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Abstract—The state-of-the-art storage architecture of high-performance computing systems was designed decades ago, and with
today’s scale and level of concurrency, it is showing significant limitations. Our recent work proposed a new architecture to address the
1/0 bottleneck of the conventional wisdom, and the system prototype (FusionFS) demonstrated its effectiveness on up to 16 K
nodes—the scale on par with today’s largest supercomputers. The main objective of this paper is to investigate FusionFS’s scalability
towards exascale. Exascale computers are predicted to emerge by 2018, comprising millions of cores and billions of threads. We built
an event-driven simulator (FusionSim) according to the FusionFS architecture, and validated it with FusionFS’s traces. FusionSim
introduced less than 4 percent error between its simulation results and FusionFS traces. With FusionSim we simulated workloads on up
to two million nodes and find out almost linear scalability of I/0O performance; results justified FusionFS’s viability for exascale systems.
In addition to the simulation work, this paper extends the FusionFS system prototype in the following perspectives: (1) the fault
tolerance of file metadata is supported, (2) the limitations of the current system design is discussed, and (3) a more thorough
performance evaluation is conducted, such as N-to-1 metadata write, system efficiency, and more platforms such as Amazon Cloud.

Index Terms—Data storage systems, file systems, high performance computing, supercomputers

1 INTRODUCTION

HE conventional architecture of high-performance com-
puting (HPC) systems separates the compute and stor-
age resources into two cliques (i.e., compute nodes and
storage nodes), both of which are interconnected by a
shared network infrastructure. This architecture is mainly a
result from the nature of many legacy large-scale scientific
applications that are compute-intensive, where it is often
assumed that the storage I/O capabilities are lightly utilized
for the initial data input, occasional checkpoints, and the
final output. Therefore, since the bottleneck used to be the
computation, significantly more resources have been
invested in the computational capabilities of these systems.
In the era of Big Data, however, scientific applications are
becoming data-centric [1]; their workloads are now data-
intensive rather than compute-intensive, requiring a greater
degree of support from the storage subsystem [2]. Making it
worse, the existing gap between compute and I/O contin-
ues to widen as the growth of compute system still follows
Moore’s Law while the growth of storage systems has
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severely lagged behind. Prior work [3] shows that current
HPC storage architecture would not scale to the emerging
exascale computing systems (10'® ops/s).

While recent studies (for example, [4], [5]) address the
I/0 bottleneck in the conventional architecture of HPC sys-
tems, this work is orthogonal to them by proposing a new
HPC architecture that collocates node-local storage with
compute resources. In particular, we envision a distributed
storage system on compute nodes for applications to manip-
ulate their intermediate results and checkpoints; the data
only need to be transferred over the network to the remote
storage for archival purposes. While co-location of storage
and computation has been widely adopted in cloud com-
puting and data centers (for example, Hadoop clusters [6])
and extensively studied in in-situ HPC data analysis [7], [8],
[9], [10], [11], a real system having persistent storage
deployed on compute nodes of a HPC system has never
existed, despite this architecture attracting much research
interest (for example, DEEP-ER [12]). This work, to the best
of our knowledge, for the first time demonstrates how to
architect and engineer such a system, and reports how
much, quantitatively, it could improve the I/O performance
of real-world scientific applications.

The proposed architecture of co-locating compute and
storage may raise concerns about jitters on compute nodes,
since applications’ computation and I/O would share resour-
ces such as CPU cycles and network bandwidth. Neverthe-
less, recent study [13] shows that the I/O-related cost can be
offloaded onto dedicated infrastructures that are decoupled
from the application’s acquired resources, making computa-
tion and I/O separated at a finer granularity. In fact, this
resource-isolation strategy has been applied in production
systems: the IBM Blue Gene/Q supercomputer (Mira [14])
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assigns one core of the chip (17 cores in total) for the local
operating system and the other 16 cores for applications.

Distributed storage has been extensively studied in cloud
computing and data centers (for example, the popular dis-
tributed file system HDFS [15]); yet there exists little litera-
ture for building a distributed storage system particularly
for HPC systems whose design principles are greatly differ-
ent from data centers. As a case in point, HPC nodes are
highly customized and tightly coupled with high-through-
put and low-latency network (for example, InfiniBand),
while data centers typically have commodity servers and
inexpensive networks (for example, Ethernet). Therefore,
storage systems optimized for data centers might not be
appropriate for HPC systems, as we will see HDFS delivers
poor performance on a typical HPC machine in Fig. 9. Spe-
cifically, we observe that the following challenges are
unique to a distributed storage on HPC systems, related to
both metadata-intensive and write-intensive workloads.

First, the storage system on HPC nodes needs to support
intensive metadata operations. Many scientific applications
create a large number of small- to medium-sized files, as
Welch and Noer [16] report that 25-90 percent of all the 600
million files from 65 Panasas [17] installations are 64 KB or
smaller. This implies that the I/O performance is highly
throttled by the metadata rate, besides the data itself. Data
centers do not optimize for this type of workload, as
claimed in Google file system (GFS) [18]: “Multi-GB files are
the common case and should be managed efficiently. Small
files must be supported, but we need not optimize for
them.” Indeed, if we recall that Hadoop distributed file sys-
tem, [15] (an open-source variation of GFS) splits a large file
into a series of default 64 MB chunks (128 MB recom-
mended in most cases) for parallel processing, a small- or
medium-sized file (for example, 64 KB) can benefit little
from this data parallelism. Moreover, the centralized meta-
data server in GFS and HDFS is obviously not designed to
handle intensive metadata operations. In the HPC commu-
nity, traditional parallel file systems (for example, IBM Gen-
eral Parallel File System, GPFS [19], Parallel Virtual File
System, PVFS [20]) that could claim to have some non-
centralized metadata management, in fact have a limited
form of distribution that often limits the aggregate perfor-
mance of metadata operations significantly [21], for instance
see Fig. 3. Therefore, this work argues that the metadata
management in HPC storage systems needs to be revisited.

