
Rethinking High Performance Computing System
Architecture for Scientific Big Data Applications

Yong Chen∗, Chao Chen∗, Yanlong Yin†, Xian-He Sun†, Rajeev Thakur‡, William D Gropp§

∗Department of Computer Science, Texas Tech University, Email: yong.chen@ttu.edu, chao.chen@ttu.edu
†Department of Computer Science, Illinois Institute of Technology, Email: yyin2@ttu.edu, sun@ttu.edu
‡Mathematics and Computer Science Division, Argonne National Laboratory, Email: thakur@mcs.anl.gov
§Department of Computer Science, University of Illinois Urbana-Champaign, Email: wgropp@illinois.edu

Abstract—The increasingly important data-intensive scientific
discovery presents a critical question to the high performance
computing (HPC) community - how to efficiently support these
growing scientific big data applications with HPC systems that
are traditionally designed for big compute applications? The
conventional HPC systems are computing-centric and designed
for computation-intensive applications. Scientific big data ap-
plications have growlingly different characteristics compared to
big compute applications. These scientific applications, however,
will still largely rely on HPC systems to be solved. In this
research, we try to answer this question with a rethinking of HPC
system architecture. We study and analyze the potential of a new
decoupled HPC system architecture for data-intensive scientific
applications. The fundamental idea is to decouple conventional
compute nodes and dynamically provision as data processing
nodes that focus on data processing capability. We present studies
and analyses for such decoupled HPC system architecture.
The current results have shown its promising potential. Its
data-centric architecture can have an impact in designing and
developing future HPC systems for growingly important data-
intensive scientific discovery and innovation.

I. INTRODUCTION

Many scientific simulations in critical areas, such as cli-
mate sciences, astrophysics, computational chemistry, com-
putational biology, and high-energy physics, are becoming in-
creasingly data intensive [1, 2]. These applications manipulate
a large amount of data relative to the amount of computation
they perform, and often transfer large amounts of data to and
from storage systems. Some application teams have already
begun to process terabytes or tens of terabytes of data in a
single simulation run. For example, 12 out of 25 INCITE
applications run on the Department of Energy leadership
computing system at Argonne National Laboratory several
years ago have already processed datasets in the terabyte
range [3, 4].

Meanwhile, the data collected from instruments for scien-
tific discoveries and innovations are increasing rapidly too.
For example, the Global Cloud Resolving Model (GCRM)
project, part of Department of Energy’s Scientific Discovery
through Advanced Computing (SciDAC) program [5], is built
on a geodesic grid that consists of more than 100 million
hexagonal columns with 128 levels per column. These 128
levels will cover a layer of 50 kilometers of atmosphere
upwards from the surface of the earth. For each of these
grid cells, scientists need to store and predict data like the
wind velocity, temperature, pressure, etc. Most of these global
atmospheric models currently process data in a 100-kilometer
scale (the distance on the ground); however, scientists desire
higher resolution and finer granularity, which can lead to even

larger sizes of datasets. In addition, the proliferation of sensing
technologies and the increased usage of remote sensors are
also generating huge amount of data than ever before.

Both experimental data and simulation data are rapidly in-
creasing, and these scientific discoveries and innovations have
exhibited a critical data-intensive computing need, creating the
“big data” computing era in recent years [6–8]. High Perfor-
mance Computing (HPC) is a strategic tool during the process
of scientific discoveries and innovations. These increasingly
data-intensive scientific problems will still rely on HPC sys-
tems to compute, analyze, and answer the problems, which
is an essential process of understanding the phenomenon
behind the data. The conventional HPC systems, however,
are computing-centric and designed for computation-intensive
applications. They are not ready and can have inherent
limitations when used for solving increasingly data-intensive
problems. How to design and develop HPC system architec-
tures for efficient processing ever-growing scientific data has
become a key challenge in the big data computing era.

In this research, we revisit the HPC system architecture
and study the impact of a new decoupled high performance
computing system architecture for data-intensive sciences.
Such a study can shed light on designing and developing
next-generation HPC systems for growingly critical data-
intensive computing. A decoupled system architecture has
the notion of the separation of compute nodes and data
processing nodes. The novelty of the decoupled HPC system
architecture is that, instead of dedicating the dominant invest-
ment to compute nodes as in the conventional HPC system
architecture, the new investment is decoupled into compute
nodes and data nodes. These data nodes are designed to
handle data-intensive operations with a mission of minimizing
data movement. Compute nodes, as in the conventional ar-
chitecture, handle computation-intensive operations. Scientific
big data applications can be mapped to such a decoupled
HPC system architecture and are executed in a decoupled
but fundamentally more efficient manner with the collective
support from data nodes and compute nodes. Ideally these data
nodes and compute nodes can be dynamically configured and
provisioned depending on application-specific characteristics,
e.g. the intensity of data accesses. This research focuses on
modeling and analysis of a decoupled HPC system architec-
ture. A fundamental question we try to answer in this research
is that how HPC system architecture should be designed and
developed to best support data-intensive scientific computing.
Our idea of a decoupled system architecture is a new thinking
of HPC system architecture design and development when

data access is as important as computation. A decoupled
HPC system architecture can be such a possible solution.
The current results have shown that it is promising and has a
potential.

