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a b s t r a c t

Scalability is a key factor of the design of distributed systems and parallel algorithms and machines.
However, conventional scalabilities are designed for homogeneous parallel processing. There is no
suitable and commonly accepted definition of scalability metric for heterogeneous systems. Isospeed
scalability is a well-defined metric for homogeneous computing. This study extends the isospeed
scalability metric to general heterogeneous computing systems. The proposed isospeed-efficiencymodel
is suitable for both homogeneous and heterogeneous computing. Through theoretical analyses, we derive
methodologies of scalability measurement and prediction for heterogeneous systems. Experimental
results have verified the analytical results and confirmed that the proposed isospeed-efficiency scalability
works well in both homogeneous and heterogeneous environments.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Scalability is an essential factor for performance evaluation and
optimization of parallel and distributed systems. It has been used
widely for describinghow the systemsize and theproblemsizewill
influence the performance of parallel computers and algorithms.
It measures the ability of parallel architectures to support parallel
processing at different machine ensemble sizes, and measures the
inherent parallelism of parallel algorithms. Scalability can also
be used to predict the performance of parallel systems at large
sizes based on their performance at small sizes. It suggests which
parallel computer could be built with more processors and which
algorithm might be suitable for a larger computer system.

Although scalability is important for parallel and distributed
systems, most of current research focuses on homogeneous envi-
ronments, once the mainstream of parallel computing. Homoge-
neous parallel computers such as MPP architecture machines have
led parallel computer architecture for decades. Heterogeneous
systems, however, have emerged as a major high-performance
computing platform in recent years. Typical examples include
CLUMPs [4] (CLUster of SMPs) and Grid [6]. CLUMPs leverage both
the usability of SMP and the scalability of cluster. With a high-
speed network, such as Myrinet or InfiniBand, clusters of SMPs
become more promising for high-performance parallel machines.
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E-mail addresses: chenyon1@iit.edu (Y. Chen), sun@iit.edu (X.-H. Sun),
wuming@iit.edu (M. Wu).

Grid computing environment is another emerging computing plat-
form. Grid connects and coordinates computing resources of dif-
ferent virtual organizations. It makes possible to share and aggre-
gate millions of heterogeneous computing resources distributed
geographically across organizations and domains. As computing
environments evolve, understanding scalability of heterogeneous
environments becomes timely important and necessary. In this
study, we propose an algorithm-system approach for general het-
erogeneous computing, based on the isospeed metric proposed in
[22]. Analytical and experimental studies are conducted to confirm
the feasibility of the newly proposed scalability model, and the re-
sults have shown that the newmodel is practical and effective. The
preliminary study and result were published in [20].

The rest of this paper is organized as follows: Section 2
reviews the related work and Section 3 introduces the proposed
general scalability model. The theoretical studies of the proposed
scalability metric are then given. Section 4 presents experimental
results and analyses, and finally, we summarize our current work
and discuss future work in Section 5.

2. Related work

Scalability is important for parallel and distributed systems;
however, there is still no widely accepted scalability metric for
general heterogeneous systems. Several metrics were proposed
[9,11,12,17,19,21–24], but most of these metrics were designed
for homogeneous environments. In [22], Sun and Rover proposed
an isospeed scalability metric to describe the scalability of an
algorithm-machine (or code-machine) combination in homoge-
neous environments. This metric is based on an average unit speed
concept, defined as the system’s achieved speed divided by the
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number of processors. The achieved speed is defined as the work
divided by the execution time. An algorithm-machine combination
is defined as scalable if the achieved average unit speed of the al-
gorithm on the given machine can remain constant while increas-
ing the number of processors, provided the problem size can be
increased with the system size. By this definition, the scalability
function ψ(p, p′) is defined as

ψ(p, p′) =
p′W
pW ′

where p and p′ are the initial and scaled number of processors,
and W and W ′ are the initial and scaled work (problem size)
respectively. Requiring a larger problem size incremental to
maintain the average unit speed results in a lower scalability.
The isospeed scalability model works well in homogeneous
environments and is well cited in scholarly publications [2,5,8,12,
15,24], including several widely used textbooks.

There is another well-known scalability metric, isoefficiency
scalability [11]. The isoefficiency scalability is defined as the ability
of a parallel machine to keep the parallel efficiency constant when
the system and problem size increase, where the parallel efficiency
is defined as the speedup over the number of processors. Speedup,
in turn, is defined as the ratio of sequential execution time and
parallel execution time. In theoretical analysis, the requirement
of sequential execution time does not appear to be a problem. In
practice, the performance of sequential processing varies with the
problem size on advanced multi-hierarchy memory architectures.
Running a large application on a single node of a parallel system is
problematic, if not impossible. Scalability measures the ability of
parallel systems at different system and problem size and does not
need to refer single-node sequential execution time of large scale
computing. Isoefficiency scalability may have some difficulty to
be extended to general heterogeneous environments. The relation
between the isoefficiency and isospeed scalability was studied in
[12,23].

Isospeed scalability uses the average unit speed as efficiency
anddoes not refer sequential execution time. It ismore appropriate
for high-speed computing practice. However, similar to the
isoefficiency scalability, it is based on the assumption that the
underlying parallel machine is homogeneous. This assumption
does not stand for many modern computing systems. It is
necessary to extend the isospeed scalability metric to general
parallel computing environments. In this study, we combine the
merits of both isospeed and isoefficiency scalability to propose a
new generalized scalability model.

