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Abstract. We report a class of stabilized explicit-implicit domain decomposition (SEIDD)
methods for the numerical solution of parabolic equations. Explicit-implicit domain decomposition
(EIDD) methods are globally noniterative, nonoverlapping domain decomposition methods, which,
when compared with Schwarz-algorithm-based parabolic solvers, are computationally and commu-
nicationally efficient for each simulation time step but suffer from small time step size restrictions.
By adding a stabilization step to EIDD, the SEIDD methods retain the time-stepwise efficiency in
computation and communication of the EIDD methods but exhibit much better numerical stability.
Three SEIDD algorithms are presented in this paper, which are experimentally tested to show excel-
lent stability, computation and communication efficiencies, and high parallel speedup and scalability.
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1. Introduction. We report a class of stabilized explicit-implicit domain decom-
position (SEIDD) algorithms [39] for the numerical solution of the initial boundary
value problem of the parabolic equation

∂u(t,x)
∂t = Au(t, x)+f(t, x), x∈Ω, t≥0,

u(t, x) = ub(t, x), x∈∂Ω, t≥0,
u(0, x) = u0(x), x∈Ω,

(1.1)

where A is the spatial differential operator

Au =

k∑
i=1

∂
∂xi

(
ai(x)

∂u
∂xi

+ bi(x)u
)
+ c(x)u,(1.2)

Ω is a compact subset in Rk with k=1, 2, or 3, and the spatial variable x = (xi)
k
i=1.

The functions ai and bi are continuously differentiable, and c and f are continuous.
The explicit-implicit domain decomposition (EIDD) algorithms [3, 13, 14, 24,

27, 28] are globally noniterative, nonoverlapping methods, which are computationally
and communicationally efficient for each time step when compared with Schwarz-type
domain decomposition elliptic solvers incorporated into implicit temporal discretiza-
tions. However, EIDD methods suffer from either stability- or consistency-related time
step size restrictions (see section 2), while Schwarz methods could maintain the good
stability condition of implicit temporal discretization schemes. If the time-stepwisely
efficient EIDD algorithms are freed from time step size restrictions, they will possess
great potential for large-scale parallel simulations on distributed memory machines.

∗Received by the editors February 8, 2001; accepted for publication (in revised form) January
18, 2002; published electronically July 16, 2002. This research was supported in part by NSF grant
CCR-9972251 and by ONR under the PET program.

http://www.siam.org/journals/sisc/24-1/38475.html
†Computer Science Department, Texas Tech University, Lubbock, TX 79409 (zhuang@cs.ttu.edu).
‡Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616 (sun@cs.iit.

edu).

335



336 YU ZHUANG AND XIAN-HE SUN

In this paper, we report a class of stabilized EIDD (SEIDD) algorithms [39]. In
addition to a generic parallel SEIDD algorithm with the choices of the predictor, sub-
domain scheme and the stabilizer open to the algorithm implementors and users, we
also present three specific algorithms of this SEIDD class as examples. One (denoted
SEIDD1) is the stabilization of an EIDD algorithm due to Kuznetsov [24] which
uses the forward Euler scheme as the interface boundary condition predictor and
the backward Euler scheme for temporal discretization on the subdomains. Another
(SEIDD2) is the stabilization of Dawson, Du, and Dupont’s algorithm [14] by a stabi-
lizer designed for the predictor. The third (SEIDD3) differs from SEIDD1 in that the
subdomain temporal scheme is an approximate directional factorization of the back-
ward Euler, which retains the same temporal accuracy but reduces the computation
complexity of the subdomain solver to O(N) for each time step on a spatial domain
of N grid points. This linear complexity of the SEIDD3 algorithm also holds for non-
selfadjoint problems whose discretized spatial operator Ah is a nonsymmetric matrix.
By adding a stabilization step to the EIDD methods, the SEIDD algorithms exhibit
much better stability. But more importantly for parallel computing, the stabilization
is proven to add zero additional communication cost and very low computation cost
to EIDD algorithms, yielding excellent parallel speedup and scalability confirmed by
testings on SGI Origin 2000 computers for a wide range of parabolic problems from
heat equation to convection-diffusion to nondissipative convection-diffusion.

This paper focuses on the description of the algorithms, the parallel speedup and
efficiency analysis, and numerical experiments. The rigorous mathematical proof of
the stability is still under investigation, but heuristic explanations are provided. The
paper is organized as follows. A brief survey of domain decomposition algorithms
for parabolic problems is provided in section 2. A generic parallel SEIDD algorithm
is presented in section 3 together with analysis of computation and communication
overhead of the stabilization, as well as the parallel speedup and efficiency. Three
specific algorithms of SEIDD type are presented in sections 4 to 6. Section 7 contains
the numerical experimental results, and section 8 gives the conclusion.