The rest of this paper is organized as follows. Section II
presents the idea and framework of a decoupled HPC sys-
tem. Section III introduces the modeling and analysis of
the decoupled HPC system architecture. Section IV reviews
existing studies in related areas and compares with our work.
Section V concludes this study and discusses future work.

II. DECOUPLED HIGH PERFORMANCE COMPUTING
SYSTEM ARCHITECTURE: MOTIVATION AND OVERVIEW

In scientific applications, data is commonly represented
with a multi-dimensional array-based data model. For in-
stance, the widely used Community Earth System Model
(CESM) software package consists of four separate mod-
ules simultaneously simulating the earths atmosphere, ocean,
land surface and sea-ice, and each module uses the multi-
dimensional arrays data model [9]. A common example is
a 3-dimensional temperature data with longitude, latitude,
and time dimensions. It is often needed to compute the
moving average, median, lowest and highest temperature with
specified conditions such as areas and periods of time. Such
computed results will be further correlated with the computed
results from other parameters, such as the humidity and wind
velocity, to predict weather conditions.

The current way of conducting such processing is to read
the required data (e.g., a sub-array of interested area) from
storage servers to compute nodes, perform computations on
desired data with specified conditions, such as those data
shown in shaded area, and then write the output back to
storage. For CESM, an experimental test shows that the data
access and movement time for the calculation of the moving
average, median, lowest and highest degrees can occupy
88.2%, 95.4%, 96.6%, and 96.6% of the total execution time
on a cluster, where 128GB of data are retrieved to 272 nodes
for processing.

CESM clearly has data retrieval and processing phases and
computing and simulation phases, as many scientific big data
applications do. The basic idea of the new decoupled HPC
system architecture is to change the conventional architecture
to handle these two phases differently on different nodes.
Such an architecture decouples nodes into compute nodes
and data processing nodes. These nodes are mapped with
computation-intensive operations and data-intensive opera-
tions respectively. Computation-intensive operations are exe-
cuted on massive compute nodes. Data-intensive operations
are executed on dedicated data processing nodes. In other
words, the decoupled architecture reshapes the current pattern
of retrieve - compute - store cycles into retrieve (generate)
- reduce - compute - reduce - store cycles as shown in
Figure 1, where the reduce phases are designed to conduct
offloaded data-intensive operations and reduce data size before
moving data across the network. These retrieval, reduce,
compute, and store phases can be pipelined to overlap the
I/O, communication, and computation times. From one point
of view, the decoupled architecture is an enhanced framework
of MapReduce [10], where the reduce is not conducted by
one node with its local storage, but a set of (data) nodes and
the global storage, so that parallel computing features can be

maintained. From another point of view, the data nodes are
the data-access accelerators, to speed up data accesses and
reduce data size before sending data across the network.

Compute(

Retrieval(

Store(

Compute(

Retrieval(

Store(

Reduce(

Reduce(

Can(be(a(bo4leneck(
for(big(data((
applica8ons((

Reduced(latency(and(
improved(access(
for(big(data(
applica8ons(

Reduced(data(
movement(and(
network(transmission(
for(big(data(
applica8ons(

With(Conven8onal(HPC(Architecture(With(Decoupled(HPC(Architecture(

Fig. 1. Comparison of HPC Architectures

The decoupled HPC system architecture is shown in Fig-
ure 2. This architecture decouples the nodes of conventional
investment into data nodes and compute nodes. Data nodes are
further decoupled into compute-side data nodes and storage-
side data notes. Compute-side data nodes are compute nodes
that are dedicated for data processing. Storage-side data nodes
are specially designed nodes that are connected to file servers
with fast network. Compute-side data nodes reduce the size of
computing generated data before sending it to storage nodes.
Storage-side data nodes reduce the size of data retrieved
from storage before sending it to compute-side data nodes.
Writes will go through compute-side data nodes, whereas
reads will go through the storage-side data nodes. Data nodes
can provide simple data forwarding without any data size
reduction, but the idea behind data nodes is to let data
nodes conduct the offloaded data-intensive operations and
optimizations to reduce the data size and data movement.

In this research, we focus on studying the implications of
such a decoupled HPC system with an assumption that oper-
ations from applications can be decoupled into computation-
intensive and data-intensive operations respectively. Our study
focuses on how to design and configure the decoupled HPC
system architecture considering scientific big data applications
features, such as the intensity of data accesses and character-
istics of computing and data accesses. Performance tools can
provide information and guidance to understand application
computing and data-access characteristics and intensity of
data accesses. For instance, we have developed an IOSIG
performance tool to find the I/O access signature (patterns) of
an application [11, 12]. We have extended IOSIG to IOSIG+ to
identify the data-intensive phases and computation-intensive
phases. I/O dependency analysis can also be used to separate
the phases [13], and can be used to find the hot data which
lead to operations that should be conducted on the data nodes.