There are some recent attempts to generalized scalability
metrics. Pastor and Bosque proposed a heterogeneous efficiency
function to define the heterogeneous scalability [2,15]. Their work
extended the homogeneous isoefficiency model to heterogeneous
computing. Jogalekar and Woodside proposed a strategy-based
scalability metric for general distributed systems [9]. The metric is
based on the productivity which is defined as the value delivered
by the system divided by its cost (money charge) per unit time.
A system is scalable if the productivity keeps pace with the
cost. Their metric measures the worthiness of renting a service.
However, commercial charge varies from customer to customer
based on business considerations and does not necessarily
reflect the inherent scalability of the underlying computing
system. These recent studies demonstrated the importance of the
scalability analysis for heterogeneous computing but have their
own limitations.

3. Isospeed-efficiency (Isospeed-e) scalability

In a general heterogeneous environment, a code runs on a
tightly coupled or distributed system. We often refer to the
code as the algorithm behind it to emphasize the importance
of the scalability analysis of the algorithm. Thus, we choose
the term algorithm-system combination, instead of code-machine
combination, for the scalability study. To completely describe the
attributes of a given algorithm-system combination, we need to
characterize all computing features of the system including the
CPU frequency, memory capacity and speed, network bandwidth,
I/O latency and etc. In engineering practice, however, we cannot
get into all the details; otherwise, the scalability model will be
too complex to use. It is desired to balance the simplicity and
the effectiveness. The model should be capable of catching the
key features of an algorithm-system combination and hiding the
details at the same time. For this reason, we introduce a new
concept,marked-speed, to describe the aggregate computing power
of a general heterogeneous system.

3.1. Definition of marked-speed

Definition 1. The marked-speed of a general computing system
is defined as the combined marked-speed of all nodes in the
system, where the marked-speed of each node is defined as the
(benchmarked) sustained speed, and speed is defined as work
divided by execution time.

As defined, a general system’s marked-speed is the numeric
summation of the quantitative marked-speed of all nodes that
compose the system. It captures the essential of the computing
power and represents the cumulative computational capability
of a general parallel/distributed system, but does not represent
other non-computation features like the network communication
capability. The marked-speed can be calculated based on the
hardware peak performance, which in general is much higher than
an actual delivered performance. In practice, we can use standard
benchmarks, such as Linpack [13], NPB [14] or an appropriate
benchmark from the Perfect benchmarks suite [16], to measure
each node’s sustained speed and calculate the whole system’s
marked-speed. To guarantee the comparability, we should use the
samebenchmark formeasurement.Wewill demonstrate the usage
ofmarked-speed in the analytical study section. Themarked-speed
is a quantitative measurement of computational power [25,2,15].

Let C denote the marked-speed of the computing system
and Ci denote the marked-speed of node i. In a heterogeneous
environment, Ci might be different from each other due to the
heterogeneity of the nodes. In a homogeneous environment, all Ci
are the same. According to Definition 1, we have C =

∑p
i=1 Ci in a

general parallel/distributed computing environment with p nodes.
In a homogeneous environment, we have C =

∑p
i=1 Ci = p.C1

because all Ci are the same.

3.2. Definition of isospeed-efficiency scalability

While the marked-speed for a given benchmark is a constant,
the actual achieved speed of an application may vary with the
system and problem size and may not be the same as the
marked-speed. This is especially true for parallel and distributed
processing where communication overhead is a major factor of
actual achieved speed. We introduce another concept, speed-
efficiency, to characterize the performance gain of an algorithm-
system combination.

Definition 2. The Speed-efficiency of an algorithm-system combi-
nation is defined as the achieved speed of the algorithm on the sys-
tem divided by the marked-speed of the system.
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Table 1
Comparison of Isospeed and Isospeed-e Scalability

Isospeed metric Isospeed-e metric
(Applied to homogeneous systems only) (Applied to both homogeneous and heterogeneous systems)

Speed W
T Achieved speed W

T
Average speed W

pT Speed-efficiency W
TC

Isospeed condition W
pT =

W ′

T ′p′ Isospeed-efficiency condition W
TC =

W ′

T ′C ′

Scalability function ψ(p, p′) =
p′W
pW ′ Scalability function ψ(C, C ′) =

C ′W
CW ′

Let S denote the achieved speed, W denote the work and
T denote the execution time, we have S =

W
T . Let Es stand

for the speed-efficiency. Thus, we have Es =
S
C =

W
TC . In

homogeneous environments, the speed-efficiency becomes the
same as the definition presented in [22] because each node has the
same marked-speed and the marked-speed of the system can be
expressed by using the system size p.

Based on the previous definitions and discussion, we propose
the following isospeed-efficiency scalability (isospeed-e scalability
in short) for any algorithm-system combination on a general
parallel/distributed computing system.

Definition 3 (Isospeed-e Scalability). An algorithm-system combi-
nation is scalable if the achieved speed-efficiency of the combina-
tion can remain constant with increasing the system ensemble size,
provided the problem size can be increased with the system size.

The proposed isospeed-e scalability model does not restrict the
underlying systemand is applicable to both homogeneous and het-
erogeneous systems. The method for increasing the system en-
semble size includes increasing nodes or the number of processors
within nodes, or upgrading to more powerful nodes. The approach
to increasing the problem size depends on the algorithm.

3.3. Isospeed-e scalability function

For a scalable algorithm or application, its communication
requirement should not increase faster than its computation
requirement. Therefore, we can increase the problem size to keep
the speed-efficiency constant when the system size is increased.
The increment of the problem size depends on the underlying
computing system and the algorithm itself. This variation provides
a quantitative measurement of the scalability. The marked-speed
introduced previously is an appropriate representation of the
computational capability, thus we use it to represent a general
system and call a system with marked-speed C as a system with
system size C in the rest of this study.

