


size and is interested in how fast the response time 
could be. It suggests that massively parallel process- 
ing may not gain high speedup. Under the influence 
of Amdahl’s law many parallel computers have been 
built with a small number of processors. Gustafson 
[5] approachs the problem from another point of 
view. He fixes the response time and is interested 
in how large a problem could be solved within this 
time. The argument of Gustafson is that the prob- 
lem size should be increased to meet the available 
computation power for better results. Experimental 
results show that the speedup could increase linearly 
with the number of processors available based on his 
argument [S]. 

In this paper we will give a careful study on 
relative speedup. We first study three models of 
speedup, fixed-size speedup, fixed-time speedup, and 
memory-bounded speedup. All of the three models 
are based on relative speedup. With both uneven 
allocation and communication overhead considered, 
general speedup formulations have been derived for 
all of the three models. When the communica- 
tion’overhead is not considered and the workload 
only consists of sequential and perfectly parallel por- 
tions, the simplified fixed-size speedup is Amdahl’s 
law; the simplified fixed-time speedup is Gustafson’s 
scaled speedup; and, with one more parameter, the 
simplified memory-bounded speedup contains both 
Amdahl’s law and Gustafson’s speedup as its special 
cases. Therefore, from different point of views, the 
three models of speedup are unified. 
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Figure 1. A Generic Multicomputer Architecture 

To simplify the discussion, the parallel systems 
considered in this paper are multicomputers. Multi- 
computers are distributed-memory multiprocessors. 
They are organized as an ensemble of individual pro- 
grammable computers, called nodes, and communi- 
cate through an interprocessor communication net- 
work. The memory is distributed and associated 
with each node. When the number of processors in- 
creases, the memory capacity also increases. Some 

of the most powerful and large scale parallel comput- 
ing systems such as NCUBE multicomputer, Intel’s 
iPSC series, and Ametek’s 2010 are allvbelong to the 
class of multicomputers. A generic architecture of 
multicomputers is depicted in Figure 1. 

This paper is organized as follows. In Section 2 
we will introduce some preliminary knowledge and 
terminologies. General speedup formulations of the 
three models of speedup will be presented in Sec- 
tion 3. Speedup formulations for simplified cases 
are studied in Section 4. Conclusion and comments 
are given in Section 5. 

2 Preliminary 
From data dependency graph [7] to task precedence 
graph [8j, from Petri Net [9] to average parallelism 
[lo], the parallelism in an application can be charac- 
terized in different ways for different purposes. For 
simplicity, speedup formulations generally use very 
few parameters and consider very high level char- 
acterizations of the parallelism. In our study we 
consider two main degradations of parallelism, un- 
even allocation and communication latency. The for- 
mer degradation is application dependent. The later 
degradation depends on both the application and the 
parallel computer under consideration. To give an 
accurate estimate, both of the degradations need to 
be considered. Uneven allocation is measured by de- 
gree of parallelism. 

Definition 1 The degree of parallelism is an inte- 
ger which indicate the number of processors that are 
busy during the execution of the program in question, 
given an unbounded number of available processors. 

The degree of parallelism is a function of time. By 
drawing the degree of parallelism over the execution 
time of an application, a graph can be obtained. We 
refer to this graph as the parallelism profile. Some 
software tools are available to determine the paral- 
lelism profile of large scientific and engineering ap- 
plications [ 111. F’g 1 ure 2 is the parallelism profile of 
a hypothetical divide-and-conquer computation [12]. 
By accumulating the time spent at each degree of 
parallelism, the profile can be rearranged to form 
the shape of the application 1131. 

Definition 2 The average parallelism is the average 
number of processors that are busy during the execu- 
tion of the program in question, given an unbounded 
number of available processors. 

By definition, average parallelism is the ratio of 
the total service demand to the execution time with 
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0 TiUkC T 

Therefore, without considering communication la- 
tency, the response time on a single processor and 
on infinite number of processors will be 

(1) 

Figure 2. Parallelism Profile of an Application And the speedup will be 

Figure 3. Shape of the Application 

an unbounded number of available processors. This 
is equal to the speedup, given unbounded number 
of available processors and without considering the 
communication latency. Therefore, average paral- 
lelism can be defined equivalently as follows [lo]. 