2. Existing domain decomposition algorithms.

2.1. The Schwarz algorithms. There exists a substantial literature in domain
decomposition. The Schwarz alternating algorithms [6, 7, 8, 12, 18, 21, 22, 23, 33, 34]
are globally iterative domain decomposition procedures for solving elliptic problems
with domain-decomposition-based matrix splittings to enhance parallelism and local-
ized treatment of irregular geometries. Here the term “globally” refers to the part
of a solution process that is carried over the entire problem domain as opposed to
solution processes for subdomain problems which could be either iterative or direct.
For parabolic equations, after implicit temporal discretization, an elliptic equation of
the form

(I − ∆tA)u = r(2.1)

needs to be solved for each time step. So the Schwarz algorithm can be used for the
parallel solution of parabolic problems by solving the elliptic equation (2.1) in parallel.
Cai [4, 5] used the Schwarz algorithm in this manner to solve parabolic problems.
Since the Schwarz algorithm is a solver for the elliptic equation (2.1) resulting from
temporal discretization, it has an advantage in preserving the unconditional stability
of implicit temporal discretizations as long as the Schwarz solver is iterated until
the solution error becomes small enough to have no influence on the stability of



STABILIZED EXPLICIT-IMPLICIT DOMAIN DECOMPOSITION 337

the temporal scheme. Such an accuracy requirement for preserving stability of the
implicit temporal discretizations can still be done efficiently with the elimination of
the requirement of a coarse level global solver when the time step size ∆t is subject
to a very modest condition ∆t ≤ O(H2), where H is the diameter of a subdomain.

2.2. Globally noniterative overlapping algorithms. In the parallel imple-
mentation of domain decomposition algorithms, when different subdomains are as-
signed to different processors, globally iterative methods incur repeated data trans-
mission among processors. Since communication is much more time consuming per
byte than computation (floating point operations), it is appealing to keep the global
iterations to a small number.

In 1988, Kuznetsov [24] proposed a one-iteration overlapping Schwarz algorithm
for the numerical solution of the elliptic equation (2.1) obtained from an implicit
temporal discretization of parabolic problems (see [9, 25] for similar results). His al-
gorithm utilizes the property that after A is spatially discretized into Ah, the entries
in the matrix (I−∆tAh)

−1 decay rapidly when their positions recede from the diago-
nal. Thus, entries far away from the diagonal are in fact dropped from (I −∆tAh)

−1.
Kuznetsov’s elliptic solver has a good stability condition, but requires an overlap size
of O(

√
∆t log ε) for a local error tolerance of O(ε). Thus, his algorithm requires an

overlap size of O(
√
h log(h3)) to reach a local accuracy of O(∆t h2) with ∆t = h.

In 1998, Mathew et al. [31] gave an overlapping algorithm with a lesser require-
ment of overlap size than the Kuznetsov algorithm. The algorithm of Mathew et al.
uses the decomposed domain to construct a partition of unity which consists of non-
negative smooth functions with each subdomain being associated with a member func-
tion. Each member function of the partition of unity is supported on and vanishes
outside of the subdomain it is associated with. Then a splitting of the spatial operator
A into

A = A1 +A2 + · · ·+Ap(2.2)

is constructed using the member functions that make up the partition of unity. After
splitting of the operator, they temporally discretize the equation using Douglas’s
multidimensional ADI method [15]

un+1 = (I− ∆t
2 A1)

−1 · · · (I− ∆t
2 Ap)

−1(I+ ∆t
2 Ap) · · · (I+ ∆t

2 A1)u
n,(2.3)

with the directional components of A in Douglas’s original alternating direction im-
plicit (ADI) method replaced by the components in the operator splitting (2.2). The
algorithm of Mathew et al. is not subject to a large overlap size requirement because
they construct their operator splitting through smooth, compactly supported member
functions of the partition of unity, which has another advantage, that is, predicting in-
terface boundary conditions for the inverting operations in the ADI (2.3) is no longer
required. This is due to the property that each member function of the partition of
unity is smooth and vanishes at the boundary of the subdomain with which it is asso-
ciated. Since ADI has a second order temporal accuracy, this domain decomposition
algorithm has an O

(
(∆t)3

)
local temporal accuracy. However, just like the original

multidimensional ADI method, it loses its good stability when the operator is split
into more than two noncommutative components. Thus the stability suffers when the
number of subdomains goes above two.

