

size and is interested in how fast the response time
could be. It suggests that massively parallel process-
ing may not gain high speedup. Under the influence
of Amdahl’s law many parallel computers have been
built with a small number of processors. Gustafson
[5] approachs the problem from another point of
view. He fixes the response time and is interested
in how large a problem could be solved within this
time. The argument of Gustafson is that the prob-
lem size should be increased to meet the available
computation power for better results. Experimental
results show that the speedup could increase linearly
with the number of processors available based on his
argument [S].

In this paper we will give a careful study on
relative speedup. We first study three models of
speedup, fixed-size speedup, fixed-time speedup, and
memory-bounded speedup. All of the three models
are based on relative speedup. With both uneven
allocation and communication overhead considered,
general speedup formulations have been derived for
all of the three models. When the communica-
tion’overhead is not considered and the workload
only consists of sequential and perfectly parallel por-
tions, the simplified fixed-size speedup is Amdahl’s
law; the simplified fixed-time speedup is Gustafson’s
scaled speedup; and, with one more parameter, the
simplified memory-bounded speedup contains both
Amdahl’s law and Gustafson’s speedup as its special
cases. Therefore, from different point of views, the
three models of speedup are unified.

- - I I

)I(H ---------------- fl

Figure 1. A Generic Multicomputer Architecture

To simplify the discussion, the parallel systems
considered in this paper are multicomputers. Multi-
computers are distributed-memory multiprocessors.
They are organized as an ensemble of individual pro-
grammable computers, called nodes, and communi-
cate through an interprocessor communication net-
work. The memory is distributed and associated
with each node. When the number of processors in-
creases, the memory capacity also increases. Some

of the most powerful and large scale parallel comput-
ing systems such as NCUBE multicomputer, Intel’s
iPSC series, and Ametek’s 2010 are allvbelong to the
class of multicomputers. A generic architecture of
multicomputers is depicted in Figure 1.

This paper is organized as follows. In Section 2
we will introduce some preliminary knowledge and
terminologies. General speedup formulations of the
three models of speedup will be presented in Sec-
tion 3. Speedup formulations for simplified cases
are studied in Section 4. Conclusion and comments
are given in Section 5.

2 Preliminary
From data dependency graph [7] to task precedence
graph [8j, from Petri Net [9] to average parallelism
[lo], the parallelism in an application can be charac-
terized in different ways for different purposes. For
simplicity, speedup formulations generally use very
few parameters and consider very high level char-
acterizations of the parallelism. In our study we
consider two main degradations of parallelism, un-
even allocation and communication latency. The for-
mer degradation is application dependent. The later
degradation depends on both the application and the
parallel computer under consideration. To give an
accurate estimate, both of the degradations need to
be considered. Uneven allocation is measured by de-
gree of parallelism.

Definition 1 The degree of parallelism is an inte-
ger which indicate the number of processors that are
busy during the execution of the program in question,
given an unbounded number of available processors.

The degree of parallelism is a function of time. By
drawing the degree of parallelism over the execution
time of an application, a graph can be obtained. We
refer to this graph as the parallelism profile. Some
software tools are available to determine the paral-
lelism profile of large scientific and engineering ap-
plications [111. F’g 1 ure 2 is the parallelism profile of
a hypothetical divide-and-conquer computation [12].
By accumulating the time spent at each degree of
parallelism, the profile can be rearranged to form
the shape of the application 1131.

Definition 2 The average parallelism is the average
number of processors that are busy during the execu-
tion of the program in question, given an unbounded
number of available processors.

By definition, average parallelism is the ratio of
the total service demand to the execution time with

325

0 TiUkC T

Therefore, without considering communication la-
tency, the response time on a single processor and
on infinite number of processors will be

(1)

Figure 2. Parallelism Profile of an Application And the speedup will be

Figure 3. Shape of the Application

an unbounded number of available processors. This
is equal to the speedup, given unbounded number
of available processors and without considering the
communication latency. Therefore, average paral-
lelism can be defined equivalently as follows [lo].