The decoupled HPC system architecture changes the current
architecture by balancing the computation and data-access
capabilities for data-intensive applications. This new archi-
tecture separates computation-intensive operations and data-
intensive operations and handles them concurrently and in a
coordinated manner, but on different hardware and software
environments for best performance. The architecture config-
uration is flexible. At one extreme, it could have no data
nodes. In that case, it is the traditional HPC architecture. At
another extreme, the compute nodes could be simple SIMD
processing elements. In that case, the compute nodes are more

In
te
rc
on

ne
ct
(

Local(SSD(storage(Local(SSD(storage(

Compute(Nodes(Compute,side(
Data(Nodes(

Storage,side(
Data(Nodes(

Decoupled(HPC(System(Architecture(

Compute(Nodes(

In
te
rc
on

ne
ct
(

Storage(

Storage(

Conven<onal(HPC(System(Architecture(
Big$data$

Applica,ons$

Fig. 2. Decoupled High Performance Computing System Architecture

like computing accelerators. In this research, while we will
study different configurations, the focus is on understanding
such decoupled system architecture and impact on scientific
big data applications. We will discuss details in the following
section from modeling and analyses.

III. DECOUPLED HIGH PERFORMANCE COMPUTING
SYSTEM: MODELING AND ANALYSIS

In this section, we present detailed modeling and analy-
ses of the decoupled HPC system. We first introduce the
performance model used to analyze the potential of system
architecture designs, and then present detailed studies from
both architecture configurations and also application features.

A. Modeling and Comparison of HPC Systems

There is no argument that many performance models for
parallel computing and HPC systems exist, such as the
well-known Amdahl’s model. A common limitation of these
models, however, is that they primarily focus on computa-
tion part of applications to direct building HPC systems for
computation-intensive applications. Our analyses are based on
a simple but effective model that captures both computation
and data access, which is especially needed for analyzing HPC
system architectures for data-intensive applications given the
growing importance.

Different from previous models, our model takes data work-
load into consideration to analyze the system performance.
This model assumes that the execution of an application
logically follows the model illustrated in the Figure 3, which is
a simplified abstraction and generally holds for many applica-
tions without optimizations like pipelining, asynchronous I/O,
etc. This performance model is based on an assumption that
applications conduct interleaved and periodic computations
and data accesses. In each phase, the total workload W
contains two parts: computation workload part (WC) and data
workload part (WD). For simplicity, we assume that WC and
WD are the same for each phase. The model and analysis can
be applicable to a general case that WC and WD are different
for each phase, which means that there exist WCi and WDi

for each phase. Thus, the entire workload of an application
can be derived and expressed as:

W = (WC +WD) ·m (1)

where m is the number of phases.

Computation Data Computation Data Computation Data

Fig. 3. Execution Model of An Application on High Performance Computing
Systems

To derive the detailed analysis of the new decoupled
HPC system architecture, the model also introduces several
notations to characterize dominant applications and systems
parameters, as shown in Table I.

TABLE I
PARAMETER NOTATIONS

n the number of compute nodes
r the ratio of data nodes compared to compute nodes
b the network bandwidth of each compute node in the conven-

tional and decoupled architectures
bh the network bandwidth of each data node in the decoupled

system architecture
λ the ratio between the network bandwidth of compute nodes

and data nodes, i.e. bh/b
fop(x) the result workload of an offloaded data-intensive operation op

with input x raw data workload, or the computation workload
(termed as seed workload) for generating x size workload

η the ratio of data-intensive operation’s computation workload
compared to the whole computation workload of an applica-
tion

γ the ratio of the result workload or seed workload of an
offloaded data-intensive operation compared to the raw data
workload

α the ratio between the computation workload and data work-
load

In conventional HPC system architecture, the total work-
load is divided and executed on n compute nodes. Appli-
cations process data on compute nodes and conduct I/O
operations directly with storage nodes. Thus, the execution
time (T) and the performance (P) of a conventional HPC
system can be modeled as:

T = (
WC

n
+
WD

n · b
) ·m (2)

P =
1

T
(3)

With the decoupled HPC system architecture, data nodes
(including compute-side data nodes and storage-side data
nodes) are specially designed for data-intensive operations.
Data nodes are connected to compute nodes (for compute-
side data nodes) or storage nodes (for storage-side data nodes)
through a high-speed network. Data-intensive operations can
be decoupled and offloaded to data nodes according to their
features. In a read-intensive situation, where the application
retrieves a large volume of data and then performs compu-
tations (such as SUM and k-means) to obtain a small-size
result for further processing, this operation can be offloaded
to storage-side data nodes and only the result is returned to
compute nodes. The decoupled system architecture reduces
considerable data movement and improves the usage of the
precious network bandwidth. In a write-intensive situation, the
computations that generate a large volume of data (we term as
“seed operations”) can be offloaded to storage-side data nodes.