Let C be the initial system size of a specified computing system,
W and T be the initial problem size and the execution time. Let C ′

be the scaled system size,W ′ be the increased problem size and T ′

be the new execution time for the scaled problem size. We define
the isospeed-e scalability function as:

ψ(C, C ′) =
C ′W
CW ′

whereW ′ is constrained by the isospeed-efficiency condition:

W
TC

=
W ′

T ′C ′
.

In the ideal situation, there is no communication necessary,
which means thatW ′

= C ′W/C and thusψ(C, C ′) = 1. Generally,
W ′ > C ′W/C and ψ(C, C ′) < 1.

If we apply the isospeed-e scalability to a homogeneous
environment, we have C = pC1, and C ′

= p′C1 because all Ci are
the same. The scalability function becomes:

ψ(C, C ′) =
C ′W
CW ′

=
p′W
pW ′

.

This shows that the original homogeneous isospeed scalability
model is a special case of the isospeed-e scalability model. Table 1
compares the isospeed and the isospeed-e scalability in detail.

3.4. Theoretical studies

We have analyzed the proposed isospeed-e scalability model in
theory for further understandings of scalability studies, and this
section presents the analysis results.

Theorem 1. Suppose that an algorithm has a balanced workload on
each node and the sequential portion (which cannot be parallelized)
of the algorithm is α. If we can find a problem size to keep the speed-
efficiency constant when the system size is increased, then the system
is scalable and the scalability is:

ψ(C, C ′) =
t0 + To
t ′0 + T ′

o

where t0 and t ′0 are the execution time of the sequential portion, To and
T ′
o are the communication overhead of system C and C ′ separately.

Analysis: The condition that ‘‘the sequential portion of the
algorithm is α’’ means that only (1 − α)W of work can be
parallelized. The αW of work must be computed sequentially on
one node. The assumption that ‘‘the algorithm has a balanced
workload on each node’’ means that the workload is distributed
evenly among all computing nodes. Since Ci and C are the marked-
speed of the ith node and the whole computing system, this
assumption is translated to that the assignedworkload on node i is
Wi = (1 − α)W Ci

C . The parallel execution time can be divided into
two parts, T = Tc + To, where Tc is the computation time, and To is
the total communication overhead spent onmessage passing, data
transmission, synchronization and etc.

Proof. If a system C is used to compute a problemwith sizeW , and
W ′ is the increased problem size to satisfy the isospeed-efficiency
condition when the computing system is scaled to C ′, we have

W
(Tc + To)C

=
W ′

(T ′
c + T ′

o)C ′
.

Since the workload is distributed evenly and the sequential
portion of the algorithm is α, we have

Wi = (1 − α)W
Ci

C
.

Thus,

Tc =
Wi

Ci
+ t0 =

(1 − α)W
C

+ t0

where t0 =
αW
Cj

, which represents the execution time of the
sequential portion of the algorithm, and Cj is the marked-speed of
node jwhere the sequential computation happens on.

Hence,

W[
( (1−α)WC + t0)+ To

]
· C

=
W ′[

( (1−α)W
′

C ′ + t ′0)+ T ′
o

]
· C ′
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where t ′0 =
αW ′

Cj′
and the sequential portion is computed on node j′

when the system size is scaled.
Then,

W
(1 − α)W + Ct0 + CTo

=
W ′

(1 − α)W ′ + C ′t ′0 + C ′T ′
o
.

Thus,

(1 − α)WW ′
+ (C ′t ′0 + C ′T ′

o)W = (1 − α)WW ′
+ (Ct0 + CTo)W ′.

The scaled problem sizeW ′, therefore, is

W ′
=

C ′t ′0 + C ′T ′
o

Ct0 + CTo
· W =

C ′(t ′0 + T ′
o)

C(t0 + To)
· W .

Thus, the computing system is scalable and the scalability is

ψ(C, C ′) =
C ′W
CW ′

=
C ′W

C ·
C ′(t ′0+T ′

o)

C(t0+To)
· W

=
t0 + To
t ′0 + T ′

o
. �

Theorem 1 provides a method to calculate the scalability of
an algorithm-system combination, and also shows an insightful
understanding of the scalability. It reflects that the scalability
is decided by both the sequential portion of the work and the
communication overhead.When the problem size is scaled to keep
the speed-efficiency constant, the sequential portion of the work
is increased, as well as the communication overhead due to scaled
system size. Therefore, the scalability is likely to be smaller than 1
in practice.

Corollary 1. If an algorithm can be parallelized perfectly and has a
balanced workload on each node, and if the communication overhead
is constant for any problem size and system size, then the algorithm-
system combination is scalable and the scalability is perfect with a
constant value 1.

Proof. According to Theorem 1, we have

ψ(C, C ′) =
t0 + To
t ′0 + T ′

o
.

In the ideal case, the algorithm can be parallelized perfectly,
which means that α = 0. Thus, t0 = t ′0 = 0.

If the communication overhead is constant at any problem size
and system size, we have To = T ′

o.
Therefore, the scalability is

ψ(C, C ′) =
t0 + To
t ′0 + T ′

o
= 1. �

Corollary 1 analyzes the scalability of an ideal case. According
to the previous discussion, the scalability of an ideal case is 1.
Corollary 1 also reveals all the conditions that a perfectly scalable
algorithm-system combination requires.

Corollary 2. If an algorithm can be parallelized perfectly and has a
balanced workload on each node, and if we can find a problem size to
keep the speed-efficiency constant when the system size is increased,
then the algorithm-system combination is scalable and the scalability
is

ψ(C, C ′) =
To
T ′
o
.