Definition 3 Given an unbounded number of avail-

able processors and without considering the commu-
nication latency, the average parallelism is same as
the speedup,

Let W be the amount of work (computation) of an
application. Let Wi be the amount of work executed
with degree of parallelism i, and m be the maxi-
mum degree of parallelism. Thus, W = x=1 Wi.
The execution time for computing VVi with a single
processor will be

ti(1) = ?,
Ls

The average parallelism, A, can be computed in
terms of ti,

Notice that ti is the time for executing Wi when
an unbounded number of processors are available,
ti = 3. Substituting ti = 2 into Eq. (3), we have

(5)

This gives a formal proof for the equivalence of
Definition 2 and Definition 3. Average parallelism is
a very important factor for speedup and efficiency.
It has been careful studied in [lo]. S, gives the best
possible speedup based on the inherent parallelism
of an application. There are no machine dependent
factors considered. With only limited number of
available processors and with the communication la-
tency considered, the speedup will be less than the
best speedup S, . If there are N processors available
and N < i, then some processors have to do F [kl

work and the rest of the processors will do ?[+I
work. In this case, assuming Wi and Wj cannot be
solved simultaneously for i # j, the elapsed time will
be

where A is the computing capacity of each processor.
If there are i processors available, the execution time
will be

and

ti(i) = 2.
With an infinite number of processors available, the
execution time will be The speedup is

(6)

ti = ti(O0) = 2 forl<ism.

326

Communication latency is an important factor
contributing to the complexity of a parallel algo-
rithm. Unlike degree of parallelism, communication
latency is machine dependent. It depends on the
communication network, the routing scheme, and
the adopted switching technique. For instance, the
switching technique used in first generation multi-
computers is store-and-forward. Second generation
multicomputers adopt circuit switching or wormhole
routing switching techniques. These new switching
techniques reduce the communication cost consider-
ably. Let QN be the communication overhead when
N processors are used in parallel processing; the gen-
eral speedup becomes

3 Models of Speedup
In last section we developed a general speedup for-
mula and showed how the number of processors and
degradation parameters will influence the perfor-
mance. However, the speedup is not only dependent
on these parameters. It also depends on how we view
the problem. With different points of view, we will
get different models of speedup and will get different
speedup formulations.

One viewpoint emphasizes shortening the time a
problem takes to solve by parallel processing. With
more and more computation power available, the
problem can be solved in less and less time. With
more processors available, the system will provide a
fast turnaround time and the user will have a shorter
waiting time. Speedup formulation based on this
philosophy is called fited-size speedup. In the pre-
vious section, we adopt fixed-size speedup implic-
itly. Equation (8) is the general speedup formula for
fixed-size speedup. Fixed-size speedup is suitable for
many applications.

For some applications we may have a time limi-
tation, but we may not want to solve the problem
as soon as possible. If we have more computation
power, we may want to increase the problem size,
do more operation, get a more accurate solution and
keep the execution time unchanged. This viewpoint
leads to a new model of speedup, called fized-time
speedup. Many scientific and engineering applica-
tions can be represented by some partial differen-
tial equations, which can be discretized for different
choices of grid spacing. Coarser grids demand less

computation, but finer grids give more accurate so-
lutions. If more accurate solutions are desired, this
kind of application will fit the fixed-time speedup
model. One good example is weather forecasting.
With more computation power, we may not want
to give the forecast earlier. Rather, we may wish to
add more factors into the weather model - increasing
the problem size and get a more accurate solution -
giving a more precise forecast.

For fixed-time speedup the workload is scaled up
with the number of processors available. Let W/
be the amount of scaled up work executed with de-
gree of parallelism i and m’ be the maximum de-
gree of parallelism of the scaled up problem when N
processors are available. In order to keep the same
turnaround time as the sequential version, we must
have

Thus, the general speedup formula for fixed-time
speedup is

s;, = xi”=‘, w;
Cz”=‘, F [+I+ QN (‘I

From our experience in using multicomputers, we
have found that the memory capacity plays a very
important role on performance. Existing multicom-
puters do not support virtual memory and memory
is distributed and associated with each node. The
memory associated with each node is relative small.
When solving an application with one processor, the
problem size is more often bounded by the mem-
ory limitation than by the execution time limita-
tion. With more nodes available, instead of keeping
the execution time fixed, we may want to meet the
memory capacity and increase the execution time.
In general, the question is that, if you want to in-
crease the problem size, do you have enough mem-
ory for the size increase? If you do have adequate
memory space for the size increase, and after the
problem size is increased to meet the time limit you
still have memory space available, do you want to
increase the problem size further by using this un-
used memory space and to get an even better so
lution? For memory-bounded speedup the answer
is yes. Like fixed-time speedup, memory-bounded
speedup is a scaled speedup. The problem size is
scaled up with system size. The difference is that in
fixed-time speedup the execution time is the dom-
inant factor and in memory-bounded speedup the