2.3. Nonoverlapping domain decomposition algorithms. Since nonover-
lapping algorithms have low computation and communication cost for each time step,
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they are appealing for large problems on massively parallel machines. In the following,
we list some globally noniterative, nonoverlapping domain decomposition algorithms
that are not of the EIDD type. The EIDD algorithms will be briefly described in the
section that follows.

In 1991, Dryja [17] proposed a one-iteration solver for parabolic problems tem-
porally discretized by the Crank–Nicolson scheme [10]

(I − ∆t
2 A)u

n+1 = (I + ∆t
2 A)u

n.(2.4)

In his algorithm, Dryja uses a red-black ordering of the subdomains and divides the
subdomains into two groups, Ω1 and Ω2. Equation (2.4) is then solved alternately on
the two groups of the subdomains with the Galerkin method{ 〈

un+1/2−un

∆t , v
〉
= a1

(
un+1/2+un

2 , v
)

on Ω1,

un+1/2 = un on Ω2,
(2.5)

{ 〈
un+1−un+1/2

∆t , v
〉
= a2

(
un+1+un+1/2

2 , v
)

on Ω2,

un+1 = un+1/2 on Ω1,
(2.6)

where 〈u, v〉 = ∫
Ω
u(x)v(x) dx and ai (u, v) =

∫
Ωi
Au(x) v(x) dx. Thus from a temporal

discretization point of view, Dryja’s solver is a fractional step method. When viewed
as an elliptic solver, it is a one-iteration minimal overlapping (the closures Ω1 and Ω2

have an overlap of width h) multiplicative Schwarz algorithm. From (2.5) and (2.6)
it can be easily derived that the algorithm is representable in the non-Galerkin form
as

un+1 = (I − ∆t
2 A2)

−1(I + ∆t
2 A2)(I − ∆t

2 A1)
−1(I + ∆t

2 A1)u
n,

where A1 and A2 are the restrictions of the spatially discretized operator Ah on Ω1

and Ω2, respectively. With the above representation, it is immediately seen that this
algorithm is unconditionally stable, since for each i = 1, 2,

‖(I − ∆t
2 Ai)

−1(I + ∆t
2 Ai)‖ ≤ eω∆t

for some norm ‖ · ‖. However, as Dryja himself pointed out, this algorithm has a large
global error of order O(

√
∆t+ h) when ∆t is proportional to h.

An algorithm with better global error was proposed by Laevsky [26] for the entire
domain decomposed into two subdomains, Ω1 and Ω2. His algorithm uses the Galerkin
method for the elliptic ADI-solver [32, 41] of the Crank–Nicolson scheme{

un+1/2−un

∆t/2 = A1u
n+1/2 +A2u

n,
un+1−un+1/2

∆t/2 = A1u
n+1/2 +A2u

n+1,
(2.7)

where A1 and A2 are the restrictions of the matrix Ah on Ω1 and Ω2, respectively. The
global error of this algorithm is of order O(h+(∆t)2 + ρ(1+ ρ)1/2) with ρ = (∆t)2/h.
However, the term ρ(1 + ρ)1/2 has placed a restriction on the ratio of ∆t and h.

The ADI method is unconditionally von Neumann stable and unconditionally con-
vergent [16, 37, 38] for quasi-dissipative problems when the operator A is split into
two components. However, when the operator is split into more than two noncommu-
tative components, the ADI scheme loses unconditional von Neumann stability (the
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Ω1 Ω2 · · · Ωp−1 Ωp

Fig. 1.

instability also mentioned in [28]) and requires the time step size to be of ∆t = O(h2)
for the multicomponent ADI scheme to converge. Thus when the entire domain is
decomposed into more than two subregions, Laevsky’s algorithm (2.7) not only loses
its good stability condition, but the term ρ(1 + ρ)1/2 will enlarge its global error to
order O(1) as well.

Another algorithm of Laevsky and Rudenko [29] that is unconditionally con-
vergent is a modification of the aforementioned Dryja’s algorithm with a boundary
treatment. This algorithm has a global error of O(∆t+h), which is still low in spatial
accuracy.

2.4. EIDD algorithms. One reason for the low accuracy of the nonoverlapping
algorithms mentioned in the previous section is the lack of an adequately accurate
boundary condition at the subdomain boundary points which are inside the entire
problem domain. For instance, in (2.5) of Dryja’s algorithm, the intermediate solution
un+1/2 does not have an accurate interior boundary condition. An obvious solution
is to use un to provide the interior boundary condition for un+1/2. This obviously
introduces errors into the numerical solution.