Second, file writes should be optimized for the distrib-
uted storage on HPC nodes. The fault tolerance of most
large-scale HPC systems is achieved through some form of
checkpointing. In essence, the system periodically flushes
memory to external persistent storage, and occasionally
loads the data back to memory to roll back to the most
recent correct checkpoint up on a failure. In this checkpoint-
restart scenario, file writes usually outnumber file reads in
terms of both frequency and size; improving the write per-
formance would significantly reduce the overall I/O cost.
The fault tolerance of data centers, however, is not achieved
through checkpointing its memory states, but the re-
computation of affected data chunks that are replicated on
multiple nodes. Therefore, conventional wisdom and expe-
rience from data center storage could not be directly
employed by HPC storage systems.
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We implement the fusion distributed file system
(FusionFS) to demonstrate how to overcome the aforemen-
tioned challenges. FusionFS disperses its metadata to all the
available nodes to achieve the maximal concurrency of
metadata operations. Every client of FusionFS optimizes file
writes with local writes (Whenever possible), which reduces
network traffic and makes the aggregate I/O throughput
highly scalable (almost linear, see Fig. 17). FusionFS is sup-
posed to coexist with the remote storage (for example,
GPFS [19]) rather than to replace the latter, which mainly
serves as the archival repository.

FusionFS is recently deployed on up to 16 K nodes of an
IBM Blue Gene/P supercomputer (Intrepid [22]), and heavily
accessed by a variety of benchmarks and applications. We
observe more than an order of magnitude improvement to
the I/O performance when comparing FusionFS to other
popular file systems such as GPFS [19], PVFS [20], and
HDEFS [15], surpassing 2.5 TB/s aggregate 1/O throughput
on 16 K nodes. To understand FusionFS’s scalability beyond
today’s largest systems, an event-driven simulator, Fusion-
Sim, is developed and validated by FusionFS traces. Fusion-
Sim simulation shows that FusionFS scales almost linearly
and delivers 329 TB/s on 2-million nodes, the scale many
experts believe represents the exascale computing system.

Preliminary results of FusionFS are recently published in
the IEEE International Conference on Big Data. In [23], we
propose the new storage architecture for extreme-scale HPC
systems to address the I/O bottleneck of modern data-
intensive scientific applications. Based on the new architec-
ture, we design and implement the FusionFS file system to
support metadata- and write-intensive workloads. Exten-
sive evaluation is conducted with benchmarks and applica-
tions at extreme scales; results demonstrated FusionFS's
superiority over state-of-the-art solutions (for example,
GPFS [19], PVFS [20], and HDFS [15]). This paper signifi-
cantly extends our prior work [23] in the following
perspectives:

e Deeper study of distributed metadata management, in
both performance and resilience

e  Extended performance evaluation of FusionFS with
additional file systems (for example, PVFS [20]) in new
environments (for example, Amazon Cloud)

o A simulation study to predict FusionFS’s performance
beyond today’s largest systems towards exascales, which
is validated by FusionFS traces

The remainder of this paper is structured as follows.
Section 2 presents the design and implementation of the
FusionFS file system. Section 3 describes the design and
implementation of the FusionSim simulator. We report
experimental results in Section 4. Section 5 reviews related
work on HPC storage systems. We finally conclude this
paper in Section 6.

2 THE FUSIONFS FILE SYSTEM

This section discusses the design trade-off of the FusionFS
file system. More detail of system implementation was
elaborated in [23].

As shown in Fig. 1, FusionFS is a user-level file system
that runs on the compute resource infrastructure, and
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Fig. 1. FusionFS deployment in a typical HPC system.
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enables every compute node to actively participate in both
the metadata and data movement. The client (or applica-
tion) is able to access the global namespace of the file system
with a distributed metadata service. Metadata and data are
completely decoupled: the metadata on a particular com-
pute node does not necessarily describe the data residing
on the same compute node. The decoupling of metadata
and data allows different strategies to be applied to meta-
data and data management, respectively.

The POSIX interface is implemented with the FUSE
framework [24], so that legacy applications can run directly
on FusionFS without modifications. Nevertheless, FUSE has
been criticized for its performance overhead. In native
UNIX-like file systems (e.g., Ext4) there are only two context
switches between the user space and the kernel. In contrast,
for a FUSE-based file system, context needs to be switched
four times: two switches between the caller and VFS; and
another two between the FUSE user library (libfuse) and the
FUSE kernel module (/dev/fuse). A detailed comparison
between FUSE-enabled and native file systems was reported
in [25], showing that a Java implementation of a FUSE-
based file system introduces about 60 percent overhead
compared to the native file system. However, in the
context of C/C++ implementation with multithreading on
memory-level storage, which is a typical setup in HPC sys-
tems, the overhead is much lower. In prior work [26], we
reported that FUSE could deliver as high as 578 MB/s
throughput, 85 percent of the raw bandwidth.

To avoid the performance overhead from FUSE,
FusionFS also provides a user library for applications to
directly interact with their files. These APIs look similar to
POSIX, for example ffs open(), ffs_close(), ffs_read(), and
ffs_write(). The downside of this approach is the lack of
POSIX support, indicating that the application might not be
portable to other file systems, and often needs some modifi-
cations and recompilation.

