andreou 2009; Cassidy et al. 2011; Cassidy and
Andreou 2012]. This work take data access patterns account into an analytical model.
However, Cassidy and Andreou did not consider concurrent data accesses, and they
also assumed fixed problem size. Their work can be taken as special cases of the newly
proposed C2-Bound model when there exists no memory concurrency or the problem
size is fixed.

Compared with the Roofline model [Williams et al. 2010], C2-Bound model in this
work explicitly considers the impacts of memory concurrency and locality. Roofline
model assumes that the working sets do not fit fully into on-chip caches and uses
“operational intensity” to reflect locality. Note that the operational intensity may vary
with the problem size, but in the Roofline model the issue of how to determine the
optimal memory-bound problem size is not addressed [Hennessy and Patterson 2012].

In summary, our work difers fundamentally with the above investigations. We do not
keep the assumptions that problem size is fixed and the memory access is sequential.
For the first time, Amdahl’s law is reevaluated with the simultaneously consideration of
memory concurrency and memory capacity for the silicon area constrained many-core
processor design.

7. CONCLUSIONS

While the number of transistors in a given die increases based on Moore’s law, the uti-
lization of these transistors continues to be a challenging task in Very Large Scale Inte-
gration (VLSI) design. This is especially true in recent years when data access becomes

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:23

the premier performance bottleneck of computing systems. To respond to the increasing
importance and complexity of modern many-core architecture and memory systems,
this study, for the first time, incorporates memory concurrency and memory-bounded
problem size into many-core processor design space exploration. While maintaining
simplicity and practical feasibility, with the consideration of both memory-concurrency
and memory-bound, the newly proposed C2-Bound model is significantly more accurate
and more powerful than existing DSE models. It facilitates the studies of many-core
data processing, workload scalability, and therefore reshapes the on-chip area alloca-
tion for processing cores, caches, and memory controllers. The C2-Bound model has
been implemented and can be executed automatically under the newly proposed APS
algorithm for fast and accurate CMP DSE, with a combination of analysis and simula-
tion. Analytic and implementation results show that C2-Bound is feasible and effective.
The analytical results have narrowed the design space significantly by up to four or-
ders of magnitude. APS uses only 16.3% of the simulation time to achieve the same
prediction result as the widely used standard machine-learning method, ANN [Ipek
et al. 2008], for the “fluidanimate” benchmark.

The extension of CMP DSE to consider the concurrency driven data access latency
and memory capacity bounded problem size is a complicated process. In this study, we
have used our cumulated long time experience in memory bounded formulation and
in C-AMAT development. While the C2-Bound model is essential for next-generation
data-centric processor design and for Exascale system design, this study is only the first
step in considering data and scalability in CMP DSE. Moreover, energy consumption
and temperature can be considered for multi-objective exploration in future refined
versions. The extension of C2-Bound to asymmetric CMP DSE can be done following
the same framework with area model given by Equation (24).

The analytic results presented in this study can also be used in hardware reconfig-
uration environments or used by software designers for scheduling, partitioning, and
allocating resource to achieve the dynamic matching between application behaviors and
underlying hardware. In fact, the unified approach of combining memory-concurrency
and memory-bound can be extended to general parallel computing as well.

In this article, we only focus on data access concurrency and memory bounded prob-
lem size for high-performance computing. In the future, more objects can be included
in such an analysis. For example, the object function shown in Equation (21) can be re-
shaped to achieve a balance among performance, power, energy, and temperature [Cho
and Melhem 2008; Huang et al. 2010].

ACKNOWLEDGMENTS

The authors thank Professor Yang Wang from Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, for his valuable suggestions. We also thank the members of the SCS lab of IIT for
providing experimental mechanisms.

REFERENCES

Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin, John Mellor-Crummey, and
Nathan R. Tallent. 2010. HPCToolkit: Tools for performance analysis of optimized parallel programs.
Concurr. Comput.: Pract. Exp. 22, 6 (2010), 685–701.

Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large scale computing capabil-
ities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference. ACM, New York, NY,
483–485.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques. ACM, New York, NY, 72–81.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

9:24 Y.-H. Liu and X.-H. Sun

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, and others. 2011. The gem5 simulator.
ACM SIGARCH Comput. Arch. News 39, 2 (2011), 1–7.

Shekhar Borkar. 2007. Thousand core chips: A technology perspective. In Proceedings of the 44th Annual
Design Automation Conference. ACM, New York, NY, 746–749.

Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip Mucci. 2000. A portable programming
interface for performance evaluation on modern processors. Int. J. High Perf. Comput. Appl. 14, 3 (2000),
189–204.

Andrew Cassidy and Andreas G. Andreou. 2009. Analytical methods for the design and optimization of
chip-multiprocessor architectures. In 43rd Annual Conference on Information Sciences and Systems
(CISS’09). IEEE, 482–487.

Andrew Cassidy, Kai Yu, Haolang Zhou, and Andreas G. Andreou. 2011. A high-level analytical model for
application specific CMP design exploration. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE’11). IEEE, 1–6.

Andrew S. Cassidy and Andreas G Andreou. 2012. Beyond amdahl’s law: An objective function that links
multiprocessor performance gains to delay and energy. IEEE Trans. Comput. 61, 8 (2012), 1110–1126.

Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou, and Yunji Chen. 2014. Archranker:
A ranking approach to design space exploration. In Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture. IEEE, 85–96.