Proof. Similar to the proof in Corollary 1, if the algorithm can be
parallelized perfectly, we have α = 0 and t0 = t ′0 = 0. According
to Theorem 1, the scalability is

ψ(C, C ′) =
t0 + To
t ′0 + T ′

o
=

To
T ′
o
. �

Corollary 2 shows another meaningful understanding of the
scalability and is useful in analyzing the scalability of an algorithm-
system combination. It demonstrates that if an algorithm can be
parallelized perfectly and has a balanced workload on each node,
then the scalability will only be decided by the communication
overhead at different system sizes.

In practice, we usually compute the sequential portion of the
algorithm on the same node before and after the system is scaled.
The following theorem analyzes the scalability in this situation.

Theorem 2. Let an algorithmhave a balancedworkload on each node
and the sequential portion of the algorithm be α. Suppose that the
sequential portion of the algorithm is computed on the same node
before and after the system is scaled. If we can find a problem size
to keep the speed-efficiency constant for the initial system C and the
scaled system C ′, then the system is scalable and the scalability is

ψ(C, C ′) =
CβW − C ′βW + CTo

CT ′
o

where β = α/Ci, Ci is the marked-speed of the node where the
sequential portion of the algorithm is computed, W is the initial
problem size, To and T ′

o are the communication overhead for system
C and C ′, respectively.

Proof. The proof of Theorem 2 is similar to that of Theorem 1. We
only need to notice that t0 = αW/Ci, and t ′0 = αW ′/C ′

i . Since the
sequential portion of the algorithm is computed on the same node,
we have Ci = C ′

i . Let β = α/Ci, thus t0 = βW and t ′0 = βW ′.
According to the isospeed-efficiency condition, we have:

W
(Tc + To)C

=
W ′

(T ′
c + T ′

o)C ′
.

Then

W[
( (1−α)WC + t0)+ To

]
· C

=
W ′[

( (1−α)W
′

C ′ + t ′0)+ T ′
o

]
· C ′

.

So,

(1 − α)WW ′
+ (C ′t ′0 + C ′T ′

o)W = (1 − α)WW ′
+ (Ct0 + CTo)W ′.

Thus,

C ′T ′

oW = (CβW + CTo − C ′βW )W ′.

Therefore, the increased problem sizeW ′ is

W ′
=

C ′T ′
oW

CβW − C ′βW + CTo
.

Thus, the computing system is scalable and the scalability is

ψ =
C ′W
CW ′

=
C ′W
C

·
CβW − C ′βW + CTo

C ′T ′
oW

=
CβW − C ′βW + CTo

CT ′
o

. �

These theorems and corollaries reveal that if we are able to analyze
the communication overhead at system size C and C ′, theworkload
and the sequential ratio of the algorithm, we can calculate and
predict the scalability of a systemwith size C ′ based on the system
with size C . Wewill show these methods in experimental analysis.

3.5. Calculation of isospeed-e scalability

The isospeed-e scalability can be obtained in many ways.
The most straightforward way is to compute the scalability. This
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Fig. 1. Gaussian Elimination algorithm.

method measures the execution time at different system and
problem sizes and computes the scalability according to the
isospeed-e scalability definition.

Another approach is to analyze and predict the scalability. This
method examines the computational and communicational ratio
of the algorithm, as well as the communication latency of the
machine, and then utilizes derived theoretical analysis results to
predict the scalability based on the measurements of base cases.
This method can also be used to verify the computed scalability.
The third approach is to measure the scalability directly when
scaling the problem size to maintain the isospeed-efficiency [22].
The experiments given in Section 4 illustrate the computation and
prediction of the isospeed-e scalability.

4. Experimental results and analyses

Wehave carried out experimental testing to verify the proposed
isospeed-e scalability model and the theoretical analysis results,
and to demonstrate the isospeed-e scalability is practically
applicable.

4.1. Algorithms and implementations

Two classical algorithms, Gaussian Elimination (GE) and
Matrix Multiplication (MM) algorithms, and one application, 2D
Convolution, were selected for testing. Gaussian Elimination and
Matrix Multiplication algorithms are widely used in scientific
computing. 2D Convolution is a real image processing application,
which conducts 2D convolution on two images.

4.1.1. Gaussian Elimination algorithm
Gaussian Elimination algorithm solves dense linear equations

Ax = b where A is a known matrix of size N × N, x is the required
solution vector, and b is a known vector of size N . The algorithm
has two stages:

(1) Gaussian elimination stage. In this stage, the original
equations are reduced to an upper triangular form Ux = y, where
U is amatrix of sizeN×N inwhich all elements below the diagonal
are zeros and the diagonal elements have the value 1. The vector y
is the modified version of vector b. This stage is composed of N −1
steps. The ith step eliminates nonzero sub-diagonal elements in
column i by scaling the ith row by the factor Aji/Aii and subtracting
it from row j in the range [i + 1,N] to make the element Aji

zero in each case. Fig. 1 demonstrates the ith step of the Gaussian
elimination stage.

(2) Back substitution stage. In this stage, the new equations are
solved to obtain the value of x.

The parallel Gaussian Elimination algorithm used in the
experiment is described as following.

(1) Process 0 distributes the data of matrix A and vector b to other
nodes proportionally according to theirmarked-speeds follow-
ing the row-based heterogeneous cyclic distribution [10]

(2) All processes compute concurrently:
(2.1) For (i = 0; i < N − 1; i + +)

(2.1.1) The processwhich owns the pivot rowbroadcasts
the pivot row to all processes

(2.1.2) For (j = i + 1; j < N; j + +)
(a) Each process judges if row j belongs to itself

or not
(b) If yes, then it conducts Gaussian elimination

on this row.
(2.2) Synchronize all processes due to data dependence

(3) Process 0 collects intermediate results from other processes
and conducts the back substitution stage.