These computations are performed on storage-side nodes to
generate data in place instead of generating data on compute
nodes and moving through the network. The execution time
and the performance of the decoupled system architecture can
thus be derived and defined as

T ′ = (
WC−Wop

n·(1−r) +
fop(WD)
n·(1−r)·b

+ WD

n·r·bh +
Wop

n·r) ·m (4)

P ′ =
1

T ′
(5)

where Wop is the related computing workload of the data-
intensive operation. It is directly related to data workload and
can not be ignored. In the model, it can be expressed as Wop =
η ·WC . In practice, parameters, η, γ, λ, meet the following
conditions:

0 < η < 1 (6)
0 < γ < 1 (7)

λ > 1 (8)

To compare the performance of the decoupled HPC system
architecture and conventional architecture, we can calculate
the performance difference, defined as:

∆ = P ′ − P

=
T − T ′

T · T ′
(9)

If ∆ > 0, it means that the decoupled system architecture
has better performance than the conventional architecture.
Otherwise, the conventional architecture is better. Due to
T · T ′ > 0, the sign of the ∆ will depend on ρ = T − T ′.
Based on the above assumptions and analyses, the equation
for calculating ρ is derived as:

ρ = m
n·(1−r)·r · [(2 · r · η − η − r

2) ·WC +

λ·r·(1−r)−γ·r·λ−1+r
λ·b ·WD] (10)

Another parameter, α, is introduced to represent the rela-
tionship between WC and WD and is defined as:

WC = α ·WD (11)

Equation (11) can be used to quantify the data-access
intensiveness of an application. If α > 1, which means
the computation workload is larger than the data workload,
the application can be considered as computation-intensive.
Otherwise, if 0 < α < 1, the application can be considered
data-intensive. With the parameter α, ρ can be derived as:

ρ = m·WD

n·(1−r)·r · [(2 · r · η − η − r
2) · α+

λ·r·(1−r)−γ·r·λ−1+r
λ·b] (12)

In equation (12), all parameters, including both system-
related and application-related parameters, are involved. This
observation confirms the expectation that different applica-
tions need different system configurations to achieve the best
performance. In general, given a system and an application,
m,n,WD are constant values, and they can not affect the
system configurations. The rest of parameters will impact the
system configurations. Thus, ρ′ is introduced as follows and
the rest analysis focuses on understanding the impact of these

parameters of both system and applications’ characteristics on
the performance:

ρ′ = 1
(1−r)·r · [(2 · r · η − η − r

2) · α+

λ·r·(1−r)−γ·r·λ−1+r
λ] (13)

B. Analysis of the Decoupled HPC System Architecture

In this subsection, we focus on using the performance
model discussed in the previous subsection to evaluate
whether the new decoupled system architecture is more ef-
fective than the conventional architecture for scientific big
data applications. This evaluation specifically focuses on two
parameters, r and α, because they represent the system
architecture and applications characteristics respectively. First,
r denotes the ratio of the data nodes in the decoupled system
architecture. Different values of r represent different system
configurations. For example, if r = 0, there will be no data
nodes in the system, and the architecture will be completely
the same with the conventional architecture. Second, α in the
model is used to measure the intensity of data accesses in
an application. If 0 < α < 1, it implies more data workload
than computation workload; thus, the application is more data-
intensive. Otherwise, if α > 1, it implies that the application
is more computation-intensive. Therefore, α is the parameter
that characterizes applications features.

The goal of this evaluation is to compare the decoupled
HPC system architecture and the conventional architecture.
Variable ρ′ is used to evaluate which one is better. If ρ′ < 0
holds under any configuration for r and α, it means that the
conventional architecture outperforms the decoupled architec-
ture for both data-intensive and computation-intensive appli-
cations. Otherwise, it confirms that the decoupled architecture
achieves better performance than the conventional architecture
under evaluated configurations of systems and applications.

Figure 4 reports the impact of r and α on performance.
It plots four r − α graphs given various settings, where r
varies from 0 to 1, and α varies from 0 to 10. To better com-
pare the decoupled system architecture and the conventional
architecture, these four graphs were plotted with different
configurations for λ, η, and γ, as indicated on each graph.
Different colors are used to represent different values of ρ′.
To assist comparison, we specifically draw a contour line 0,
which represents ρ′ = 0, to help identify these areas that
represent ρ′ > 0 or ρ′ < 0. The contour line 0 splits each
graph into three areas: the left-most and right-most areas that
represent ρ′ < 0, and middle area that represents ρ′ > 0.
The left-most area is caused by the model derivation, because
when r → 0, WD

n·r·bh in T ′ will be sufficiently close to ∞,
which is impossible to happen in practice.