2.1 Metadata Management
2.1.1  Namespace

Clients have a coherent view of all the files in FusionFS no
matter if the file is stored in the local node or a remote node.
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This global namespace is maintained by a distributed hash
table (DHT [27], [28], [29], [30]), which disperses partial
metadata on each compute node. The client could interact
with the DHT to inquire about any file on any node. Because
the global namespace is just a logical view for clients, and it
does not physically exist in any data structure, the global
namespace does not need to be aggregated or flushed when
changes occur to the subgraph on local compute nodes. The
changes to the local metadata storage will be exposed to the
global namespace when the client queries the DHT.

2.1.2 Data Structures

FusionFS has different data structures for managing regular
files and directories. For a regular file, the field addr stores
the node where this file resides. For a directory, there is a
field filelist to record all the entries under this directory.
This filelist field is particularly useful for providing an in-
memory speed for directory read such as “lIs /mnt/
fusionfs”. Nevertheless, both regular files and directories
share some common fields, such as timestamps and permis-
sions, which are commonly found in traditional i-nodes.

The metadata and data on a local node are completely
decoupled: a regular file’s location is independent of its
metadata location. This flexibility allows us to apply differ-
ent strategies to metadata and data management, respec-
tively. Moreover, the separation between metadata and data
has the potential to plug in alternative components to meta-
data or data management, making the system more modular.

Besides the conventional metadata information for regu-
lar files, there is a special flag in the value indicating if this
file is being written. Specifically, any client who requests to
write a file needs to set this flag before opening the file, and
will not reset it until the file is closed. The atomic compare-
swap operation supported by DHT [30] guarantees the file
consistency for concurrent writes.

Another challenge on the metadata implementation is on
the large-directory performance issues. In particular, when
a large number of clients write many small files on the same
directory concurrently, the value of this directory in the
key-value pair gets incredibly long and responds extremely
slowly. The reason is that a client needs to update the entire
old long string with the new one, even though the majority
of the old string is unchanged. To fix that, we implement an
atomic append operation that asynchronously appends the
incremental change to the value. This approach is similar to
Google file system [18], where files are immutable and can
only be appended. This gives us excellent concurrent meta-
data modification in large directories, at the expense of
potentially slower directory metadata read operations.

2.1.3 Network Protocols

We encapsulate several network protocols in an abstraction
layer. Users can specify which protocol to be applied in their
deployments. Currently, we support three protocols: TCP,
UDP, and MPI. Since we expect a high network concurrency
on metadata servers, epoll [31] is used instead of multi-
threading. The side effect of epoll is that the received mes-
sage packets are not kept in the same order as on the sender.
To address this, a header [message_id, packet_id] is added
to the message at the sender, and the message is restored by
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sorting the packet_id for each message at the recipient. This
is efficiently done by a sorted map with message_id as the
key, mapping to a sorted set of the message’s packets.

2.1.4 Persistence

The whole point of the proposed distributed metadata
architecture is to improve performance. Thus, any metadata
manipulation from clients should occur in memory, plus
some network transfer if needed. On the other hand, persis-
tence is required for metadata just in case of any memory
errors or system restarts.

The persistence of metadata is achieved by periodically
flushing the in-memory metadata onto the local persistent
storage. In some sense, it is similar to the incremental check-
pointing mechanism. This asynchronous flushing helps to
sustain the high performance of the in-memory metadata
operations.

2.1.5 Consistency

Since each primary metadata copy has replicas, the next
question is how to make them consistent. Traditionally,
there are two semantics to keep replicas consistent:
(1) strong consistency—blocking until replicas are finished
with updating; (2) weak consistency—return immediately
when the primary copy is updated. The tradeoff between
performance and consistency is tricky, most likely depend-
ing on the workload characteristics.

As for a system design without any a priori information
on the particular workload, we compromise with both sides:
assuming the replicas are ordered by some criteria (for
example, last modification time), the first replica is strongly
consistent to the primary copy, and the other replicas are
updated asynchronously. By doing this, the metadata are
strongly consistent (in the average case) while the overhead
is kept relatively low.

2.1.6 Fault Tolerance

When a node fails, we need to restore the missing metadata
and files on that node as soon as possible. The traditional
method for data replication is to make a number of replicas
to the primary copy. This method has its advantages such
as ease-of-use, less compute-intensive, when compared to
the emerging erasure-coding mechanism [32], [33]. The
main critique on replicas is, however, its low storage effi-
ciency. For example, in Google file system [18] each primary
copy has two replicas, which results in the storage utiliza-
tion as %ﬁ = 33%. For fault tolerance of metadata, we choose
data replication for metadata based on the following obser-
vations. First, metadata size is typically much smaller than
file data in orders of magnitude. Therefore, replicating the
metadata impact little to the overall space utilization of the
entire system. Second, the computation overhead intro-
duced by erasure coding can hardly be amortized by the
reduced I/O time on transferring the encoded metadata.

2.2 File Manipulation
2.2.1 File Movement

For file movement (i.e., data transfer over the network across
compute nodes), neither UDP nor TCP is ideal for FusionFS
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on HPC compute nodes. UDP is a highly efficient protocol,
but lacks reliability support. TCP, on the other hand, supports
reliable transfer of packets, but adds significant overhead.

We have developed our own data transfer service fusion
data transfer (FDT) on top of UDP-based data transfer
(UDT) [34]. UDT is a reliable UDP-based application level
data transport protocol for distributed data-intensive appli-
cations. UDT adds its own reliability and congestion control
on top of UDP that offers a higher speed than TCP.

2.2.2 File Open

When the application on machine A issues a POSIX fopen()
call, it is caught by the implementation in the FUSE user-
level interface (i.e., libfuse) for file open. The metadata client
then retrieves the file location from the metadata server that
is implemented by a distributed hash table [30]. The location
information might be stored in another machine B, so this
procedure could involve a round trip of messages between
A and B. Then A needs to ping B to fetch the file. Finally
the local operating system triggers the system call to open
the transferred file and finally returns the file handle to the
application.