We can analyze the sequential time complexity of the Gaussian
Elimination algorithm. The Gaussian elimination stage has three
levels of loop and each loop has N iterations. Thus, the time
complexity of this stage is O(N3), where N is the rank of matrix A.
Similarly, the back substitution stage has O(N2) time complexity.
Therefore, the total time complexity of the Gaussian Elimination
algorithm is O(N3). After analyzing the algorithm precisely and
counting the factor of each term, the total workload of this
algorithm is:

W (N) =
2
3
N3

−
1
2
N2

− 3
1
6
N + 3.

This formula was used to calculate the workload of Gaussian
Elimination algorithm in the experiments. The implementation
of this algorithm followed the same technique adopted in the
Matrix Multiplication experiment, which is explained in detail in
the following section.

4.1.2. Matrix Multiplication algorithm
Matrix Multiplication algorithm calculates the product of two

matrices, C = A × B. For simplicity, we restrict matrix A and
B to be square N × N matrices. There are many classical
parallel algorithms for matrix multiplication [7], such as Cannon’s
algorithm and the outer product algorithm used in ScaLAPACK
[18]. But most of these algorithms are based on homogeneous
environments. Literature [1] conducted a thorough research for
matrix multiplication optimization on heterogeneous platforms.
It stated that the matrix multiplication optimization problem on
heterogeneous platforms is a problem to balance the workload
with different speed resources and minimize the communication
overhead. Unfortunately, this problem has been proven to be an
NP-Complete problem. A polynomial heuristic algorithm called
Optimal Column-based Tiling was thus proposed and proven to be
a good solution for heterogeneous platforms.

Our experiments were designed to verify the proposed scala-
bility model. There is no intent to introduce new algorithms for
heterogeneous platforms.Wehave implemented a straightforward
row-based heuristic algorithm. This algorithm adopts the HoHe
strategy [10] which distributes homogeneous processes over dif-
ferent speed processors with each process running on a separate
processor,while the distribution ofmatrices over the processes fol-
lowing the heterogeneous block cyclic pattern. In our algorithm,
process 0 distributes matrix A following a row-based heteroge-
neous block distribution initially, whichmeans that A is distributed
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Fig. 2. Speed-efficiency on two and four nodes of Sunwulf.

proportionally into other nodes according to these nodes’ marked-
speeds. Then process 0 distributes matrix B to other nodes. After
data distribution, each node computes part of the matrix multipli-
cation on its own data. Finally, process 0 collects all results from
other processes. Since there is no communication during the com-
putation, the communication only occurs in data distribution and
collection stages. This algorithm is not a perfect algorithm, but this
algorithm does balance the workload between different speed re-
sources, since each node works on N ×

Ci
C rows of data and the

workload of each node is 2 × N3
×

Ci
C . The total workload of our

algorithm is W (N) = 2 × N3. Considering the problem to balance
theworkload andminimize the communication is an NP-Complete
problem, this algorithm is a minimum-communication-times ap-
proximation solution. This approximation is practical because the
communication time is composed of a startup time and data trans-
mission time, and the startup time is much greater than the trans-
mission time for transferring a small amount of data. Several
parallel matrix multiplication algorithms partition matrix to sub-
matrices and shift to horizontal or vertical neighbors to pipeline
the computation and communication. However, some of these al-
gorithms are based on special architectures, such as mesh or torus
architecture. They might not be as efficient as expected on general
parallel platforms in practice because they require too many com-
munication operations.

The implementation of our algorithm followed the HoHe
strategy, which generated the same number of processes as
the number of processors and distributed each process on a
separate processor. As stated in [10], traditional high-level parallel
programming tools lack the facilities to support programmers
to operate with quantitative characteristics of heterogeneous
platforms, such as the speed of processors. Low-level tools, such
as PVM and MPI, allow programmers to write parallel applications
adaptable to the performance of processors. This is not supported
directly by the tools, however, and is extremely complicated. In
our experiments, we created a static configuration file to store
quantitative characteristics of heterogeneous processors, which
are the marked-speed in our study. These marked-speeds of all
nodes were pre-measured and stored as a 〈hostname, marked-
speed〉 pair in the configuration file. After the programwas started,
process 0 opened this file and read in the marked-speed of each
node. When process 0 distributing the data, it partitioned the data
ofmatrices proportionally following the row-based heterogeneous
cyclic distribution and sent the partitioned data to each process.

4.1.3. 2D Convolution application
The 2D Convolution application performs 2D convolution on

twoN×N images,where each element is a complex number. Itwas
implemented by taking a 2D Fast Fourier Transform (FFT) of each
input image first, then performing a point-wise multiplication of
the intermediate results, followedby an inverse 2D FFT. The 2D-FFT
was implemented by performing N times of N-point 1D-FFT along
rows first, followed byN times ofN-point 1D-FFT along columns of
the intermediate results of the row FFT. A typical 1D-FFT algorithm

Table 2
Marked-speed of Sunwulf nodes(Unit: Mflops)

Node Server node
with 1 CPU

SunBlade
compute node

SunFire V210 compute
node with 1 CPU

Marked-speed 20.88 20.29 36.45

was developed by Cooley and Tukey in 1965. The procedure of the
2D convolution is shown as following:

A = 2D-FFT(image1)
B = 2D-FFT(image2)
C = MM_Point(A, B)
D = Inverse-2DFFT(C)
where A, B, C , and D are N × N matrices of complex numbers,

and D is the final output.
We have implemented the 2D Convolution on heterogeneous

platforms and adopted the HoHe strategy for load balancing. The
algorithm is as following.
(1) Process 0 reads in image data (matrices) from input files, and

all other processes create the sub-image for the part of data
they will work on.