Explicit-implicit algorithms have solved the problem of the availability of interior
boundary conditions. In 1988, Kuznetsov [24] proposed an explicit-implicit scheme
using a nonoverlapping domain decomposition as in Figure 1. The value of un+1 on
the interior boundary of the subdomains is first predicted using an explicit method.
Then a stable implicit temporal discretization scheme can be applied to the equation
on the subdomains, and the resulting elliptic equation on each subdomain can be
solved independently using the predicted interface boundary conditions together with
the exterior boundary conditions. When the forward Euler scheme is used as the
interface boundary condition predictor and the backward Euler scheme is used for the
temporal discretization of (1.1) on the subdomains, the explicit-implicit method can
be represented as

un+1 = (I − ∆tA2)
−1(I + ∆tA1)u

n,(2.8)

where A1 denotes the restriction of Ah on the interface boundary, and A2 the restric-
tion of Ah on the complement of interface boundary in the entire domain. However,
the explicit predictor of the interface boundary condition causes numerical instability
unless the time step size is restricted to ∆t = O(h2).

An alternative explicit-implicit algorithm proposed by Dawson, Du, and Dupont
[14] factorizes the interface boundary condition predictor (I + ∆tA1) in (2.8) into

(I + ∆tA1) = (I − ∆tAy
1)

−1(I + ∆tAx
1)

for a domain decomposed as in Figure 1, where Ax
1 denote the x-directional dif-

ferentiation component of the operator A1, and Ay
1 the y-directional differentiation

component. After the prediction of interface boundary conditions, the implicit back-
ward Euler temporal scheme (I−∆tA)un+1 = un is applied to the system (1.1) on the
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subdomains, which can be solved independently on each subdomain. Thus, Dawson,
Du, and Dupont’s algorithm can be expressed as

un+1 = (I − ∆tA2)
−1(I − ∆tAy

1)
−1(I + ∆tAx

1)u
n.(2.9)

Using a wider spatial mesh hx > h in the x-direction for the predictor, the time step
size is restricted to ∆t = O(h2

x) instead of ∆t = O(h2). Subject to the restriction
∆t ≤ h2

x/2 for the two-dimensional heat equation, the global error of their algorithm

is of O(h2 + ∆t+ 4∆thx + 2h3
x). Thus taking hx = h2/3

2 , the time step restriction for

the algorithm (2.9) is ∆t = h4/3

8 with a good global error of O(h2) +O(∆t).

A penalized explicit-implicit algorithm proposed by Black [3] has remedied the
stability related time step size restriction of the EIDD algorithms and achieved nu-
merically verified unconditional stability. In the algorithm, Black [3] employed a Du
Fort–Frankel-type scheme [19] as the explicit predictor. The Du Fort–Frankel scheme
contains a penalty term, which, in a fashion similar to what Funaro did in [20], penal-
izes the nonsmoothness of the solution across the interface boundary. This penalized
Du Fort–Frankel scheme achieves good numerical unconditional stability; however,
it introduces an error term of O(∆t

h )
2 for the heat equation, making the algorithm

inconsistent unless ∆t/h→ 0. Thus consistency comes only after paying a price of
restricting time step size to an order of O(h2) to achieve a first order temporal accu-
racy, a restriction quantitatively similar to, though qualitatively different from, the
restriction on the algorithm of Kuznetsov. Though not explicitly given in the paper,
Black’s algorithm is supposed to have a global error of O(h2) +O(∆t) +O

(
(∆t

h )
2
)
.

There are other papers by Laevsky and his colleagues [27, 28] on explicit-implicit
algorithms, but unconditional stability is not attained and the global errors are O(h)+
O(∆t) or larger.

2.5. Corrected EIDD methods. Besides Dawson, Du, and Dupont’s factor-
ization and Black’s penalty method, there are other efforts to improve the stability
of EIDD algorithms. J. Zhu [36] investigated an implicit correction technique for
Kuznetsov’s EIDD method for the one-dimensional heat equation and compared its
stability results experimentally with several other methods. One author of this paper
considered correction techniques in his Ph.D. thesis proposal and implemented an
implicit correction method for Kuznetsov’s EIDD method [40]. Daoud, Khaliq, and
Wade used implicit correction [11] for Dawson, Du, and Dupont’s method [14] applied
to general parabolic problems with proven stability when ∆t is restricted to O(h2

x),
where hx denotes the spatial mesh size used in the predictor in the direction across
the interface boundary.

The idea of implicit correction is to replace the explicitly computed interface
boundary condition by a new solution on the interface boundaries computed by an
implicit method. There is a difference between the implicit correction and the stabi-
lization which is advocated in this paper. From the operational point of view, stabi-
lization can be considered a special case of correction, but with the aim to “stabilize”
the errors on both the interface boundaries and the subdomains through a special
design of the stabilizer to pair with the explicit predictor. The difference between
stabilization and correction is illustrated in section 5.