2.2.3 File Write

Before writing to a file, the process checks if the file is being
accessed by another process, as discussed in Section 2.1.2. If
so, an error number is returned to the caller. Otherwise the
process can do one of the following two things. If the file is
originally stored on a remote node, the file is transferred to
the local node in the fopen() procedure, after which the pro-
cess writes to the local copy. If the file to be written is right
on the local node, or it is a new file, then the process starts
writing the file just like a system call.

The aggregate write throughput is obviously optimal
because file writes are associated with local I/O throughput
and avoids the following two types of cost: (1) the proce-
dure to determine to which node the data will be written,
normally accomplished by pinging the metadata nodes or
some monitoring services, and (2) transferring the data to a
remote node. It should be clear that FusionFS works at the
file level, thus chunking the file is not an option. Neverthe-
less, we will support chunk-level data movement in the
next release of FusionFS, whose preliminary results are cur-
rently under review [35]. The downside of this file write
strategy is the poor control on the load balance of compute
node storage. This issue could be addressed by an asynchro-
nous re-balance procedure running in the background, or
by a load-aware task scheduler that steals tasks from the
active nodes to the more idle ones.

When the process finishes writing to a file that is origi-
nally stored in another node, FusionFS does not send the
newly modified file back to its original node. Instead, the
metadata of this file is updated. This saves the cost of trans-
ferring the file data over the network.

2.2.4 File Read

Unlike file write, it is impossible to arbitrarily control where
the requested data reside for file read. The location of the
requested data is highly dependent on the I/O pattern.
However, we could determine which node the job is exe-
cuted on by the distributed workflow system such as
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Swift [36]. That is, when a job on node A needs to read some
data on node B, we reschedule the job on node B. The over-
head of rescheduling the job is typically smaller than trans-
ferring the data over the network, especially for data-
intensive applications. In our previous work [37], we
detailed this approach, and justified it with theoretical anal-
ysis and experiments on benchmarks and real applications.

Indeed, remote readings are not always avoidable for
some I/O patterns such as merge sort. In merge sort, the data
need to be joined together, and shifting the job cannot avoid
the aggregation. In such cases, we need to transfer the
requested data from the remote node to the requesting node.
The data movement across compute nodes within FusionFS
is conducted by the FDT service discussed in Section 2.2.1.
FDT service is deployed on each compute node, and keeps
listening to the incoming fetch and send requests.

2.2.5 File Close

When the application on Node-i closes, it flushes the file to
the local disk. If this is a read-only operation before the file
is closed, then libfuse only needs to signal the caller (i.e., the
application). If this file has been modified, then its metadata
needs to be updated. Moreover, the replicas of this file also
need to be updated.

Again, just like file open, the replica is not necessarily
stored on the same node of its metadata (Node-j). Here we
just assume its remote replica on Node-j for clear
presentation.

3 THE FUSIONSIM SIMULATOR

This section presents the design and implementation of the
FusionSim simulator, aimed to simulate FusionFS’s perfor-
mance at the scales beyond today’s largest systems. We will
first introduce two building blocks of FusionSim—ROSS
and CODES, and then move to the FusionSim simulator.

3.1 Building Blocks
3.1.1 The ROSS Simulation Tool

ROSS [38] is a massively parallel discrete-event simulation
(PDES) system developed in Rensselaer Polytechnic Insti-
tute. It uses the time warp algorithm and features reverse
computation for optimistic simulation. Users can choose to
build and run the models in sequential, conservative or
optimistic mode. To date, researchers have built many suc-
cessful large-scale models using ROSS. In [39], ROSS has
demonstrated the ability to process billions of events per
second by leveraging large-scale HPC systems.

A parallel discrete-event simulation system consists of a
collection of logical processes (LPs) that are used to model
distinct components of the system (for example, a file server
in FusionSim). LPs communicate by exchanging time
stamped event messages (for example, denoting the arrival
or departure of a request message). The goal of PDES is to
efficiently process all events in a global timestamp order at
the minimum overhead of any processor synchronization.

3.1.2 The CODES Simulation System

CODES [40] is a simulation system built on ROSS. Initially,
the goal of CODES is to enable the exploration and
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Fig. 2. The software stack of FusionSim.

co-design of exascale storage systems by providing a
detailed, accurate, and highly parallel simulation toolkit for
exascale storage systems. As CODES evolves, many mod-
ules emerge and have greatly enlarged the original scope.
CODES has gradually become a comprehensive platform
that supports the modeling and simulation of large-scale
complex systems including operating systems, file systems,
HPC systems, HPC applications, and data centers.

To date, CODES comprises of the following modules:
CODES-net, CODES-workloads, CODES-bg and CODES-
Ism. Specifically, CODES-net provides four networking
models based on parallel discrete-event simulation: the
torus network model [41], the dragonfly network model [42],
the LogGP model [43] and the simple-net model (a simple
N-to-N network).

CODES-net provides unified interfaces that facilitate the
use of all underlying networking models. FusionSim lever-
ages the functionality provided by CODES torus network
model and thus provides a detailed HPC communication
model and simulation. We provide the details of FusionSim
in the following section.

3.2 FusionSim
With the two enabling techniques, ROSS and CODES, we
build FusionSim to simulate FusionFS behavior on the
scales beyond today’s largest systems. The full software
stack is shown in Fig. 2. Four layers comprise the entire hier-
archy of the simulation system (from top downwards):
application, file systems, networks, and infrastructure.

When the simulation starts, the system first calls the
application layer to generate the workload (i.e., file opera-
tions) as the input of the FusionFS file system. Then Fusion-
Sim at the file system layer decides where to deal with the
file operation depending on its locality. In essence, if this
file operation involves network transfer, it is redirected to
the network models implemented in the CODES framework
at the network layer. Otherwise, the file operation (i.e., an
event) is passed to the ROSS infrastructure. It should be
noted that the events at the network layer are eventually
passed to the ROSS infrastructure as well.