(2) Process 0 distributes the data of matrix A and B to other nodes
proportionally according to their marked-speeds following the
row-based heterogeneous block distribution.

(3) Each process computes forward 2D-FFT on its two sub-images
concurrently.

(4) Each process computes point-wise multiplication on its two
sub-images and obtains the intermediate sub-image.

(5) Each process computes inverse 2D-FFT on its intermediate sub-
image.

(6) Process 0 gathers the results from all other processes and
outputs the final result.

The total workload of the 2D Convolution algorithm is:
W (N) = 66N2 lgN + 21N2

+ 84N lgN.

4.2. Experimental setup

Our experiments were conducted on the heterogeneous
Sunwulf compute farm in the Scalable Computing Software (SCS)
laboratory at Illinois Institute of Technology. Sunwulf compute
farm is composed of one SunFire server node (Sunwulf node), 64
SunBlade compute nodes (hpc-1 to hpc-64) and 20 SunFire V210
compute nodes (hpc-65 to hpc-84). The server node has four CPUs
with 480 MHz and 4 GB memory. The SunBlade compute node
has one 500-MHz CPU and 128 MB memory. The SunFire V210
compute node has two 1 GHz CPUs and 2 GBmemory. The network
connecting all these nodes is 100 Mbps Ethernet. The software
platform included SunOS 5.8 and MPICH 1.2.5 release.

4.3. Measuring the marked-speed

The NASA Parallel Benchmark [14] was adopted to measure the
marked-speed. We run every benchmark on each node and took
the average speed on each node as its marked-speed. Table 2 gives
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Table 3
Workload, execution time, achieved speed and speed-efficiency of Gaussian Elimination algorithm at different problem sizes on two nodes of Sunwulf

Matrix rank N WorkloadW Execution time T (ms) Achieved speed (Mflops) Speed-efficiency

Case 1.1 100 661353 260.770 2.536 0.041
Case 1.2 200 5312703 473.786 11.213 0.181
Case 1.3 300 17954053 925.242 19.405 0.313
Case 1.4 400 42585403 1587.725 26.822 0.432
Case 1.5 500 83206753 2657.918 31.305 0.505

Table 4
Workload, execution time, and speed-efficiency of Gaussian Elimination algorithm at different problem sizes on four nodes of Sunwulf

Matrix rank N WorkloadW Execution time T (ms) Achieved speed (Mflops) Speed-efficiency

Case 2.1 200 5312703 787.315 6.748 0.066
Case 2.2 300 17954053 1227.864 14.622 0.142
Case 2.3 400 42585403 1555.409 27.379 0.267
Case 2.4 500 83206753 2398.865 34.686 0.338
Case 2.5 600 1.44E + 08 3503.558 41.049 0.399
Case 2.6 700 2.28E + 08 4542.754 50.282 0.490
Case 2.7 800 3.41E + 08 6137.099 55.565 0.541

Table 5
Required matrix size to maintain speed-efficiency of Gaussian Elimination algorithm on Sunwulf

System configuration Matrix size N WorkloadW Marked-speed (Mflops)

Case 1 2 nodes, C2 310 19811638 62.05
Case 2 4 nodes, C4 480 73611283 102.63
Case 3 8 nodes, C8 1000 6.66E + 08 183.79
Case 4 16 nodes, C16 1700 3.27E + 09 346.11
Case 5 32 nodes, C32 3200 2.18E + 10 670.75

Table 6
Computed scalability of Gaussian Elimination algorithm on Sunwulf

ψ(C2, C4) ψ(C4, C8) ψ(C8, C16) ψ(C16, C32)

0.445 0.198 0.383 0.290

the measured marked-speed of the server node with one CPU, the
SunBlade compute node and the SunFire V210 compute node. The
marked-speed of a specific computing system can be calculated
according to Definition 1. For example, if we choose the following
nodes to participate computation: server node with one CPU, one
SunBlade compute node and two SunFire compute nodes with one
CPU, the marked-speed of this computing system is:

20.88 + 20.29 + 2 × 36.45 = 114.07 (Mflops).

4.4. Experimental results and analyses

4.4.1. Gaussian Elimination experimental results
The first set of experiments aimed to apply the proposed

isospeed-e scalability to analyze the Gaussian Elimination algo-
rithm with different system configurations on the Sunwulf com-
pute farm. We started with two nodes, one SunBlade node and the
server node. In this case, server node utilized two CPUs. According
to Table 2, the marked-speed of this environment is:

C2 = 20.88 × 2 + 20.29 = 62.05 (Mflops).

Table 3 shows the workload, execution time, achieved speed
and speed-efficiency of Gaussian Elimination at different matrix
sizes on two nodes. The speed-efficiency was calculated according
to Definition 2.

Based on the experimental results, we plot the relationship
between the speed-efficiency and the matrix size in the left figure
of Fig. 2. According to the definition of the speed-efficiency and the
workload formula, the function between the speed-efficiency and
the matrix size is polynomial, thus we applied a polynomial trend
line to approach the sample results. From the polynomial trend
line, we can read the approximate value of the speed-efficiency

at any matrix size or read the approximate required matrix size
to obtain a specified speed-efficiency. For example, if we want to
obtain a speed-efficiency of 0.3, the required matrix size should be
around 310. We measured the speed-efficiency when matrix size
is 310 and the result is 0.312, which is shown with a gray triangle
in Fig. 2. This verifies the method that we read the required matrix
size for a specified speed-efficiency from trend line works.