3. A generic parallel SEIDD algorithm. To ease the time step size restric-
tion of the EIDD algorithms, a class of SEIDD algorithms [39] is introduced. The
generic parallel version of the SEIDD methods is described below.
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Ω1 Ω2 · · · Ωp−1 Ωp

Fig. 2.

The entire domain Ω is divided into p subdomains Ω1,Ω2, . . . ,Ωp (e.g., as in
Figure 2) with interface boundaries denoted by Γ. The complement of the interface
boundary is the subdomains whose union is denoted by Γc, namely, Γc = Ω1 ∪ Ω2 ∪
· · · ∪ Ωp. Thus, Ω = Γ ∪ Γc. For the numerical solution of (1.1), we choose a discrete
spatial grid Ωh and discretize the original problem spatially into

∂u(t,x)
∂t = Ahu(t, x)+f(t, x), x∈Ωh, t≥0,

u(t, x) = ub(t, x), x∈∂Ωh, t≥0,
u(0, x) = u0(x), x∈Ωh,

(3.1)

where ∂Ωh, defined as ∂Ω ∩ Ωh, is the set of exterior boundary points on the dis-
crete domain. Then we define the partitioning of the discrete domain Ωh simply by
inheriting the partitioning of the original domain:

Ωh,i = Ωh ∩ Ωi for i = 1, 2, . . . , p,
Γh = Ωh ∩ Γ,
Γc
h = Ωh ∩ Γc = Ωh,1 ∪ Ωh,2 ∪ · · · ∪ Ωh,p.

We denote the discrete interface boundary between subdomains Ωi and Ωj by Γ
i,j
h for

i < j (Γi,j
h could be an empty set) and denote the ith processor by pi. Now a generic

parallel SEIDD algorithm for computing the solution un+1
h at the (n+1)st time step

from the current nth time step is given below.
The parallel SEIDD algorithm.

0. Assign subdomain Ωi and interface boundary Γi,j
h to pi.

1. Compute un+1
h at Γh using an explicit scheme. Then pass from pi to pj the

newly predicted un+1
h on Γi,j

h .
These computed data provide the interface boundary conditions.

2. Compute un+1
h on the subdomains Γc

h using any unconditionally stable scheme
with the interface boundary conditions computed at step 1 as boundary con-
ditions. Then pass part of the just computed data of un+1 on the subdomain
from pj to pi for the stabilization operation at the next step.
Using any unconditionally stable temporal scheme results in an elliptic equa-
tion to be solved. The solution of the elliptic equation can be carried out
mutually independently on the subdomains and thus in parallel.

3. Throw away the interface boundary condition computed at step 1 and bring
back un on Γh. Then implicitly recompute un+1

h on Γh, using solution data
un+1
h on Γc

h nearby as boundary conditions.
Go back to step 1 for the next time step iteration.

In step 1 of the algorithm, we do not pass any part of un from pj to pi before the
explicit computation of the interface boundary condition (IBC) un+1. The computa-
tion of the IBC does need those data. However, since processor pi already received
them from pj at step 2 of the previous time step and no update has been performed
on the data on the subdomains, no data transfer is necessary.
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Fig. 3.

On the other hand, for any EIDD method the two data transfer operations in the
first two steps are necessary for predicting the IBC and for implicitly computing the
solution on the neighboring subdomain assigned to another processor. Thus compared
with EIDD algorithms, the SEIDD algorithm has no extra communication cost, as
the following theorem states.

Theorem 3.1. The stabilization (step 3) of SEIDD algorithm adds zero commu-
nication cost to EIDD algorithm.

Furthermore, using any method (including the explicit forward Euler temporal
discretization which requires only one matrix-vector multiplication for each time step),
it needs solution data from nearby to compute the solution on the interface boundary.
This incurs one data transferring operation. And to compute the solution near the
interface boundary also incurs one data transferring operation. Thus time-stepwisely,
the minimal number of data transferring operations is two for any parallel algorithm
using any temporal discretization scheme. Therefore, we have arrived at the following
conclusion concerning the communication cost of the parallel SEIDD methods.

Theorem 3.2. The parallel SEIDD algorithm is optimal in terms of number of
data transferring operations for each time step.