Definition 3 Given an unbounded number of avail- 

able processors and without considering the commu- 
nication latency, the average parallelism is same as 
the speedup, 

Let W be the amount of work (computation) of an 
application. Let Wi be the amount of work executed 
with degree of parallelism i, and m be the maxi- 
mum degree of parallelism. Thus, W = x=1 Wi. 
The execution time for computing VVi with a single 
processor will be 

ti(1) = ?, 
Ls 

The average parallelism, A, can be computed in 
terms of ti, 

Notice that ti is the time for executing Wi when 
an unbounded number of processors are available, 
ti = 3. Substituting ti = 2 into Eq. (3), we have 

(5) 

This gives a formal proof for the equivalence of 
Definition 2 and Definition 3. Average parallelism is 
a very important factor for speedup and efficiency. 
It has been careful studied in [lo]. S, gives the best 
possible speedup based on the inherent parallelism 
of an application. There are no machine dependent 
factors considered. With only limited number of 
available processors and with the communication la- 
tency considered, the speedup will be less than the 
best speedup S, . If there are N processors available 
and N < i, then some processors have to do F [kl 

work and the rest of the processors will do ?[+I 
work. In this case, assuming Wi and Wj cannot be 
solved simultaneously for i # j, the elapsed time will 
be 

where A is the computing capacity of each processor. 
If there are i processors available, the execution time 
will be 

and 

ti(i) = 2. 
With an infinite number of processors available, the 
execution time will be The speedup is 

(6) 

ti = ti(O0) = 2 forl<ism. 
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Communication latency is an important factor 
contributing to the complexity of a parallel algo- 
rithm. Unlike degree of parallelism, communication 
latency is machine dependent. It depends on the 
communication network, the routing scheme, and 
the adopted switching technique. For instance, the 
switching technique used in first generation multi- 
computers is store-and-forward. Second generation 
multicomputers adopt circuit switching or wormhole 
routing switching techniques. These new switching 
techniques reduce the communication cost consider- 
ably. Let QN be the communication overhead when 
N processors are used in parallel processing; the gen- 
eral speedup becomes 

3 Models of Speedup 
In last section we developed a general speedup for- 
mula and showed how the number of processors and 
degradation parameters will influence the perfor- 
mance. However, the speedup is not only dependent 
on these parameters. It also depends on how we view 
the problem. With different points of view, we will 
get different models of speedup and will get different 
speedup formulations. 

One viewpoint emphasizes shortening the time a 
problem takes to solve by parallel processing. With 
more and more computation power available, the 
problem can be solved in less and less time. With 
more processors available, the system will provide a 
fast turnaround time and the user will have a shorter 
waiting time. Speedup formulation based on this 
philosophy is called fited-size speedup. In the pre- 
vious section, we adopt fixed-size speedup implic- 
itly. Equation (8) is the general speedup formula for 
fixed-size speedup. Fixed-size speedup is suitable for 
many applications. 

For some applications we may have a time limi- 
tation, but we may not want to solve the problem 
as soon as possible. If we have more computation 
power, we may want to increase the problem size, 
do more operation, get a more accurate solution and 
keep the execution time unchanged. This viewpoint 
leads to a new model of speedup, called fized-time 
speedup. Many scientific and engineering applica- 
tions can be represented by some partial differen- 
tial equations, which can be discretized for different 
choices of grid spacing. Coarser grids demand less 

computation, but finer grids give more accurate so- 
lutions. If more accurate solutions are desired, this 
kind of application will fit the fixed-time speedup 
model. One good example is weather forecasting. 
With more computation power, we may not want 
to give the forecast earlier. Rather, we may wish to 
add more factors into the weather model - increasing 
the problem size and get a more accurate solution - 
giving a more precise forecast. 