FusionFS’s logic is implemented at the file system layer
in Fig. 2. Basically, each node in FusionFS is abstracted as a
logical process in FusionSim. For any file operation (regard-
less it is related to metadata or data), it triggers a new event
in the simulation system. The network topology is imple-
mented at the network layer. For example we can specify
the network type for the system to simulate; in this paper it
is set to 3-D torus for the IBM Blue Gene/P supercomputer.
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4 EVALUATION
This section answers the following four questions:

1) How does FusionFS perform under intensive meta-
data workloads at large scale when comparing with
other major file systems? (Section 4.2)
2)  What is FusionFS’s I/O throughput—not only (opti-
mized) file writes but also file reads? (Section 4.3)
3) What performance improvement can real-world
applications achieve from FusionFS? (Section 4.4)
4) How does (or, will) FusionFS scale at extreme-scale
(for example, exascale) systems? (Section 4.5)
We will first describe the experiment setup for these eval-
uations, then report and discuss the results one after
another.

4.1 Experiment Setup

While we indeed compare FusionFS to some open-source
systems such as PVFS [20] (in Fig. 5) and HDFS [15] (in
Fig. 9), our top mission is to evaluate its performance
improvement over the production file system of today’s
fastest systems. If we look at today’s top 10 supercom-
puters [44], four systems are IBM Blue Gene/Q systems
which run GPFS [19] as the default file system. GPFS is
deployed on 128 network-attached storage nodes; every
64 compute nodes share one I/O node to talk to the storage
nodes. GPFS is setup like this by considering the tightly-
coupled computing architecture and the I/O workload
from these compute nodes. Most large-scale experiments
conducted in this paper are carried out on Intrepid [22], a
40 K-node IBM Blue Gene/P supercomputer whose default
file system is also GPFS.

Each Intrepid compute node has quad core 850 MHz
PowerPC 450 processors and runs a light-weight Linux Zep-
toOS [45] with 2 GB memory. A 7.6 PB GPFS [19] parallel file
system is deployed on 128 storage nodes. When FusionFS is
evaluated as a POSIX-compliant file system, each compute
node gets access to a local storage mount point with
174 MB/s throughput on par with today’s high-end hard
drives; this local disk is emulated by the ramdisk throttled
by a single-threaded FUSE layer. The network protocols for
metadata management and file manipulation are TCP and
FDT, respectively.

All experiments are repeated at least five times until
results become stable (within 5 percent margin of error).
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Fig. 4. Metadata performance of FusionFS and GPFS on Intrepid (single
directory).

The reported numbers are the average of all runs. Caching
effect is carefully precluded by reading a file larger than the
on-board memory before the measurement. Except for
Fig. 9, all experiments of FusionFS are carried out with the
POSIX interface; That is, the FUSE overhead is included in
the reported results.

4.2 Metadata Rate

We expect that the metadata performance of FusionFS
should be significantly higher than the remote GPFS on
Intrepid, because FusionFS manipulates metadata in a
completely distributed manner on compute nodes while
GPFS has a limited number of clients on I/O nodes (every
64 compute nodes share one I/O node in GPFS). To quan-
titatively study the improvement, both FusionFS and
GPFS create 10 K empty files from each client on its own
directory on Intrepid. That is, at 1,024-nodes scale, we
create 10 M files over 1,024 directories. This workload
optimizes GPFS’ performance by taking advantage of
GPFS” multiple I/O nodes.

As shown in Fig. 3, at 1,024-nodes scale, FusionFS deliv-
ers nearly two orders of magnitude higher metadata rate
over GPFS. FusionFS shows excellent scalability, with no
sign of slowdown up to 1,024-nodes. The gap between
GPFS and FusionFS metadata performance would continue
to grow, as eight nodes are enough to saturate the metadata
servers of GPFS.

Each process only working on its own directory is rare in
the real world. Therefore we are interested in another
extreme case where many nodes create files in the same
directory. We expect that GPFS performs significantly
worse than the case of many directories. To confirm this,
Fig. 4 shows the metadata throughput when multiple
nodes create files in a single global directory. We observe
that GPFS does not scale even with two nodes. In
contrast, FusionFS delivers scalable throughput with similar
trends as in the many-directory case. Of note, FusionFS
achieves 54 K file creations per second on a single directory
at 1 K-node scale, mainly due to the use of the append oper-
ation in DHT [30] allowing lock-free concurrent metadata
writes on metadata objects.

One might overlook FusionFS’s novel metadata design
and state that GPFS is slower than FusionFS simply because
GPFS has fewer metadata servers (128) and fewer I/O nodes
(1:64). First of all, that is the whole point why FusionFS is
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Fig. 5. Metadata performance of FusionFS and PVFS on Intrepid (single
directory).

designed like this: to maximize the metadata concurrency
without adding new resources to the system.

To really answer the question “what if a parallel file sys-
tem has the same number of metadata servers just like
FusionFS?”, we install PVFS [20] on Intrepid compute
nodes with the 1-1-1 mapping between clients, metadata
servers, and data servers just like FusionFS. We do not
deploy GPFS on compute nodes because it is a proprietary
system, and PVEFS is open-source. The result is reported in
Fig. 5. Both FusionFS and PVFES turn on the POSIX inter-
face with FUSE. Each client creates 10 K empty files on the
same directory to push more pressure on both systems’
metadata service. FusionFS outperforms PVFES even for a
single client, which justifies that the metadata optimization
for the big directory (i.e., update — append) on FusionFS
is highly effective. Unsurprisingly, FusionFS again shows
linear scalability. On the other hand, PVFS is saturated at
32 nodes, suggesting that more metadata servers in paral-
lel file systems do not necessarily improve the capability
to handle higher concurrency.