Comparing Figure 4-a and Figure 4-b, we can find that
when the value of η increases, the space of middle area
increases too, which means the decoupled system architecture
is beneficial for more cases. This is because when η increases,
the computation workload conducted on compute nodes will
be decreased. Figure 4-c plots the results when increasing
value γ. Parameter γ represents the offloading efficiency of a
data-intensive operation in reducing the data movement. The
lower the the value of γ is, the more data reduction and
the less time in transferring data. Compared to Figure 4-a,
it shows that γ has little impact on the system configuration.
It is not necessary to reconfigure the ratio of data nodes when

r-α analysis.

γ=1/50
λ=30
η=1/20

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

α

-20

-15

-10

-5

 0

 5

ρ'

(a) Initial Configuration

r-α analysis.

γ=1/50
λ=30
η=1/10

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

α

-20

-15

-10

-5

 0

 5

ρ'

(b) Changing the Computation Ratio (η)

r-α analysis.

γ=1/30
λ=30
η=1/20

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

α

-20

-15

-10

-5

 0

 5

ρ'

(c) Changing the Ratio of Result Workload (γ)

r-α analysis.

γ=1/50
λ=20
η=1/20

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

α

-20

-15

-10

-5

 0

 5

ρ'

(d) Changing the Ratio of Network Bandwidth (λ)

Fig. 4. Analysis of the Decoupled High Performance Computing System Architecture1

γ is changed. Similarly, Figure 4-d plots the results when λ
is changed, which has minor impact on system configuration
as well.

In summary, despite the model derivation, the results shown
in Figure 4 illustrate that the decoupled HPC system archi-
tecture is better than the conventional architecture for data-
intensive applications in most cases (where α < 1). Besides,
the results also show that when α > 1, the decoupled
architecture can still be configured with suitable ratio of data
nodes to achieve better performance than the conventional
architecture. In addition, these graphs imply that the ratio
of data nodes should be configured according to applica-
tions’ characteristics. When applications tend to be more
computation-intensive, the number of data nodes should be
reduced accordingly. As observable from the graphs, when
the α increases from 0 to 1, the value of r is decreased from
1 to around 0.55. When the α increases from 1 to 10, the value
of r is decreased slowly, from 0.55 to 0.23. A dynamically
configurable architecture would be an ideal solution to best
support applications with considering applications’ character-
istics.

C. Analysis from Systems’ Perspective

As analyzed in subsection III-B, a dynamically configurable
system architecture is a preferred solution. In practice, such
an ideal solution is hard to be achieved. One critical challenge
is that, modern high performance computing systems are
designed to run many scientific applications simultaneously.
A dynamic configuration for a specific application would be
challenging for other applications. Therefore, how do we de-
sign and develop a fixed system configuration for various data-
intensive applications? In this subsection, we try to answer
this question. We will analyze and show how to configure
a high performance computing system with the decoupled
architecture for scientific big data applications without prior

knowledge of applications.
To answer this question, we need to analyze the system-

related parameters. In the performance model, r and λ are
two system-related parameters. Parameter r represents the
ratio of data nodes configuration. It illustrates how to deploy
data nodes and compute nodes. Parameter λ represents the
network configuration. It shows the network requirement of a
decoupled system architecture. In practice, λ is completely
determined by the interconnection deployed and physical
configuration. If data nodes are deployed physically closer
to storage node, the λ is expected to be higher.

Since we do not have the prior knowledge and need to
support multiple applications, we use different applications to
find an overlap area to determine the optimal values for r
and λ. Figure 5 plots four r−λ graphs with changing values
of application related parameters, including γ, α, and η. We
varied the values of these parameters one by one, and observe
how these parameters can affect the system configuration.
Various values of γ, α, and η represent different applications.
Since we focus on data-intensive applications, we make α
vary between 0 and 1.

In general, these figures show that, the decoupled HPC sys-
tem architecture can achieve better performance for scientific
big data applications when the values of λ and r range in
an enclosed area. As can be observed from the graphs, when
γ increased from 1

50 to 1
20 , the configuration for r and λ

only changes by a small amount, which is consistent with
the analysis in subsection III-B. Besides, when the value of
α increases from 1

2 to 1, the preferred range for r shrinks
from (0.1, 0.63) to (0.1, 0.5). This observation is reasonable,
because when α increases, the application tends to be more
computation-intensive and it needs more compute nodes to

1We plotted in color for the best result. Please read from the electronic
file or color printouts. The rest of figures were plotted in a similar setting.

r-λ analysis.
 0

 0 0.2 0.4 0.6 0.8 1

r

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

λ

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

ρ'

γ=1/50
α=1/2
η=1/20

ρ' > 0

ρ' < 0

(a) Initial Configuration

r-λ analysis.
 0

 0 0.2 0.4 0.6 0.8 1

r

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

λ

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

ρ'

γ=1/20
α=1/2
η=1/20

ρ' > 0

ρ' < 0

(b) Changing the Ratio of Result Workload (γ)

r-λ analysis.
 0

 0 0.2 0.4 0.6 0.8 1

r

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

λ

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

ρ'

γ=1/20
α=1
η=1/20

ρ' > 0

ρ' < 0

(c) Changing the Ratio of Computation Workload (α)

r-λ analysis.
 0

 0 0.2 0.4 0.6 0.8 1

r

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

λ

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

ρ'

γ=1/20
α=1
η=1/10

ρ' > 0

ρ' < 0

(d) Changing the Ratio of Network Bandwidth (λ)

Fig. 5. Analysis from Systems’ Perspective

conduct computations. In addition, if we keep increasing the
value for η, the preferred range for r will expand slightly,
because the computation workload conducted on compute
nodes would be decreased as η increases.