For fixed-time speedup the workload is scaled up 
with the number of processors available. Let W/ 
be the amount of scaled up work executed with de- 
gree of parallelism i and m’ be the maximum de- 
gree of parallelism of the scaled up problem when N 
processors are available. In order to keep the same 
turnaround time as the sequential version, we must 
have 

Thus, the general speedup formula for fixed-time 
speedup is 

s;, = xi”=‘, w; 
Cz”=‘, F [+I+ QN (‘I 

From our experience in using multicomputers, we 
have found that the memory capacity plays a very 
important role on performance. Existing multicom- 
puters do not support virtual memory and memory 
is distributed and associated with each node. The 
memory associated with each node is relative small. 
When solving an application with one processor, the 
problem size is more often bounded by the mem- 
ory limitation than by the execution time limita- 
tion. With more nodes available, instead of keeping 
the execution time fixed, we may want to meet the 
memory capacity and increase the execution time. 
In general, the question is that, if you want to in- 
crease the problem size, do you have enough mem- 
ory for the size increase? If you do have adequate 
memory space for the size increase, and after the 
problem size is increased to meet the time limit you 
still have memory space available, do you want to 
increase the problem size further by using this un- 
used memory space and to get an even better so 
lution? For memory-bounded speedup the answer 
is yes. Like fixed-time speedup, memory-bounded 
speedup is a scaled speedup. The problem size is 
scaled up with system size. The difference is that in 
fixed-time speedup the execution time is the dom- 
inant factor and in memory-bounded speedup the 
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memory capacity is the dominant factor. Most of 
the applications which fit fixed-time speedup will 
fit memory-bounded speedup when accurate solu- 
tions are the premier goal. A good application for 
memory-bounded speedup is simulation. If we sim- 
ulate a nuclear power plant, obtaining an accurate 
solution probably will be the highest priority. 

With memory capacity considered as a factor of 
performance, the requirement of solving an appli- 
cation contains two parts. One is the computation 
requirement, which is the workload, and another is 
the memory requirement. For a given application, 
these two requirements are related to each other, 
and the workload can be seen as a function of mem- 
ory requirement. Let M represent the memory re 
quirement and let g represent the relation, we have 
W = g(M), or M = g-‘(W), where g-l is the in- 
verse function of g. Under different architectures 
the memory capacity will change differently with the 
number of processors available. For multicomput- 
ers, the memory capacity increases linearly with the 
number of nodes available. If W = Cy=“=, Wi is the 

workload for sequential execution, W’ = CriI Wi* 
is the scaled workload when N processors are avail- 
able, m* is the maximum degree of parallelism of 
the scaled problem, then the memory limitation for 
multicomputers can be stated as: the memory re- 
quiremenZ for any active node is less than or equal 

to !mc:“=1 Wi). Here the main point is that the 
memory occupation on each node is fixed. Equa- 
tion (10) is the general speedup formula for memory- 
bounded speedup. 

4 Simplified Models of 
Speedup 

Three general speedup formulations have been pro- 
posed for three models of speedup. These formu- 
lations contain both uneven allocation and commu- 
nication latency degradations. They are more close 
to actual speedup and give better upper bounds on 
the performance of parallel algorithms. On the other 
hand, these formulations are problem dependent and 
difficult to understand. They give more detailed in- 
formation for each application, but lose the global 
view of the possible performance gain. In this sec- 
tion, we study a simplified case for speedup, which is 
the special case studied by Amdahl and Gustafson. 
We do not consider the communication overhead, 

&N = 0, and assume that the allocation only con- 
tains two parts, sequential part and perfectly paral- 

lel part. That is Wi = 0, for i # 1 and i # N. We 
also assume that the sequential part is independent 
of the system size, WI = Wi = WC. 

Under this simplified condition, the general fixed- 

size speedup formulation Eq.(8) becomes 

SN = 
wl+wN 

w1+%’ 
(11) 

which is known as Amdahl’s law. From Eq.(ll) and 
Fig. 4 we can see when the number of processors in- 
creases the load on each processor decreases. Even- 
tually, the sequential part will dominate the perfor- 
mance and the speedup is bounded by the reciprocal 
of the sequential fraction WI. 