327

memory capacity is the dominant factor. Most of
the applications which fit fixed-time speedup will
fit memory-bounded speedup when accurate solu-
tions are the premier goal. A good application for
memory-bounded speedup is simulation. If we sim-
ulate a nuclear power plant, obtaining an accurate
solution probably will be the highest priority.

With memory capacity considered as a factor of
performance, the requirement of solving an appli-
cation contains two parts. One is the computation
requirement, which is the workload, and another is
the memory requirement. For a given application,
these two requirements are related to each other,
and the workload can be seen as a function of mem-
ory requirement. Let M represent the memory re
quirement and let g represent the relation, we have
W = g(M), or M = g-‘(W), where g-l is the in-
verse function of g. Under different architectures
the memory capacity will change differently with the
number of processors available. For multicomput-
ers, the memory capacity increases linearly with the
number of nodes available. If W = Cy=“=, Wi is the

workload for sequential execution, W’ = CriI Wi*
is the scaled workload when N processors are avail-
able, m* is the maximum degree of parallelism of
the scaled problem, then the memory limitation for
multicomputers can be stated as: the memory re-
quiremenZ for any active node is less than or equal

to !mc:“=1 Wi). Here the main point is that the
memory occupation on each node is fixed. Equa-
tion (10) is the general speedup formula for memory-
bounded speedup.

4 Simplified Models of
Speedup

Three general speedup formulations have been pro-
posed for three models of speedup. These formu-
lations contain both uneven allocation and commu-
nication latency degradations. They are more close
to actual speedup and give better upper bounds on
the performance of parallel algorithms. On the other
hand, these formulations are problem dependent and
difficult to understand. They give more detailed in-
formation for each application, but lose the global
view of the possible performance gain. In this sec-
tion, we study a simplified case for speedup, which is
the special case studied by Amdahl and Gustafson.
We do not consider the communication overhead,

&N = 0, and assume that the allocation only con-
tains two parts, sequential part and perfectly paral-

lel part. That is Wi = 0, for i # 1 and i # N. We
also assume that the sequential part is independent
of the system size, WI = Wi = WC.

Under this simplified condition, the general fixed-

size speedup formulation Eq.(8) becomes

SN =
wl+wN

w1+%’
(11)

which is known as Amdahl’s law. From Eq.(ll) and
Fig. 4 we can see when the number of processors in-
creases the load on each processor decreases. Even-
tually, the sequential part will dominate the perfor-
mance and the speedup is bounded by the reciprocal
of the sequential fraction WI.

Wodr
ww

m

x 94 WN %

12 345 12345

Numlmrd-0 Nmba d -09

Figure 4. Amdahl’s Law

Under the simplified condition, Cz1 Wi = WI +

WN and c& 9 r$] +QN = W{+ q. Therefore,
for fixed-time speedup, we have WI + WN = Wi +

q. Since WI is fixed, we have WN = q. That is
lJ$, = N WN. Equation (9) becomes

s:,=~~,w’i=w:+wlV=w,+NW~

CL”=, W wl+wN w, + WN.

(12)
The simplified fixed-time speedup formula Eq.(l2)

is Gustafson’s scaled speedup, which was proposed
by Gustafson in 1988 [5]. From Eq.(12) we can
see that the parallel portion of the application is
scaled up linearly with the system size. And, there-
fore, the speedup increases linearly with the system
size. The relation of workload and elapsed time for
Gustafson’s scaled speedup is depicted in Figure (5),
where Ti is the execution time for the sequential
portion of work. TN is the execution time for the
parallel portion of load.

We need some preparation before deriving
the simplified formulation for memory-bounded
speedup.

Definition 4 A function g is homomorphism if

Figure 5. Gustafson’s Scaled Speedup

there exists a function j such that for any real num-
ber c and any variable z,g(ct) = g(c)g(z).