In summary, we can conclude that, when designing and
deploying a high performance computing system for data-
intensive applications, there are two rules we can use from
the study of this research:

1) Ensure λ · r > 1
2) Choose a ratio of data nodes in the range of (0.2, 0.4)

D. Analysis from Applications’ Perspective

In the performance model, three parameters are used to
represent applications’ characteristics: α, γ, and η. Parameter
α is used to quantify the data-access intensity of an application
and identify whether an application is data-intensive (α <
1) or computation-intensive (α > 1). Parameter γ is used
to identify the offloading effectiveness of the data-intensive
operation in reducing the data size. Parameter η represents
the computation workload of data-intensive applications.

In subsection III-B, we have made several conclusions
about the relationship between r and α. We conclude that
the decoupled HPC system architecture is a better solution
for data-intensive applications. In addition to α, two other
parameters, γ and η, also represent applications’ characteris-
tics. Even though we find that both parameters have minor
impact on system configurations through the earlier analysis,
we present a more detailed analysis in this subsection. We
attempt to answer the question: can the new decoupled HPC
system architecture be deployed for all scientific big data
applications?

To answer this question, we evaluated four different appli-
cations with different intensity of data accesses (indicated by
the value of α). A fixed system configuration is used for this
evaluation, and the values for system-related parameters were

chosen based on the analysis in the prior subsection. Figure 6
plots four η − γ graphs to represent four different applica-
tions respectively. These figures show that, compared to η,
parameter γ has a greater impact on the system configuration.
Although changing slightly according to different data-access
intensity, it generally requires γ < 0.3 for most data-intensive
applications. This observation means that applications with
data-intensive operations that can reduce the data size to lower
than 3

10 of the raw data size can especially benefit from the de-
coupled HPC system architecture. For computation-intensive
applications (Application 4 in the figure), the configuration of
the decoupled system architecture in this evaluation did not
provide better performance than the conventional architecture.
However, according to the analysis in subsection III-B, we
can configure a lower value of r for computation-intensive
applications to improve the performance with the decoupled
system architecture, as shown in Figure 7. It restricts the
values of η and γ though, especially for η. In fact, this
observation is straightforward because when an application
becomes more computation-intensive, the value of η will
reduce automatically.

In summary, scientific big data applications that have low
computation ratio (η < 0.2) and can reduce the data size
effectively (γ < 0.3) can especially benefit from the de-
coupled HPC system architecture. Meanwhile, computation-
intensive applications can also benefit from the decoupled
system architecture with choosing a proper configuration ratio,
which confirms the conclusion in subsection III-B.

IV. RELATED WORK

Extensive studies have focused on improving the perfor-
mance of HPC systems for data-intensive applications at
various levels. At the hardware level, the emerging nonvolatile
storage-class memory (SCM) devices such as flash-memory
based solid-state drives (SSDs) and phase-change memory

η-γ analysis.
 0

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

η

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

γ

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

ρ'

α=1/4
r=0.3
λ=30

(a) Application 1

η-γ analysis.
 0

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

η

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

γ

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

ρ'

α=1/2
r=0.3
λ=30

(b) Application 2

η-γ analysis.
 0

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

η

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

γ

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

ρ'

α=1
r=0.3
λ=30

(c) Application 3

η-γ analysis.

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

η

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

γ

-2.5

-2

-1.5

-1

-0.5

 0

ρ'

α=2
r=0.3
λ=30

(d) Application 4

Fig. 6. Analysis from Applications’ Perspective

η-γ analysis.
 0

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

η

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

γ

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

ρ'

α=5
r=0.15
λ=30

Fig. 7. Better Performance Achieved for Com-putation-intensive Applications
with Changing r

(PCRAM) can provide more promising performance than hard
disk drives (HDDs) [14, 15], especially for random accesses
[14, 16]. However, they cannot reduce the data movement
across the network. They help mitigate the performance gap
between processors and I/O devices but will not be able to
address the issue of large volume of data movement alone for
data-intensive sciences. Active storage, active disks, and smart
disks have gained increasing attention in recent years [17,
18]. Active storage leverages the computing capability of
storage nodes and performs certain computation to reduce the
bandwidth requirement between storage and compute nodes.
Active disks and smart disks integrate a processing unit within
disk storage devices and offload computations to embedded
processing unit. However, these architecture improvements
are designed to explore either the idle computing power of
storage nodes or an embedded processor, and have limited
computation-offloading capability. Blue Gene Active Stor-
age [19] is a recent implementation of active storage prototype
on the IBM Blue Gene platform. The Oracle Exadata [20]
is another active storage-like system but focuses on scan-
intensive database queries (read operations). The decoupled
HPC system architecture provides a more powerful platform

for the same purpose [21]. In addition, it handles both read and
write operations. I/O forwarding (both hardware and software
solutions) [22, 23] and data shipping [24] provide approaches
to offloading I/O requests to dedicated nodes, aggregating the
requests, and carrying out them on behalf of compute nodes.
The data nodes in the decoupled system architecture can carry
all these functions.