Next we scaled the system size to four nodes and the
configuration of these four nodes was also changed. The new
computing system was composed of hpc-40, hpc-41, hpc-42 and
the server node with two CPUs. Similar to the analysis in the case
of two nodes, we calculated the workload andmarked-speed, then
computed the speed-efficiency. In this case, themarked-speedwas
C4 = 102.63 Mflops. Table 4 shows the test results.

The speed-efficiency with four nodes is also shown in the right
figure of Fig. 2. Similar to the analysis in the case of two nodes, the
required matrix size to obtain a 0.3 speed-efficiency was around
480. The measured speed-efficiency with matrix size 480 was
0.288. It also verifies the observationmethod to obtain the required
matrix size for a specified speed-efficiency works well.

Based on these results, we are able to follow the first method in
Section 3.5 to calculate the scalabilitywhen the system scaled from
two nodes to four nodes. Since the requiredmatrix sizewas around
310 in the case of two nodes and 480 in the case of four nodes to
maintain the speed-efficiency, and recall the marked-speed was
62.05 and 102.63 respectively, according to the scalability function
definition, we have

ψ(C2, C4) =
C4 · W (N)
C2 · W (N ′)

= 0.445.

Similar to the previous analysis, we obtained the results in the
case of 8 nodes, 16 nodes and 32 nodes. In each case, one node
was the server node and the rest nodes were SunBlade compute
nodes. The marked-speed of the computing system in each case
is denoted as C8, C16, C32 respectively. The required matrix size to
maintain the speed-efficiency, along with the workload and the
marked-speed are shown in Table 5.

The computed scalability of Gaussian Elimination algorithm on
Sunwulf is shown in Table 6.
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Table 7
System configuration of each case in matrix multiplication experiment

System configuration Server node SunBlade compute node SunFire compute node Marked-speed (Mflops)

Case 1 2 nodes, C ′

2 1 0 1 57.33
Case 2 4 nodes, C ′

4 1 1 2 114.07
Case 3 8 nodes, C ′

8 1 3 4 227.55
Case 4 16 nodes, C ′

16 1 7 8 454.51
Case 5 32 nodes, C ′

32 1 15 16 908.43

Table 8
Matrix multiplication experimental results

System configuration Matrix size N WorkloadW Marked-speed (Mflops)

Case 1 C ′

2 165 8984250 57.33
Case 2 C ′

4 255 33162750 114.07
Case 3 C ′

8 430 1.59E + 08 227.55
Case 4 C ′

16 710 7.16E + 08 454.51
Case 5 C ′

32 1150 3.04E + 09 908.43

Table 9
Computed scalability of Matrix Multiplication algorithm on Sunwulf

ψ(C ′

2, C
′

4) ψ(C ′

4, C
′

8) ψ(C ′

8, C
′

16) ψ(C ′

16, C
′

32)

0.539 0.416 0.443 0.470

4.4.2. Matrix Multiplication experimental results
Another set of experiments we carried out to study the

isospeed-e scalability was Matrix Multiplication algorithm on
Sunwulf compute farm. We tested the algorithm on 2, 4, 8,
16 and 32 nodes respectively. The system configuration was
heterogeneous in each case, where half nodes were SunBlade
compute nodes and the other half nodes were SunFire V210 nodes
except one node was the server node. For instance, in the case of 8
nodes, the computing system was composed of one server node,
three SunBlade compute nodes and four SunFire V210 compute
nodes. The marked-speed of the system in each case was different
with previous experiment due to different configurations. For
example, the marked-speed is: C ′

8 = 20.88 + 3 × 20.29 + 4 ×

36.45 = 227.55 (Mflops) in the case of 8 nodes. The detailed
system configuration and the marked-speed in each case is shown
in Table 7.

The testing procedure was similar to the previous experiment.
The details are omitted here. The speed-efficiency of Matrix
Multiplication algorithm at different system configurations is
given in Fig. 3.

Similar to the analysis in the Gaussian Elimination experiment,
we computed the scalability following the first method in
Section 3.5 when system size changed. We read the required
matrix size to maintain the speed-efficiency at different system
configurations from Fig. 3. Table 8 shows the results.

According to Table 8, we calculated the isospeed-e scalability
for theMatrixMultiplication algorithm on Sunwulf, and the results
are shown in Table 9.

4.4.3. Comparison of Gaussian Elimination and Matrix Multiplication
experiments

Gaussian Elimination and Matrix Multiplication experiments
are actually two different algorithm-system combinations. Both
experiments have shown that the isospeed-e scalability model
works well for algorithm-system combinations and it provides
a practical approach to quantify and compare the scalability of
different combinations

Compared with the scalability of GE–Sunwulf combination
given in Table 6, the scalability of MM–Sunwulf combination, as
shown in Table 9, is higher. This indicates that the MM–Sunwulf
combination is more scalable than the GE–Sunwulf combination.
The Gaussian Elimination algorithmhas a certain part of sequential

Fig. 3. Speed-efficiency of Matrix Multiplication algorithm at different system
configurations.

Fig. 4. Speed-efficiency of 2D Convolution application at different system
configurations.

processing and requires much more communication for data
transmission during concurrent computation than that of the
Matrix Multiplication algorithm. Its scalability should be lower
than the scalability of the latter. Our experimental results verified
this fact and presented an actual quantified scalability advantage
of the Matrix Multiplication algorithm on Sunwulf.

4.4.4. 2D Convolution experimental results
We have tested the 2D Convolution application on the same

series of system configurations as in the Matrix Multiplication
experiment. The testing process was similar to the Matrix
Multiplication experiment as well. We first obtained the speed-
efficiency diagram in each case, and then read the required matrix
size to keep the speed-efficiency and calculated the scalability
when system size was changed. The speed-efficiency results of 2D
Convolution are shown in Fig. 4.