One class of homomorphism function is the power
function g(z) = z*, where b is a rational number. In
this case, S is the same as the function g. Another
class of homomorphism function is the single term
polynomial g(x) = aP, where a is a real constant
and b is a rational number. For this kind of ho-
momorphism functions, j(z) = z*, which is not the
same as g(z). The sequential portion of the work-
load Wr is independent of the system size. If we
do not consider memory influence on the sequential
portion we have the following theorem:

Theorem 1 If W = g(M) for some homomorphism
function g, g(cx) = j(c)g(z), then, with all data be-
ing shared by all the available processors, the simpli-
fied memory-bounded speedup is

S' _ w1+ WWN

N- wl+ywN

Proof: As mentioned before, WN is the par-
allel portion of the workload when one processor is
used. Let the memory requirement of WN be M,
WN = g(M). M is the memory requirement when
one node is available. With N nodes available, the
memory capacity will increase to NM. Using all
of the available memory, for the scaled parallel por-
tion WG, W& = g(NM) = g(N)g(M). Therefore,
w; = #(N)WN and

s;, =
w;+w; wl + j(N)WN

(14) Wi+WG/N= WI+vWN

0

In the proof of Theorem 1, we claimed that WG =
g(NM). This claim is true under two assumptions:
1) the data is shared by all available processors, and

Figure 6.
Speedup

Simplified Memory-Bounded Scaled

2) all the available memory space are used for bet-
ter solutions. A computation with the first prop-
erty is called global computation. Equation (13) is
the simplified memory-bounded speedup for global
computation. In general, data may be duplicated on
different nodes and the available memory may not
be fully used for increased problem size. Based on
Eq.(13), a more generalized speedup will be

s; =
wl + G(N)WN

w,+~w,/
(15)

Equation (15) will be referred to as simplified
memory-bounded (SMB) scaled speedup. SMB
scaled speedup is determined by the function G(N),
which gives the information of how the memory
change will influence the change of problem size.
When the problem size is independent of the sys-
tern, the problem size is fixed, G(N) = 1. In this
case, SMB scaled speedup is the same as Amdahl’s
law, i.e., Eq.(15) and Eq.(ll) are equivalent. Local
computation model is one computation model stud-
ied in [12]. In the local computation model, when
more processors are available, work will be repli-
cated on these available processors. Computation
is done locally on each node, and communication
between nodes is not required. In this case, when
memory is increased N times, the workload also in-
creases N times, i.e., G(N) = N. And, in this
case, SMB scaled speedup is same as Gustafson’s
scaled speedup. SMB scaled speedup contains both
Amdahl’s law and Gustafson’s scaled speedup as its
special cases. ‘For most of the scientific and engi-
neering applications, the computation requirement
increases faster than the memory requirement. For
these applications, g(N) > N and memory-bounded
speedup will likely give a higher speedup than fixed-
time speedup.

329

Equation (15), the proposed scaled speedup for-
mulation, may be not easy to fully understood at
first glance: Here we use matrix multiplication as
an example to illustrate it. A matrix often repro-
sents some discretized continuum. Enlarging the
matrix size generally will lead to a more accurate
solution for the contmuum. For matrices with di-
mension n, the computation requirement of matrix
multiplication is 2n3 and the memory requirement
is 3n2 (roughly). Thus,

WN = 2n3, M = 3n2.

Writing WN as a function of M, we have

WN =

This means that

g(N) = NK (16)

The simplified memory-bounded speedup for
global computation will be

(17)

Global computation uses distributed local memo-
ries as a large shared memory [12]. All the data is
distributed and shared. When these local memories
are used locally without sharing, the computation is
local computation and IV; = Ng(M). This means
that j = N. The speedup is

s;t =
WI + NWN

wl+wN ’

which is Gustafson’s scaled speedup. For matrix
multiplication C = AB, let Ai be the ith row of
A, i = 1, n, and let Bj be the jth column of B,
i = 1 , ***, n. The local computation and global com-
putation of the matrix multiplication are shown in
Figure (7) and (8), respectively.