To carry out a quantitative analysis of the computation and communication effi-
ciency of the parallel SEIDD algorithm, we assume that each of the two data transfer-
ring operations are carried out by p− 1 processors simultaneously with almost equal
load. This can be easily achieved when the domain is decomposed as in Figures 2
or 3, where the interface boundaries do not cross into each other inside the problem
domain. It is clear that for a given parallel machine size, namely, fixed p, the total
communication cost per time step is an increasing function of the total “length” of
the interface boundaries. Thus a domain partitioning strategy should be chosen to
keep the total interface boundaries as “short” as possible as long as it does not incur
excessive complication or deterioration of the algorithm. As shown in Figure 4, both
partitioning strategies result in four subdomains of equal size, but strategy (a) pro-
duces “shorter” interface boundaries—only two-thirds of that resulting from strategy
(b). However, with strategy (a), both the explicit prediction and the implicit sta-
bilization of the interface boundary need special treatment to achieve good stability
without increasing computation and communication costs. However, in this paper,
we restrict the scope of discussion to the stabilization techniques under the case of
no-crossover interface boundaries, and leave to a future project the interface boundary
treatment for more general domain partitioning strategies that include crossover of
interface boundaries.
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(a)    (b)

     

Fig. 4.

Now let NΓ denote the number of grid points on the interface boundaries; then
the total communication time of each time step satisfies

Tcomm ≤ 2α
NΓ

p−1
+ β,(3.2)

where α is some system-dependent data transfer rate and β is the communication
startup overhead.

The computation cost of the stabilization process of the SEIDD algorithm is
proportional to the number of grid points NΓ on the interface boundary Γh. But
since NΓ is much smaller than the total number of grid points (denoted by N), the
computation overhead of the stabilization is very small and negligible. Assume the
function of computation cost bound for the predictor, the subdomain solver, and
the stabilizer are the same and denoted by φ. Then the total computation cost at
each time step is the sum of the prediction time φ( NΓ

p−1 ), the subdomain solver time

φ(N−NΓ

p ), and the stabilization time φ( NΓ

p−1 ), yielding

Tcomp = 2φ
(

NΓ

p−1

)
+ φ

(
N−NΓ

p

)
.(3.3)

Cost function usually increases faster than linearly or at least linearly, which means{
φ(n) ≥ p φ

(
n
p

)
,

φ(n) ≥ φ(n−n′) + φ(n′)
(3.4)

for n′ ≤ n. Then the parallel speedup, defined as single processor execution time
T1 over parallel execution time Tp, can be estimated from (3.2), (3.3), and (3.4) as
follows:

Sp = T1/Tp = T1/(Tcomp + Tcomm) =
φ(N)

2φ( NΓ

p−1 ) + φ(N−NΓ

p ) + 2αNΓ

p−1 + β

≥ φ(N)
2φ(NΓ)
p−1 + φ(N)−φ(NΓ)

p + 2αNΓ

p−1 + β
≈ p φ(N)

φ(N) + p
p−1 [2αNΓ+β+φ(NΓ)]

.

And the corresponding efficiency, defined as speedup over the number of processors,
is

Ep =
φ(N)

φ(N) + p
p−1 [2αNΓ+β+φ(NΓ)]

.

As analyzed above, the SEIDD methods are computationally and communica-
tionally efficient for each time step. If they further have good stability to ease the
excessively small time step size restriction, the time-stepwisely efficient SEIDD will
possess great potential for large simulation problems on distributed memory architec-
ture machines.
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4. The stabilized forward-backward Euler method. The SEIDD algorithm
given in section 3 allows many choices for the explicit predictor in step 1, the sub-
domain scheme in step 2, and the stabilizer in step 3. Starting from this section,
we shall present three SEIDD algorithms with different choices for the predictor, the
subdomain temporal scheme, and the stabilizer.

Before presenting the algorithms, we introduce some notations. Let L2(Ωh) de-
note the function space defined on the finite-dimensional discrete space Ωh equipped
with the L2 norm (same as the Euclid norm in this case). Let unb and fn denote the
exterior boundary condition and the term f(t, x) in (1.1) at time step n. For a subset
S⊂Ωh, let χS be an operator on L2(Ωh) given by

χ
S v(x) =

{
v(x), x∈S,
0, x �∈S,

i.e., χS is a diagonal matrix with 1 on the positions corresponding to the grid points
in the subset S ⊂ Ωh and 0 elsewhere. We use I to denote the identity matrix on
L2(Ωh). With these notations we are ready to present the first SEIDD algorithm,
named SEIDD1.

We choose the forward Euler scheme for the first step of the SEIDD algorithm.
Then the interface boundary condition predictor is mathematically representable as χ

Γh

u
n+1/3

h
−un

h

∆t = χ
Γh

(Ahu
n
h +Abu

n
b + fn) ,

χ
Γc
h
u
n+1/3
h = χ

Γc
h
unh,

(4.1)

where Ab denotes the matrix that operates on discrete exterior boundary conditions.
To discretize (1.1) on the subdomains, we choose the backward Euler scheme and
obtain  χ

Γc
h

u
n+2/3

h
−un

h

∆t = χ
Γc
h

(
Ahu

n+2/3
h +Abu

n+1
b + fn+1

)
,

χ
Γh
u
n+2/3
h = χ

Γh
u
n+1/3
h .