Sangyeun Cho and Rami G. Melhem. 2008. Corollaries to Amdahl’s law for energy. Comput. Arch. Lett. 7, 1
(2008), 25–28.

Yuan Chou, Brian Fahs, and Santosh Abraham. 2004. Microarchitecture optimizations for exploiting
memory-level parallelism. ACM SIGARCH Comput. Arch. News 32, 2 (2004), 76.

Peter J. Denning. 1968. The working set model for program behavior. Commun. ACM 11, 5 (1968), 323–333.
Peter J. Denning. 2005. The locality principle. Commun. ACM 48, 7 (2005), 19–24.
Lieven Eeckhout. 2010. Computer architecture performance evaluation methods. Synth. Lect. Comput. Arch.

5, 1 (2010), 1–145.
John L. Gustafson. 1988. Reevaluating amdahl’s law. Commun. ACM 31, 5 (1988), 532–533.
Greg Hamerly, Erez Perelman, and Brad Calder. 2004. How to use simpoint to pick simulation points. ACM

SIGMETRICS Perf. Eval. Rev. 31, 4 (2004), 25–30.
Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia Ailamaki, and Babak

Falsafi. 2007. Database servers on chip multiprocessors: Limitations and opportunities. In Proceedings
of the Biennial Conference on Innovative Data Systems Research. ACM, New York, NY.

A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma. 2008. On the nature of cache miss behavior: Is it√
2? J. Instr.-Level Parall. 10, 8 (2008), 1–22.

John L. Hennessy and David A. Patterson. 2012. Computer Architecture: A Quantitative Approach. Elsevier,
New York.

Mark D. Hill and Michael R. Marty. 2008. Amdahl’s law in the multicore era. Computer 41, 7 (2008), 33–38.
Wei Huang, Kevin Skadron, Sudhanva Gurumurthi, Robert J. Ribando, and Mircea R. Stan. 2010. Exploring

the thermal impact on manycore processor performance. In Proceedings of the 26th Annual IEEE Semi-
conductor Thermal Measurement and Management Symposium (SEMI-THERM’10). IEEE, 191–197.

Engin Ipek, Sally A. Mckee, Karan Singh, Rich Caruana, Bronis R. De Supinski, and Martin Schulz. 2008.
Efficient architectural design space exploration via predictive modeling. ACM Trans. and Code Opt. 4, 4
(2008), 178–184.

David Levinthal. 2009. Performance analysis guide for Intel core i7 processor and Intel Xeon 5500 processors.
Intel Performance Analysis Guide 30 (2009), 18.

Yingmin Li, Benjamin Lee, David Brooks, Zhigang Hu, and Kevin Skadron. 2006. CMP design space ex-
ploration subject to physical constraints. In Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, 2006. IEEE, 17–28.

Yu-Hang Liu and Xian-He Sun. 2015a. C2-Bound: A capacity and concurrency driven analytical model
for manycore design. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage (SC’15). IEEE, 1–11.

Yu-Hang Liu and Xian-He Sun. 2015b. Reevaluating data stall time with the consideration of data access
concurrency. J. Comput. Sci. Technol. 30, 2 (2015), 227–245.

Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2009. ReSPIR: A response surface-based Pareto
iterative refinement for application-specific design space exploration. IEEE Trans. Comput.-Aid. Des.
Integr. Circ. Syst. 28, 12 (2009), 1816–1829.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

Evaluating the Combined Effect of Memory Capacity and Concurrency 9:25

Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle accurate memory system
simulator. Comput. Arch. Lett. 10, 1 (2011), 16–19.

Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi. 2009. Spatio-temporal mem-
ory streaming. ACM SIGARCH Comput. Arch. News 37, 3 (2009), 69–80.

Xian-He Sun. 2014. Concurrent-AMAT: A mathematical model for big data access. HPC Mag. 5, 1 (2014),
1–4.

Xian-He Sun and Yong Chen. 2010. Reevaluating Amdahl’s law in the multicore era. J. Parallel Distrib.
Comput. 70, 2 (2010), 183–188.

Xian-He Sun and Lionel M. Ni. 1990. Another view on parallel speedup. In Proceedings of Supercomputing’90.
IEEE, 324–333.

Xian-He Sun and Dawei Wang. 2014. Concurrent average memory access time. IEEE Comput. 47, 5 (2014),
74–80.

Mark Thompson and Andy D. Pimentel. 2013. Exploiting domain knowledge in system-level mpsoc design
space exploration. J. Syst. Arch. 59, 7 (2013), 351–360.

Dawei Wang and X. Sun. 2014. APC: A novel memory metric and measurement methodology for modern
memory system. IEEE Trans. Comput. 63, 7 (2014), 1626–1639.

Samuel Williams, Andrew Waterman, and David Patterson. 2010. Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM 52, 4 (2010), 65–76.

Dong Hyuk Woo and Hsien-Hsin S. Lee. 2008. Extending Amdahl’s law for energy-efficient computing in the
many-core era. Computer 41, 12 (2008), 24–31.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The
SPLASH-2 programs: Characterization and methodological considerations. ACM SIGARCH Comput.
Arch. News 23 (1995), 24–36.

Wm A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of the Obvious. ACM SIGARCH
Comput. Arch. News 23, 1 (1995), 20–24.

Received March 2016; revised November 2016; accepted November 2016

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 9, Publication date: March 2017.