-I 4 -N

Figure 7. Matrix Multiplication with Local Compu-
tation

We have studied two cases of memory-bounded

-~+--l----- -

AB, -2 -N

Figure 8. Matrix Multiplication with Global Com-
putation

scaled speedup, global computation and local com-
putation. Most of the applications are some com-
bination of these two computations. Data is dis-
tributed in some+part and duplicated in the other
part. The duplication may be required by inher-
ent properties of the given application, or may be
added in deliberately to reduce the communication.
Speedup formulation for these applications depends
on the ratio of the global and the local computa-
tion. Deriving speedup formulation for these com-
bined applications is difficult. This is not only be-
cause we are facing more complicated situation, but
also because of the uncertainty of the ratio. The
duplicated part might not increase with system size.
It might increase but with a speed which is different
from the increasing speed of the global part. And,
an application may start as global computation, but,
when the computation power increases, duplication
may be added in as a part of the effort for better so-
lution. In general, G(N) is application dependent.
We derive G(N) for a special case as an example.
The structure of this derivation can be used as a
guideline for general applications.

Lemma 1 I~function g is a homomorphism func-
tion, g(m) = d4!l(~); g-’ exists and also homo-
morphism, g-‘(ccc) = /(c)g-‘(2) for some function
h, then # has inverse and S-l = h.

Proof: Since

CY = gb-‘WI = dWg-%)I
= s~W1sb-%)1 = sWlv>

we have

idh(= c
Also, since

for any real number c (18)

CY = f-‘WY)1 = 6 Wddl = hWlv,
we have

W4l = c for any real number c (19)

By Eq.(18) and Eq.(19), the function 3 has inverse

330

and 5-l = h.

Theorem 2 Assume W = g(M) for some homo-
morphism funciion g, where g(cM) = j(c)g(M), g
inverse exists and is a homomorphism. If the work-
load is scaled up to meet the time limitation with
global computation first and the rest of the unused
memory space is then used to increase the problem
size further with local computation, we have

G(N) = (1 + g[l - (20)

Proof: By the fixed-time speedup, after the
number of nodes changes from 1 to N, the par-
allel portion of work will increase from WN to
NWN (See Figure 5). The storage requirement
is given by the function g-l. For operation
requirement NWN, the memory requirement is

f ‘(NWN) = jj-‘(N)g-‘(WN).
Let M represent the size of the memory associ-

ated with each node which can be used for parallel
processing. Then, when the number of nodes equals
1, the total memory available is M, which is equal to
g-‘(WN). When the number of nodes equals N, the
total memory available changes to NM. We first fix
the execution time and increase the problem size to
meet the time limitation. After the timed-bounded
scaled up, the unused memory space is the differ-
ence between current available memory and current
memory requirement, which equals

NM - g-‘(NWN) = NM - ?j-l(N)g-l(WN)

= NM - g-‘(N)M = (IV - jj-‘(N))M.

The unused space at each node is

[N - iT’W)IM = I1
N

- $$!!$.

The problem size can be further scaled by us-
ing these unused memory space. The further scaled
computation on each node is given by the function
g, and it is equal to

g([l-v] M) = a(1 - gT)g(M)(21)

= #(l - w)w, (22)

Therefore, the computation on each node becomes

original operation on each node

+ the operation increase on each node

= w,,, + @ - w)w, (23)

= [l + 3 (1 - q)] WN. (24)

and, for the scaled parallel computation WG,

This concludes

G(N) = N[l + S(1- (25)

Cl

Figure 9 depicts the speedup difference among
the fixed-sized model, the timed-bounded mode1 and
the memory-bounded model. The associate func-
tion, 3, used in Figure 9 is the associate function of
matrix multiplication, ji(N) = Nj . As most ma-
trix computations have the same associate function
g(N) = N 4, the speedup relation depicted by Figure
9 is in general true for a large class of applications.

5 Conclusigm
It is known that the performance of parallel pro-
cessing is influenced by the inherent parallelism of
the application, by the computation power and by
the memory capacity of the parallel computing sys-
tem. However, how are these three factors related
to each other and, how do they influence the perfor-
mance of parallel processing generally is unknown.
Discovering the answers for these unknowns is very
important for designing efficient parallel algorithms
and for constructing high performance parallel sys-
tems. In this paper one mode1 of speedup, memory-
bounded speedup, is careful studied. This model is
simple, and it contains all of these three factors
as its parameters. It shows the degradations and
the possible performance gain of parallel computa-
tion. Incidently, the importance of memory capac-
ity to the speedup measurement was also realized by
Gustafson as indicated in his recent paper [14].