Table 10 shows the required matrix size to keep the speed-
efficiency at different system configurations, and Table 11 shows
the scalability results of 2D Convolution application on Sunwulf
compute farm.
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Table 10
2D Convolution experimental results

System configuration Matrix size N WorkloadW Marked-speed (Mflops)

Case 1 C ′

2 145 10492177 57.33
Case 2 C ′

4 270 40574873 114.07
Case 3 C ′

8 545 1.8E + 08 227.55
Case 4 C ′

16 1160 9.3E + 08 454.51
Case 5 C ′

32 2030 3.1E + 09 908.43

Table 11
Computed scalability of 2D Convolution application on Sunwulf

ψ(C ′

2, C
′

4) ψ(C ′

4, C
′

8) ψ(C ′

8, C
′

16) ψ(C ′

16, C
′

32)

0.515 0.438 0.396 0.606

This set of experiments has validated the proposed isospeed-
e scalability via applying it to a real application. Essentially the
isospeed-e scalability provides a quantitative evaluation of how
scalable an algorithm or an application is on a general comput-
ing platform including both homogeneous and heterogeneous en-
vironments.

4.5. Scalability prediction

As discussed in Section 3, if we are able to analyze the algorithm
and measure the communication latency of the machine, we can
predict the scalability of the algorithm-system combination based
on the measurements of base cases. We take the GE–Sunwulf
combination as an example and illustrate how its scalability can
be predicted.

As presented in Section 4.1.1, the sequential part of the parallel
Gaussian Elimination algorithm is the back substitution stage, thus,
the sequential ratio is α = O(1/N). When N is large enough, we
treat α ≈ 0. The total communication overhead of the algorithm
is:

To = Tbroadcast + 2 × (p − 1)× (Tsend + Trecv)
+N × (2 × Tbroadcast + Tbarrier)

where p is the number of processes. We have measured the
parameters in the above equation on Sunwulf and the results are:

Tbroadcast ≈ 0.12 + p × 0.23 (ms)
Tsend = Trecv ≈ 0.08 + (0.00003 × N) (ms)
Tbarrier ≈ p × 0.39 (ms).

The computation time can be written as

Tc =
W (N)× tc

p

where tc is the time of one unit computation. We have measured
its value and the result is:

tc ≈ 3.1 × 10−5 (ms).

Based on these analyses and actual parameters, and according
to Corollary 2, we predict the scalability as:

ψ(C, C ′) =
To
T ′
o

whereN appearingwithin To and T ′
o is constrained by the isospeed-

efficiency condition:

W
(Tc + To)C

=
W ′

(T ′
c + T ′

o)C ′
.

The prediction results of the required matrix size N to keep the
speed-efficiency constant based on the case of two nodes are
shown in Table 12. Compared with the measured required matrix

Table 12
Predicted required matrix size N ′ to maintain the speed-efficiency

Nodes 4 8 16 32

N ′ (prediction) 492 928 1683 3226

Table 13
Predicted scalability of Gaussian Elimination algorithm on Sunwulf

ψ ′(C2, C4) ψ ′(C4, C8) ψ ′(C8, C16) ψ ′(C16, C32)

0.413 0.267 0.316 0.275

sizes listed in Table 5, the difference between the predicted value
and the measured value is trivial, such as N ′

= 1683 and N =

1700,N ′
= 3226 and N = 3200 in the predicted case and in the

measured case respectively. The average prediction error is only
about 2.8%. The predicted scalability is shown in Table 13.

The predicted scalability is a close-match of the computed
scalability shown in Table 6, which also verifies the isospeed-e
scalability works as expected and the theoretical analysis matches
the experimental results. There are some variations between
the predicted scalability values and the calculated values. This
is because it is particularly hard to obtain the exact machine
latencywhen performing various communication operations, such
as Tbroadcast , Tsend, Treceive and Tbarrier in the analysis. However, the
predicted scalability is a good approximation and is practically
useful in analyzing the scalability of a large-scale system where
the experimental measurement is exceedingly hard or even
impossible. The scalability prediction is also helpful in choosing the
best algorithm-system combination for a given application.

5. Conclusions and future work

Scalability is an important measurement for analyzing the per-
formance of parallel/distributed computing systems. In this study,
we proposed a novel model, named isospeed-efficiency scalability,
or isospeed-e scalability in short, for a general computing system.
It contains the homogeneous isospeed scalability [22] as a special
case. Our main contributions in this study include: (1) introducing
a new concept of marked-speed to describe the computational ca-
pability of computing systems; (2) presenting an isospeed-e scala-
bility for both homogeneous and heterogeneous computing based
on the marked-speed concept; (3) analyzing the new scalability
model in theory and deriving useful formulas for calculating and
predicting the scalability; and (4) having conducted experiments
to validate the proposed isospeed-e scalability. Analytical and ex-
perimental results show that the proposed isospeed-e scalability
models the scaling characteristics of computing systems well.

The proposed isospeed-e scalability is practical and effective.
It works not only on conventional cluster systems, but also on
general distributed heterogeneous environments, such as Grid
platform. Due to the recent rapid changes in the Grid technology,
our current experimental testing was limited on clusters only.
We intend to extend the tests of isospeed-e scalability to a Grid
platform in future research.

We have demonstrated that the scalability can be predicted
based on derived formulas in this study, and we have developed
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a scalability testing and analysis toolkit recently [3]. We plan to
explore the possibility of extending the prediction of scalability
into the system support so that the scalability can be predicted
automatically or semi-automatically.
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