Lastly, we show the overhead introduced by metadata
replication [30]. Fig. 6 shows that the overhead of adding
two replicas is roughly 30 percent. It is relatively small
because the replica is updated asynchronously.

4.3 1/0 Throughput

Similarly to the metadata, we expect a significant improve-
ment to the I/O throughput from FusionFS. Fig. 7 shows
the aggregate write throughput of FusionFS and GPFS on
up to 1,024-nodes of Intrepid. FusionFS shows almost linear
scalability across all scales. GPFS scales at a 64-nodes step
because every 64 compute nodes share one I/O node. Nev-
ertheless, GPFS is still orders of magnitude slower than
FusionFS at all scales.
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Fig. 6. Overhead of metadata replication.
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The main reason why FusionFS data write is faster is that
the compute node only writes to its local storage. This is
not true for data read though: it is possible that one node
needs to transfer some remote data to its local disk. Thus,
we are interested in two extreme scenarios (i.e., all-local
read and all-remote read) that define the lower and upper
bounds of read throughput. We measure FusionFS for both
cases on 256-nodes of Intrepid, where each compute node
reads a file of different sizes from 1 to 256 MB. For the all-
local case (for example, where a data-aware scheduler can
schedule tasks close to the data), all the files are read from
the local nodes. For the all-remote case (for example, where
the scheduler is unaware of the data locality), every file is
read from the next node in a round-robin fashion. This I/O
pattern is unlikely to be realistic in real-world applications,
but serves well as a workload for an all-remote request.

Fig. 8 shows that FusionFS all-local read outperforms
GPFS by more than one order of magnitude, as we have
seen for data write. The all-remote read throughput of
FusionFS is also significantly higher than GPFS, even
though not as considerable as the all-local case. The reason
why all-remote reads still outperforms GPFS is, again,
FusionFS’s main concept of co-locating computation and
data on the compute nodes: the bi-section bandwidth across
the compute nodes (for example, 3D-Torus) is higher than
the interconnect between the compute nodes and the stor-
age nodes (for example, Ethernet fat-tree).
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Fig. 8. Read throughput of FusionFS and GPFS on Intrepid.
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In practice, the read throughput is somewhere between
the two bounds, depending on the access pattern of the
application and whether there is a data-aware scheduler to
optimize the task placement. FusionFS exposes this much
needed data locality (via the metadata service) in order for
parallel programming systems (for example, Swift [36]) and
job scheduling systems (for example, Falkon [46]) to imple-
ment the data-aware scheduling. Note that Falkon has
already implemented a data-aware scheduler for the “data
diffusion” storage system [46], a precursor to the FusionFS
project that lacked distributed metadata management, hier-
archical directory-based namespace, and POSIX support.

It might be argued that FusionFS outperforms GPFS
mainly because FusionFS is a distributed file system on
compute nodes, and the bandwidth is higher than the net-
work between the compute nodes and the storage nodes.
First of all, that is the whole point of FusionFS: taking
advantage of the fast interconnects across the compute
nodes. Nevertheless, we want to emphasize that FusionFS’s
unique I/O strategy also plays a critical role in reaching the
high and scalable throughput, as discussed in Section 2.2.3.
So it would be a more fair game to compare FusionFS to
other distributed file systems in the same hardware, archi-
tecture, and configuration. To show such a comparison, we
deploy FusionFS and HDFS [15] on the Kodiak [47] cluster.
We compare them on Kodiak because Intrepid does not
support Java (required by HDFS).

Kodiak is a 1,024-nodes cluster at Los Alamos National
Laboratory. Each Kodiak node has an AMD Opteron 252
CPU (2.6 GHz), 4 GB RAM, and two 7200 rpm 1 TB hard
drives. In this experiment, each client of FusionFS and
HDFS writes 1 GB data to the file system. Both file systems
set replica to 1 to achieve the highest possible performance,
and turn off the FUSE interface.

Fig. 9 shows that the aggregate throughput of FusionFS
outperforms HDFS by about an order of magnitude.
FusionFS shows an excellent scalability, while HDFS starts
to taper off at 256 nodes, mainly due to the weak write local-
ity as data chunks (64 MB) need to be scattered out to multi-
ple remote nodes.

It should be clear that FusionFS is not to compete with
HDEFS, but to target the scientific applications on HPC
machines that HDFS is not originally designed for or even
suitable for. So we have to restrict our design to fit for the typ-
ical HPC machine specification: a massive number of homo-
geneous and less-powerful cores with limited per-core RAM.
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Therefore for a fair comparison, when compared to FusionFS
we had to deploy HDFS on the same hardware, which may
or may not be an ideal or optimized testbed for HDFS.

Similarly to the metadata evaluation, at the end of this
section we compare FusionFS and the parallel filesystem
with a similar architecture—PVFS. We compare both sys-
tems on Amazon EC2 with FUSE enabled. We use up to
96 ml.medium instances [48] in our experiments. Each
instance has a single virtual core, 3.75 GB memory, and 410
GB storage space. Results are reported in Figs. 10 and 11.
We observe that on a single node, the performance is com-
parable for both systems. However, FusionFS shows a better
scalability and the gap between both is getting larger on
more nodes. At 96-instance, FusionFS delivers a 2.2x higher
read throughput and 3.6 x higher write throughput.

4.4 Real-World Applications

We are interested in, quantitatively, how FusionFS helps to
reduce the I/O cost for real applications. This section will
evaluate four scientific applications on FusionFS all on
Intrepid. The performance is mainly compared to Intrepid’s
default storage, the GPFS [19] parallel file system.