Current parallel programming models are designed for
computation-intensive applications. These programming mod-
els include Message Passing Interface (MPI), Global Arrays,
OpenMP, Unified Parallel C, Chapel, X10, Co-array Fortran,
and data parallel programming models such as High Perfor-
mance Fortran (HPF). These programming models primarily
focus on the memory abstractions and communication mech-
anism among processes. I/O is treated as a peripheral activity
and often a separate phase in these programming models,
which is often achieved through a subset of interfaces such
as MPI-IO [25]. Advanced I/O libraries, such as Hierarchical
Data Format (HDF), Parallel netCDF (PnetCDF), and Adapt-
able IO System (ADIOS) [26], provide high-level abstractions,
map the abstractions onto I/O in one way or another [27, 28],
and complement parallel programming models in managing
data access activities. The MapReduce programming model
[10, 29, 30] is an instant hit and has been proven effective
for many data-intensive applications. The MapReduce model,
however, is typically layered on top of distributed file systems
and is not designed for HPC semantics. It requires specific
Map and Reduce abstractions as well [10, 29]. The decoupled
HPC system architecture is studied for general HPC applica-
tions.

There have been significant amount of research efforts in
optimizing data-access performance using runtime libraries.
Abbasi et. al. proposed a DataStager framework with data
staging services that move output data to dedicated staging or
I/O nodes prior to storage, which has been proven effective

in reducing the I/O overheads and interferences on compute
nodes [31]. Zheng et. al. proposed a preparatory data analytics
approach to preparing and characterizing scientific data when
generated (e.g. data reorganization and metadata annotation)
to speedup subsequent data access [32]. These approaches
have shown considerable performance improvement with ded-
icated output staging services and preparatory analysis. A
decoupled HPC system architecture studied in this research
leverages dedicated nodes as well. These data nodes can
provide buffering or staging too, but more importantly on data
reduction. The notion of data processing nodes is a revisit of
HPC system architecture to provide balanced computational
and data-access capability. The decoupled HPC system archi-
tecture considers to address the fundamental architecture issue
for data-intensive sciences.

V. CONCLUSION

Many scientific computing applications have become in-
creasingly data-intensive. These applications have brought up
an important question to the HPC research and development
community - how to efficiently support data-intensive sciences
with HPC systems, while conventional HPC systems are
designed for computation-intensive applications. The massive
amount of data movement and long access delay can sig-
nificantly limit the productivity of data-intensive scientific
applications.

In this paper, we present our research study trying to answer
the above question with revisiting HPC system architecture.
We study a decoupled HPC system architecture for scien-
tific big data applications. The decoupled architecture builds
separate data processing nodes and compute nodes, with
computation-intensive and data-intensive operations mapped
to compute nodes and data processing nodes respectively.
The data processing nodes and compute nodes collectively
provide a balanced system design for data-intensive appli-
cations. We have presented modeling and analyses to study
the potential. The result has shown a promising potential of
such a decoupled HPC system architecture. We were able
to draw important conclusions for HPC system design and
development, and these conclusions can guide the configura-
tion and deployment of future HPC systems for solving data-
intensive scientific problems. While this study is one of steps
of we are trying to develop better HPC solutions for scientific
big data applications, the current results are encouraging.
Given the growing importance of supporting data-intensive
sciences, such a decoupled HPC system architecture can have
an impact. It can potentially guide building exascale HPC
systems as well to better support data-intensive sciences.

VI. ACKNOWLEDGMENT

This research is sponsored in part by the National Science
Foundation under grant CNS-1162540, CNS-1162488, CNS-
1161507, and CNS-1338078. The authors acknowledge the
High Performance Computing Center (HPCC) at Texas Tech
University at Lubbock for providing HPC resources that have
contributed to the research results reported within this paper.
URL: http://www.hpcc.ttu.edu. The authors would also like to
acknowledge anonymous reviewers for their suggestions that
improved this research study.

REFERENCES

[1] J. Dongarra, P. H. Beckman, and T. M. etc., “The International Exascale
Software Project Roadmap,” IJHPCA, vol. 25, no. 1, pp. 3–60, 2011.

[2] V. Sarkar, S. Amarasinghe, and D. C. etc., “ExaScale Software Study :
Software Challenges in Extreme Scale Systems,” ExaScale Computing
Study, pp. 1–159, 2009.

[3] “DOE Innovative and Novel Computational Impact on Theory and
Experiment Program,” http://hpc.science.doe.gov/.