As a part of the study on performance, two
other models of speedup have also been studied.
They are fixed-size speedup and fixed-time speedup.
Two sets of speedup formulations have been de-
rived for these two models of speedup and memory-

331

Figure 9. Amdahl’s law, G ustafson’s speedup and SMB speedup, where Wr = 0.3 and #(IV) = IV4

800

600

Speedup

400

I I
400 600

Number of Nodes

800 1000

bounded speedup. One set of formulations are gen-
eral speedup formulas. These formulas contain more
parameters and provide more accurate information.
The second set of formulations only consider a spe-
cial, simplified case. These formulations give the
performance in principle and lead to a better under-
standing of parallel processing. The simplified fixed-
size speedup is Amdahl’s law, the simplified fixed-
time speedup is Gustafson’s scaled speedup, and the
simplified memory-bounded speedup contains both
of the Amdahl’s law and Gustafson’s speedup as
its special cases. Amdhal’s law suggests that the
sequential portion of the workload will dominate
the performance when the number of processors is
large. Gustafson’ scaled speedup claims that the in-
fluence of the sequential portion is independent of
the system size. Simplified memory-bounded Scaled
speedup declares that the sequential fraction will
change with the system size. Since the computation
requirement increases faster than the memory re-
quirement for most applications, the sequential frac-
tion could be reduced when the number of processors
increase.

The three models of speedup, fixed-size speedup,
fixed-time speedup and memory-bounded speedup, are
based on different viewpoints and suitable for dif-

ferent classes of applications. Applications do exist
which do not fit any of the models of speedup, but
satisfy some combination of the models. We plan to
study more on the performance issues and arrive at a
better understanding of parallel processing.

References
1. A. H. Karp and H. P. Flatt, “Measuring par-

allel processor performance,” CACM, vol. 33,
pp. 539-543, May 1990.

2. J. Ortega and R. Voigt, “Solution of partial dif-
ferential equations on vector and parallel com-
puters,” SIAM Review, June 1985.

3. M. Barton and G. Withers, “Computing perfor-
mance as a function of the speed, quantity, and
cost of the processors,” in Proc. Supercomput-
ing’89, pp. 759-764, 1989.

4. G. Amdahl, “Validity of the single-processor ap-
proch to achieving large scale computing capa-
bilities,” in Proc. AFIPS Conf., pp. 483-485,
1967.

5. J. Gustafson, “Reevaluating amdahl’s law,”
CACM, vol. 31, pp. 523-533, May 1988.

332

6. J. Gustafson, G. Montry, and R. Benner, “De-
velopment of parallel methods for a 1024
processor hypercube,” SIAM J, on SSTC, vol. 9,
July 1988.

7. A. Veen, “Dataflow machine architectures,”
ACM Comp, Surv,, pp. 365-396, Dec. 1986.

8. E. Coffman, “Introduction to deterministic
scheduling theory.” Computer and Job/Shop
Scheduling Theory, 1976. ed. E.G. Coffman,
John Wiley and Sons.

9. M. A. Marsan, G. Bailbo, and G. Conte, “A
class of generalized stochastic petri nets for
the performance analysis of multiprocessor sys-
tems,” ACM TOCS, pp. 93-122, May 1984.

10. D. Eager, J. Zahorjan, and E. Lazowska,
“Speedup versus efficiency in parallel system,”
IEEE TC, pp. 403-423, March 1989.

11. M. Kumar, “Measuring parallelism in compu-
tation intensive scientific/engineering applica-
tions,” IEEE-TC, vol. 37, pp. 1088-1098, Sep.
1988.

12. X.-H. Sun, “Parallel computation models for
scientific computing on multicomputers.” Ph.D.
Dissertation, Computer Science Department,
Michigan State University, 1990. In preparation.

13. K. Sevcik, “Characterizations of parallelism
in applications and their use in scheduling,”
in Proc. of ACM SIGMETRICS and Perfor-
mance’89, May 1989.

14. J. Gustafson, “Fixed time, tiered memory, and
superlinear speedup,” in Proc. of the Fifth Conf,
on Distributed Memory Computers, 1990. to ap-
pear.

333

	Sun1990 1
	Sun1990