Wodr 
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Figure 4. Amdahl’s Law 

Under the simplified condition, Cz1 Wi = WI + 

WN and c& 9 r$] +QN = W{+ q. Therefore, 
for fixed-time speedup, we have WI + WN = Wi + 

q. Since WI is fixed, we have WN = q. That is 
lJ$, = N WN. Equation (9) becomes 

s:,=~~,w’i=w:+wlV=w,+NW~ 

CL”=, W wl+wN w, + WN. 

(12) 
The simplified fixed-time speedup formula Eq.(l2) 

is Gustafson’s scaled speedup, which was proposed 
by Gustafson in 1988 [5]. From Eq.(12) we can 
see that the parallel portion of the application is 
scaled up linearly with the system size. And, there- 
fore, the speedup increases linearly with the system 
size. The relation of workload and elapsed time for 
Gustafson’s scaled speedup is depicted in Figure (5), 
where Ti is the execution time for the sequential 
portion of work. TN is the execution time for the 
parallel portion of load. 

We need some preparation before deriving 
the simplified formulation for memory-bounded 
speedup. 

Definition 4 A function g is homomorphism if 



Figure 5. Gustafson’s Scaled Speedup 

there exists a function j such that for any real num- 
ber c and any variable z,g(ct) = g(c)g(z). 

One class of homomorphism function is the power 
function g(z) = z*, where b is a rational number. In 
this case, S is the same as the function g. Another 
class of homomorphism function is the single term 
polynomial g(x) = aP, where a is a real constant 
and b is a rational number. For this kind of ho- 
momorphism functions, j(z) = z*, which is not the 
same as g(z). The sequential portion of the work- 
load Wr is independent of the system size. If we 
do not consider memory influence on the sequential 
portion we have the following theorem: 

Theorem 1 If W = g(M) for some homomorphism 
function g, g(cx) = j(c)g(z), then, with all data be- 
ing shared by all the available processors, the simpli- 
fied memory-bounded speedup is 

S' _ w1+ WWN 

N- wl+ywN 

Proof: As mentioned before, WN is the par- 
allel portion of the workload when one processor is 
used. Let the memory requirement of WN be M, 
WN = g(M). M is the memory requirement when 
one node is available. With N nodes available, the 
memory capacity will increase to NM. Using all 
of the available memory, for the scaled parallel por- 
tion WG, W& = g(NM) = g(N)g(M). Therefore, 
w; = #(N)WN and 

s;, = 
w;+w; wl + j(N)WN 

(14) Wi+WG/N= WI+vWN 

0 

In the proof of Theorem 1, we claimed that WG = 
g(NM). This claim is true under two assumptions: 
1) the data is shared by all available processors, and 

Figure 6. 
Speedup 

Simplified Memory-Bounded Scaled 

2) all the available memory space are used for bet- 
ter solutions. A computation with the first prop- 
erty is called global computation. Equation (13) is 
the simplified memory-bounded speedup for global 
computation. In general, data may be duplicated on 
different nodes and the available memory may not 
be fully used for increased problem size. Based on 
Eq.(13), a more generalized speedup will be 

s; = 
wl + G(N)WN 

w,+~w,/ 
(15) 

Equation (15) will be referred to as simplified 
memory-bounded (SMB) scaled speedup. SMB 
scaled speedup is determined by the function G(N), 
which gives the information of how the memory 
change will influence the change of problem size. 
When the problem size is independent of the sys- 
tern, the problem size is fixed, G(N) = 1. In this 
case, SMB scaled speedup is the same as Amdahl’s 
law, i.e., Eq.(15) and Eq.(ll) are equivalent. Local 
computation model is one computation model stud- 
ied in [12]. In the local computation model, when 
more processors are available, work will be repli- 
cated on these available processors. Computation 
is done locally on each node, and communication 
between nodes is not required. In this case, when 
memory is increased N times, the workload also in- 
creases N times, i.e., G(N) = N. And, in this 
case, SMB scaled speedup is same as Gustafson’s 
scaled speedup. SMB scaled speedup contains both 
Amdahl’s law and Gustafson’s scaled speedup as its 
special cases. ‘For most of the scientific and engi- 
neering applications, the computation requirement 
increases faster than the memory requirement. For 
these applications, g(N) > N and memory-bounded 
speedup will likely give a higher speedup than fixed- 
time speedup. 
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Equation (15), the proposed scaled speedup for- 
mulation, may be not easy to fully understood at 
first glance: Here we use matrix multiplication as 
an example to illustrate it. A matrix often repro- 
sents some discretized continuum. Enlarging the 
matrix size generally will lead to a more accurate 
solution for the contmuum. For matrices with di- 
mension n, the computation requirement of matrix 
multiplication is 2n3 and the memory requirement 
is 3n2 (roughly). Thus, 