[4] R. Ross, R. Latham, M. Unangst, and B. Welch, “Paralell I/O in
Practice,” in Tutorial in the ACM/IEEE SC’09 Conference, 2009.

[5] “Global Cloud Resolving Model (GCRM),” https://svn.pnl.gov/gcrm.
[6] V. R. Borkar, M. J. Carey, and C. Li, “Big data platforms: what’s next?”

ACM Crossroads, vol. 19, no. 1, pp. 44–49, 2012.
[7] L. Liu, “Computing infrastructure for big data processing,” Frontiers of

Computer Science, vol. 7, no. 2, pp. 165–170, 2013.
[8] T. Condie, P. Mineiro, N. Polyzotis, and M. Weimer, “Machine learning

for big data,” in SIGMOD Conference, 2013, pp. 939–942.
[9] “Community Earth System Model,” http://www.cesm.ucar.edu.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing
on Large Clusters,” in Operating Systems Design and Implementation,
2004, pp. 137–150.

[11] “IOSIG Project,” http://www.cs.iit.edu/∼scs/iosig.
[12] J. He, J. Bent, A. Torres, G. Grider, G. A. Gibson, C. Maltzahn, and

X.-H. Sun, “I/O Acceleration with Pattern Detection,” in HPDC, 2013,
pp. 25–36.

[13] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp, “Hiding I/O
Latency with Pre-execution Prefetching for Parallel Applications,” in
Proc. of the 2008 ACM/IEEE conference on Supercomputing, ser. SC
’08, 2008, pp. 40:1–40:10.

[14] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best Use
of Solid State Drives in High Performance Storage Systems,” in ICS,
2011, pp. 22–32.

[15] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in CIDR, 2011, pp. 21–31.

[16] X. Dong and Y. Xie, “AdaMS: Adaptive MLC/SLC Phase-change
Memory Design for File Storage,” in ASP-DAC, 2011, pp. 31–36.

[17] Y. Xie, K.-K. Muniswamy-Reddy, and D. F. etc., “Design and Eval-
uation of Oasis: An Active Storage Framework based on T10 OSD
Standard,” in MSST, 2011.

[18] S. W. Son, S. Lang, and P. e. Carns, “Enabling Active Storage on
Parallel I/O Software Stacks,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), ser.
MSST ’10, 2010, pp. 1–12.

[19] B. G. Fitch, A. Rayshubskiy, M. P. T.J. Chris Ward, B. Metzler, H. J.
Schick, B. Krill, P. Morjan, and R. S. Germain, “Blue Gene Active
Storage,” in HEC FSIO R&D Workshop ’10, 2010.

[20] “Oracle Exadata Database Machine,” http://www.oracle.com/us/
products/database/exadata/database-machine-x3-8/overview.

[21] Y. Chen, C. Chen, X.-H. Sun, W. D. Gropp, and R. Thakur, “A Decou-
pled Execution Paradigm for Data-Intensive High-End Computing,” in
In the Proc. of the IEEE International Conference on Cluster Computing
2012 (Cluster’12), 2012.

[22] N. Ali, P. H. Carns, and K. I. etc., “Scalable I/O Forwarding Framework
for High-performance Computing Systems,” in CLUSTER, 2009.

[23] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-
forwarding Infrastructure for Petascale Architectures,” in PPoPP, 2008.

[24] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, 2002.

[25] R. Thakur, R. Ross, E. Lusk, and W. Gropp, “Users Guide for ROMIO:
A High-Performance, Portable MPI-IO Implementation,” Mathematics
and Computer Science Division, 1997.

[26] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six Degrees of Scientific Data: Reading Patterns
for Extreme Scale Science IO,” in Proc. of HPDC, 2011, pp. 49–60.

[27] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just
in time: Adding Value to the IO Pipelines of High Performance
Applications with JITStaging,” in HPDC, 2011, pp. 27–36.

[28] P. Widener, M. Wolf, H. Abbasi, S. Mcmanus, M. Payne, M. Barrick,
J. Pulikottil, P. Bridges, and K. Schwan, “Exploiting Latent I/O Asyn-
chrony in Petascale Science Applications,” IJHPCA, vol. 25, pp. 161–
179, 2011.

[29] S. Sehrish, G. Mackey, J. Wang, and J. Bent, “MRAP: a novel
MapReduce-based framework to support HPC analytics applications
with access patterns,” in IEEE International Symposium on High
Performance Distributed Computing, 2010, pp. 107–118.

[30] R. Grover and M. J. Carey, “Extending map-reduce for efficient
predicate-based sampling,” in ICDE, 2012, pp. 486–497.

[31] H. Abbasi, M. Wolf, and G. e. Eisenhauer, “DataStager: Scalable Data
Staging Services for Petascale Applications,” in HPDC, 2009.

[32] F. Zheng, H. Abbasi, and C. D. etc., “Predata - preparatory data analytics
on peta-scale machines,” in IPDPS, 2010, pp. 1–12.