For the first three applications, we replay the top three
write-intensive applications on Intrepid [22] in December
2011 [4] on FusionFS: PlasmaPhysics, Turbulence, and
AstroPhysics. While the PlasmaPhysics makes significant
use of unique file(s) per node, the other two write to shared
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Fig. 11. Write throughput on Amazon EC2 Cloud.
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files. FusionFS is a file-level distributed file system, so Plas-
maPhysics is a good example to benefit from FusionFS.
However, FusionFS does not provide good N-to-1
write support for Turbulence and AstroPhysics. To make
FusionFS’s results comparable to GPFS for Turbulence and
AstroPhysics, we modify both workloads to write to unique
files as the exclusive chunks of the share file. Due to limited
space, only the first five hours of these applications running
on GPFS are considered.

Fig. 12 shows the real-time I/O throughput of these
workloads at 1,024-nodes. On FusionFS, these workloads
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Fig. 13. The workload over three stages of BLAST.

are completed in 2.38, 4.97, and 3.08 hours, for PlasmaPhy-
sics, Turbulence, and AstroPhysics, respectively. Recall that
all of these workloads are completed in 5 hours in GPFS.

It is noteworthy that for both the PlasmaPhysics and
AstroPhysics applications, the peak I/O rates for GPFS top at
around 2 GB/s while for FusionFS they reach over 100 GB/s.
This increase in I/O performance accelerates the applications
2.1x times (PlasmaPhysics) and 1.6x times (AstroPhysics).
The reason why Turbulence does not benefit much from
FusionFS is that, there are not many consecutive I/O opera-
tions in this application and GPFS is sufficient for such work-
load patterns: the heavy interleaving of I/O and computation
does not push much I/O pressure to the storage system.

The fourth application, Basic Local Alignment Search Tool
(BLAST), is a popular bioinformatics application to bench-
mark parallel and distributed systems. BLAST searches one
or more nucleotide or protein sequences against a sequence
database and calculates the similarities. It has been imple-
mented with different parallelized frameworks, for example,
Paralle]BLAST [49]. In ParallelBLAST, the entire database
(4 GB) is split into smaller chunks on different nodes. Each
node then formats its chunk into an encoded slice, and
searches protein sequence against the slice. All the search
results are merged together into the final matching result.

We compare ParalleIBLAST performance on FusionFS
and GPFS with our AME (Any-scale MTC Engine) frame-
work [50]. We carry out a weak scaling experiment of
ParalleIBLAST with 4 GB database on every 64-nodes, and
increase the database size proportionally to the number of
nodes. The application has three stages (formatdb, blastp,
and merge), which produces an overall data I/O of 541 GB
over 16,192 files for every 64-nodes. Fig. 13 shows the work-
load in all three stages and the number of accessed files from
1 node to 1,024 nodes. In our experiment of 1,024-node scale,
the total I/ O is about 9 TB applied to over 250,000 files.

As shown in Fig. 14, there is a huge (more than one order
of magnitude) performance gap between FusionFS and
GPFS at all scales, except for the trivial 1-node case.
FusionFS has up to 32x speedup (at 512-nodes), and an
average of 23x improvement between 64-nodes and 1,024-
nodes. At 1-node scale, the GPFS kernel module is more
effective in accessing an idle parallel file system. In
FusionFS’s case, the 1-node scale result involves the user-
level FUSE module, which apparently causes BLAST to run
1.4x slower on FusionFS. However, beyond the corner-case
of 1-node, FusionFS significantly outperforms GPFS. In par-
ticular, on 1,024-nodes BLAST requires 1,073 seconds to
complete all three stages on FusionFS, and it needs 32,440
seconds to complete the same workload on GPFS.
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Fig. 14. BLAST execution time on Intrepid.

Based on the speedup of FusionFS and GPFS at different
scales, we show the efficiency of both systems in Fig. 15.
FusionFS still keeps a high efficiency (i.e., 64 percent) at
1,024-nodes scale, where GPFS falls below 5 percent at
64-nodes and beyond. For this application, GPFS is an
extremely poor choice, as it cannot handle the concurrency
generated by the application beyond 64-nodes. Recall that
this GPFS file system has total 128 storage nodes in Intrepid,
and is configured to support concurrent accessing from
40 K compute nodes, yet it exhibits little scaling from as
small as 64-nodes.

Lastly, we measure the overall throughput of data I/O at
different scales as generated by the BLAST application in
Fig. 16. FusionFS has an excellent scalability reaching over
8 GB/s, and GPFS is saturated at 0.27 GB/s from 64 nodes
and beyond.

4.5 Towards Exascales

While Section 4.3 reports FusionFS throughput and its com-
parison to other major file systems, this section concentrates
on FusionFS’s own performance and scalability at extreme
scales. The first experiment is carried out on Intrepid on up to
16 K-nodes each of which has a FusionFS mount point. The
workload is as follows: each client starts at the same time to
write 16 GB data to FusionFS. Fig. 17 shows the real-time
aggregate throughput of all 16 K nodes. FusionFS throughput
shows about linear scalability: doubling the number of nodes
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Fig. 15. BLAST 1/O efficiency on Intrepid.

1833

~+—BLAST (GPFS)
~m-BLAST (FusionFS)

8.06

Aggregate Throughput (GB/s)
O = N WbB UO N W

0.10

128 256
Number of Nodes

Fig. 16. BLAST I/O throughput on Intrepid.

yield doubled throughput. Specifically, we observe stable 2.5
TB/s throughput (peak 2.64 TB/s) on 16 K-nodes.