WN = 2n3, M = 3n2. 

Writing WN as a function of M, we have 

WN = 

This means that 

g(N) = NK (16) 

The simplified memory-bounded speedup for 
global computation will be 

(17) 

Global computation uses distributed local memo- 
ries as a large shared memory [12]. All the data is 
distributed and shared. When these local memories 
are used locally without sharing, the computation is 
local computation and IV; = Ng(M). This means 
that j = N. The speedup is 

s;t = 
WI + NWN 

wl+wN ’ 

which is Gustafson’s scaled speedup. For matrix 
multiplication C = AB, let Ai be the ith row of 
A, i = 1, . . . . n, and let Bj be the jth column of B, 
i = 1 , ***, n. The local computation and global com- 
putation of the matrix multiplication are shown in 
Figure (7) and (8), respectively. 

-I 4 -N 

Figure 7. Matrix Multiplication with Local Compu- 
tation 

We have studied two cases of memory-bounded 

-~+--l----- - 

AB, -2 -N 

Figure 8. Matrix Multiplication with Global Com- 
putation 

scaled speedup, global computation and local com- 
putation. Most of the applications are some com- 
bination of these two computations. Data is dis- 
tributed in some+part and duplicated in the other 
part. The duplication may be required by inher- 
ent properties of the given application, or may be 
added in deliberately to reduce the communication. 
Speedup formulation for these applications depends 
on the ratio of the global and the local computa- 
tion. Deriving speedup formulation for these com- 
bined applications is difficult. This is not only be- 
cause we are facing more complicated situation, but 
also because of the uncertainty of the ratio. The 
duplicated part might not increase with system size. 
It might increase but with a speed which is different 
from the increasing speed of the global part. And, 
an application may start as global computation, but, 
when the computation power increases, duplication 
may be added in as a part of the effort for better so- 
lution. In general, G(N) is application dependent. 
We derive G(N) for a special case as an example. 
The structure of this derivation can be used as a 
guideline for general applications. 

Lemma 1 I~function g is a homomorphism func- 
tion, g(m) = d4!l(~); g-’ exists and also homo- 
morphism, g-‘(ccc) = /(c)g-‘(2) for some function 
h, then # has inverse and S-l = h. 

Proof: Since 

CY = gb-‘WI = dWg-%)I 
= s~W1sb-%)1 = sWlv> 

we have 

idh( = c 
Also, since 

for any real number c (18) 

CY = f-‘WY)1 = 6 Wddl = hWlv, 
we have 

W4l = c for any real number c (19) 

By Eq.(18) and Eq.(19), the function 3 has inverse 
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and 5-l = h. 

Theorem 2 Assume W = g(M) for some homo- 
morphism funciion g, where g(cM) = j(c)g(M), g 
inverse exists and is a homomorphism. If the work- 
load is scaled up to meet the time limitation with 
global computation first and the rest of the unused 
memory space is then used to increase the problem 
size further with local computation, we have 

G(N) = (1 + g[l - (20) 

Proof: By the fixed-time speedup, after the 
number of nodes changes from 1 to N, the par- 
allel portion of work will increase from WN to 
NWN (See Figure 5). The storage requirement 
is given by the function g-l. For operation 
requirement NWN, the memory requirement is 

f ‘(NWN) = jj-‘(N)g-‘(WN). 
Let M represent the size of the memory associ- 

ated with each node which can be used for parallel 
processing. Then, when the number of nodes equals 
1, the total memory available is M, which is equal to 
g-‘(WN). When the number of nodes equals N, the 
total memory available changes to NM. We first fix 
the execution time and increase the problem size to 
meet the time limitation. After the timed-bounded 
scaled up, the unused memory space is the differ- 
ence between current available memory and current 
memory requirement, which equals 

NM - g-‘(NWN) = NM - ?j-l(N)g-l(WN) 

= NM - g-‘(N)M = (IV - jj-‘(N))M. 