(4.2)

In the stabilization process the predicted interface boundary condition χ
Γh
u
n+1/3
h is

thrown away and χ
Γh
unh is brought back. Then the backward Euler scheme is used

for the stabilization, so it has the representation χ
Γh

un+1
h

−un
h

∆t = χ
Γh

(
Ahu

n+1
h +Abu

n+1
b + fn+1

)
,

χ
Γc
h
un+1
h = χ

Γc
h
u
n+2/3
h .

(4.3)

Through tedious but simple calculations, the domain decomposition method (4.1)–
(4.3) can be written into

un+1
h = (I − ∆tA1)

−1
[
χ

Γh
+ χ

Γc
h
(I − ∆tA2)

−1(I + ∆tA1)
]
un

+ ∆t(I−∆tA1)
−1

[
χ

Γh
gn+1+ χ

Γc
h
(I−∆tA2)

−1(χΓc
h
gn+1+ χ

Γh
gn)

]
,

(4.4)

where A1 =χΓh
Ah, A2 =χΓc

h
Ah, and gk = Ab u

k
b + fk. For homogeneous problems

where ub = 0 and f = 0, it is easily obtainable from (4.4) that

unh = (I − ∆tA1)
−1Ĝ(∆t, h)n(I − ∆tA1)u

0
h,(4.5)

where
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Ĝ(∆t, h) =
[
χ

Γh
+ χ

Γc
h
(I − ∆tA2)

−1(I + ∆tA1)
]
(I − ∆tA1)

−1.(4.6)

Now we can see that the stability of SEIDD1 depends very much on Ĝ. The main
instability-causing term in SEIDD is the explicit predictor I+∆tA1, which, as can
be seen from (4.6), is likely to be somewhat stabilized from right by the term (I −
∆tA1)

−1—the term corresponding to the stabilizer in the previous time step with
respect to the time step of the predictor. Therefore, a better stability condition for
SEIDD is expected than for EIDD.

5. The stabilized Dawson–Du–Dupont method. In this section we present
a stabilizer for the explicit-implicit algorithm of Dawson, Du, and Dupont. We call
the stabilized algorithm the SEIDD2 algorithm. The emphasis of this section is on il-
lustrating how to design a stabilizer for a given interface boundary condition predictor
and compare the difference of stabilization with implicit correction.

Let Ax
h denote the x-directional difference component of the operator Ah, and A

y
h

the y-directional difference component. Let Ax
b be the x-direction boundary condition

matrix that operates on the exterior boundary condition, and let Ay
b the y-direction

boundary condition matrix. Then we represent the two steps of Dawson–Du–Dupont
algorithm by χ
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(5.1)

and  χ
Γc
h
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(
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(5.2)

To stabilize the predictor (5.1), we start from the backward Euler method χ
Γh

un+1
h

−un
h

∆t = χ
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(
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h +Abu
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(5.3)

for the spatially discretized problem (3.1) on the interface boundary. We rewrite the
first equation in (5.3) into

χ
Γh

(I−∆tAh)u
n+1
h = χ

Γh

[
unh + ∆t(Abu

n+1
b +fn+1)

]
.

Since Ah = Ax
h + Ay

h, an approximate factorization of the left-hand side turns the
above equation together with the second equation in (5.3) into{ χ

Γh
(I−∆tAy

1)(I−∆tAx
1)u

n+1
h = χ

Γh

[
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(5.4)

where Ax
1 =χ

Γh
Ax

h and Ay
1 =

χ
Γh
Ay

h.
In the stabilization step (5.4), we place the operator (I−∆tAy

h) to the left of
(I−∆tAx

h). This ordering is important for the stabilization. The importance of this
ordering can be seen from an analysis given below.
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For the homogeneous problem where the boundary conditions ub = 0 and f = 0,
the SEIDD2 method (5.1), (5.2), (5.4) can be written into

un+1 = S(∆t, h)
[
χ

Γh
+ χ

Γc
h
(I−∆tA2)

−1P (∆t, h)
]
un,(5.5)

where S(∆t, h) is the stabilizer given by

S(∆t, h) = (I−∆tAx
1)

−1(I−∆tAy
1)

−1,(5.6)

P (∆t, h) is the interface boundary condition predictor P (∆t, h)=(I−∆tAy
1)