To show that FusionFS is scalable to even large scales
(Intrepid has maximal 40 K nodes but requires a special res-
ervation request to conduct experiments at such scales), we
build a FusionFS simulator—FusionSim—based on the
CODES framework [40]. In particular, we employ the torus
network model, and simulate the data transfer between
compute nodes as well as the local disk I/O. FusionSim sim-
ulates the same workload conducted in Fig. 17, and is vali-
dated by the real FusionFS trace on Intrepid on up to 16 K-
nodes, as reported in Fig. 18. The error between the real
trace and the simulation result is below 4 percent at all
scales (512-nodes to 16 K-nodes), making FusionSim likely
accurate in predicting the real system performance at larger
scales. In fact, if we take into account the 5 percent variance
from the experiments of FusionFS and FusionSim, the vali-
dation error is essentially negligible.

We scale FusionSim with the same workload in Fig. 17 to
2 million nodes, and report the throughput in Fig. 19. The
ideal throughput is plotted based on the peak throughput
2.64 TB/s achieved at 16 K-node scale. FusionFS shows near
linear scalability, with more than 95 percent efficiency at all
scales. This can be best explained by its completely distrib-
uted metadata operations and the light network traffic
involved in data I/O. In particular, FusionFS shows its
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Fig. 17. FusionFS scalability on Intrepid.
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Fig. 18. Validation of FusionSim on Intrepid.

potential to achieve such an impressive I/O throughput of
329 TB/s on 2 million nodes.

In addition to the aggregate throughput, we feed Fusion-
Sim with more complex workloads regenerated from IOR
benchmark [51] on GPFS. The workload is regenerated by
the Darshan I/0 tool [52] that is statistically equal to the
real I/0O load. This workload uses MPI collective I/O calls
to a shared file in GPFS [19] on a leadership-class supercom-
puter Intrepid [22]. Each node (i.e., rank) does a sequence of
16 collective writes, closes the file, reopens, does a sequence
of 16 collective reads, closes, then exits. All ranks open and
close the shared file, and barrier before collective opera-
tions. Each rank moves 4 MB per call (64 MB total per rank),
which gives us 1 TB total write, and 1 TB total read at 16 K
scale. Note that this workload does not simply consist of
independent I/Os, but involves a lot of collective communi-
cation such as data synchronization. We scale this workload
from 16 K nodes to 1M nodes; so the maximal transferred
data is 128 TB on 1 M nodes.

Results of IOR [51] workloads are shown in Fig. 20. For
this particular workload, we observe that GPFS is ineffi-
cient because the aggregate throughput at the largest
scale (i.e, 1 M) is only about 37 GB/s that is much
smaller than the overall network bandwidth (88 GB/s)
between GPFS and compute nodes. On the other hand,
FusionFS is predicted to scale linearly and outperforms
GPFS at all scales. Note that the speedup only slightly
decreases from 16 K to 1 M nodes.
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Fig. 19. Predicted FusionFS throughput by FusionSim.
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5 RELATED WORK

FusionFS’s idea was first presented in [53] and then exposed
in [54], [55], [56]. While the some results were recently pub-
lished in [23], the system has been serving as the basis of
related projects such as provenance tracking [57], [58],
GPU-accelerated erasure coding [59], cooperative cach-
ing [26], [60], [61], and file compression [62], [63], [64].

There have been many shared and parallel file systems,
such as the network file system (NFS [65]), general purpose
file system (GPFS [19]), parallel virtual file system [20], and
Lustre [66]. These systems assume that storage nodes are
significantly fewer than the compute nodes, and compute
resources are agnostic of the data locality on the underlying
storage system, which results in an unbalanced architecture
for data-intensive workloads.

A variety of distributed file systems have been developed
such as Google file system [18], Hadoop File System [15], and
Ceph [67]. However, many of these file systems are tightly
coupled with execution frameworks (for example, MapRe-
duce [68]), which means that scientific applications not using
these frameworks must be modified to use these non-POSIX
file systems. For those that offer a POSIX interface, they are
not designed for metadata-intensive operations at extreme
scales. The majority of these systems do not expose the data
locality information for general computational frameworks
(for example, batch schedulers, workflow systems) to harness
the data locality through data-aware scheduling.

The idea of distributed metadata can be traced back to
xFS [69], but a central manager is in need to locate a particu-
lar file. Similarly, FDS [70] is proposed as a blob store on
data centers, which maintains a lightweight metadata server
and offloads the metadata to available nodes in a distrib-
uted manner. In contrast, FusionFS metadata is completely
distributed without any single-point-of-failure involved,
and demonstrates its scalability at extremes scales.

Co-location of compute and storage resources has
attracted a lot of research interests. For instance, Nectar [71]
automatically manages data and computation in data cen-
ters. From scheduler point of view, several work [72], [73]
focused on exploring better data locality. While these sys-
tems apply a general rule to deal with data I/O, FusionFS is
optimized for write-intensive workloads that are particu-
larly important for HPC systems.
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6 CONCLUSION AND FUTURE WORK

This paper proposes a distributed storage layer on compute
nodes to tackle the HPC I/O bottleneck of scientific applica-
tions. We identify the challenges this new architecture
brings, and build a distributed file system FusionFS to dem-
onstrate how to address them. In particular, FusionFS is
crafted to support extremely intensive metadata operations
and is optimized for file writes. Extreme-scale evaluation on
up to 16 K nodes demonstrates FusionFS’s superiority over
other popular storage systems for scientific applications. An
event-driven simulator FusionSim, which is validated by
FusionFS’s traces, predicts that FusionFS will scale almost
linearly towards the expected concurrency of the emerging
exascale systems.

There are two major directions we plan to work on for
the FusionFS file system. First, we will improve the load bal-
ance of FusionFS in an automatous manner by leveraging
our prior work on incremental algorithms [74], [75], [76].
Second, we will support concurrent write in the next release
of FusionFS.
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