The unused space at each node is 

[N - iT’W)IM = I1 
N 

- $$!!$. 

The problem size can be further scaled by us- 
ing these unused memory space. The further scaled 
computation on each node is given by the function 
g, and it is equal to 

g([l-v] M) = a(1 - gT)g(M)(21) 

= #(l - w)w, (22) 

Therefore, the computation on each node becomes 

original operation on each node 

+ the operation increase on each node 

= w,,, + @ - w)w, (23) 

= [l + 3 (1 - q)] WN. (24) 

and, for the scaled parallel computation WG, 

This concludes 

G(N) = N[l + S(1- (25) 

Cl 

Figure 9 depicts the speedup difference among 
the fixed-sized model, the timed-bounded mode1 and 
the memory-bounded model. The associate func- 
tion, 3, used in Figure 9 is the associate function of 
matrix multiplication, ji( N) = Nj . As most ma- 
trix computations have the same associate function 
g(N) = N 4, the speedup relation depicted by Figure 
9 is in general true for a large class of applications. 

5 Conclusigm 
It is known that the performance of parallel pro- 
cessing is influenced by the inherent parallelism of 
the application, by the computation power and by 
the memory capacity of the parallel computing sys- 
tem. However, how are these three factors related 
to each other and, how do they influence the perfor- 
mance of parallel processing generally is unknown. 
Discovering the answers for these unknowns is very 
important for designing efficient parallel algorithms 
and for constructing high performance parallel sys- 
tems. In this paper one mode1 of speedup, memory- 
bounded speedup, is careful studied. This model is 
simple, and it contains all of these three factors 
as its parameters. It shows the degradations and 
the possible performance gain of parallel computa- 
tion. Incidently, the importance of memory capac- 
ity to the speedup measurement was also realized by 
Gustafson as indicated in his recent paper [14]. 

As a part of the study on performance, two 
other models of speedup have also been studied. 
They are fixed-size speedup and fixed-time speedup. 
Two sets of speedup formulations have been de- 
rived for these two models of speedup and memory- 
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Figure 9. Amdahl’s law, G ustafson’s speedup and SMB speedup, where Wr = 0.3 and #(IV) = IV4 
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bounded speedup. One set of formulations are gen- 
eral speedup formulas. These formulas contain more 
parameters and provide more accurate information. 
The second set of formulations only consider a spe- 
cial, simplified case. These formulations give the 
performance in principle and lead to a better under- 
standing of parallel processing. The simplified fixed- 
size speedup is Amdahl’s law, the simplified fixed- 
time speedup is Gustafson’s scaled speedup, and the 
simplified memory-bounded speedup contains both 
of the Amdahl’s law and Gustafson’s speedup as 
its special cases. Amdhal’s law suggests that the 
sequential portion of the workload will dominate 
the performance when the number of processors is 
large. Gustafson’ scaled speedup claims that the in- 
fluence of the sequential portion is independent of 
the system size. Simplified memory-bounded Scaled 
speedup declares that the sequential fraction will 
change with the system size. Since the computation 
requirement increases faster than the memory re- 
quirement for most applications, the sequential frac- 
tion could be reduced when the number of processors 
increase. 

The three models of speedup, fixed-size speedup, 
fixed-time speedup and memory-bounded speedup, are 
based on different viewpoints and suitable for dif- 

ferent classes of applications. Applications do exist 
which do not fit any of the models of speedup, but 
satisfy some combination of the models. We plan to 
study more on the performance issues and arrive at a 
better understanding of parallel processing. 
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