−1(I+∆tAx
1),

and A2 =χΓc
h
Ah. It follows from (5.5) that

un = S(∆t, h)Ĝ(∆t, h)nS(∆t, h)−1u0,(5.7)

where Ĝ(∆t, h) = [χΓh
+ χ

Γc
h
(I−∆tA2)

−1P (∆t, h)]S(∆t, h). From (5.7) we can see

that the convergence of the SEIDD2 method depends on the stability of Ĝ(∆t, h),
which in turn depends on the stability of P (∆t, h)S(∆t, h). From the equation

P (∆t, h)S(∆t, h) = [(I−∆tAy
1)

−1(I+∆tAx
1)] · [(I−∆tAx

1)
−1(I−∆tAy

1)
−1],

we can see that (I−∆tAx
1)
−1 in S(∆t, h) might be able to stabilize the explicit component

(I+∆tAx
1) in P (∆t, h). However, if the ordering of the two operators in S(∆t, h) is

reversed, namely,

S(∆t, h) = (I−∆tAy
1)

−1(I−∆tAx
1)

−1,(5.8)

then P (∆t, h)S(∆t, h) =
[
(I−∆tAy

1)
−1(I+∆tAx

1)
] · [(I−∆tAy

h)
−1(I−∆tAx

h)
−1

]
, which

may not necessarily produce good stability since the operator (I−∆tAy
h)

−1 in S(∆t, h)
does not seem to be able to stabilize the explicit part (I+∆tAx

1) of P (∆t, h) in all
situations.

The design of the stabilizer for Dawson, Du, and Dupont’s EIDD algorithm is a
good illustration of the difference between stabilization and implicit correction men-
tioned in section 2.5. Implicit correction considers mainly the errors of the interface
boundary conditions, while stabilization also concerns the errors caused by the pre-
diction that have propagated to the subdomains. Thus, the focus of stabilization is
to stabilize the explicit prediction (not just the errors on the interface boundaries
caused by the prediction) so that the prediction-caused interface boundary errors
that propagate to the subdomains could have already been stabilized by the stabilizer
of the previous time step. Therefore, for implicit correction, the factorized implicit
scheme (5.8) and the backward Euler scheme could both be feasible choices since they
can reduce the errors on the interface boundaries to an acceptable range. But the
stabilization considers only the factorized scheme (5.6), which is particularly ordered
according to the predictor.

6. A method with a factorized subdomain scheme. Both the SEIDD1 and
SEIDD2 algorithms require solving an elliptic equation of the form

(I − ∆tA)u = r(6.1)

on the subdomains. When the spatial operator A is not separable or even nonsym-
metric, iterative solvers must be employed to solve the elliptic equation for each time
step. In this section, we propose an algorithm which factorizes the left-hand side of
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(6.1) with a direction-based splitting of the spatial operator A. This factorization
reduces the computation cost to a linear order of O(N) for a total of N grid points on
the subdomains. With this factorization, the factorized SEIDD algorithm becomes
completely noniterative, both globally and on each subdomain.

We choose to present the factorization for the SEIDD1 algorithm. The factor-
ization for the SEIDD2 is exactly the same. We assume that the spatial domain of
the parabolic equation is two-dimensional and the spatial operator A is splittable
as A = Ax + Ay. For example, when A is the two-dimensional Laplace operator

A = ∂2

∂x2 +
∂2

∂y2 , A
x = ∂2

∂x2 and Ay = ∂2

∂y2 form a directional splitting of the operator
A. The SEIDD algorithm with a directionally factorized subdomain temporal scheme
is given below:
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(6.2)
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and { χ
Γh

(I − ∆tAh)(u
n+1
h + un+1

b ) = χ
Γh

[unh + ∆tfn+1],

χ
Γc
h
un+1
h = χ

Γc
h
u
n+2/3
h .

(6.4)

We call the algorithm (6.2)–(6.4) the SEIDD3 algorithm. The difference between this
algorithm and SEIDD1 is that in the second step (6.3), the SEIDD3 algorithm has (I−
∆tAx

h)(I−∆tAy
h) on the left-hand side while the SEIDD1 algorithm has (I−∆tAh). For

a two-dimensional problem, the discretized directional components of Ah are usually
tridiagonal matrices [2]. Thus (I−∆tAx

h) and (I−∆tAy
h) can be easily inverted with

a computation cost of linear order. On the other hand, the factorization introduces
an O((∆t)2) error. Since A = Ax +Ay, we have that

(I−∆tAx
h)(I−∆tAy

h) = I − ∆tAh + (∆t)2Ax
hA

y
h.

Thus the error introduced by factorizing (I −∆tAh) into (I −∆tAx
h)(I −∆tAy

h) is
(∆t)2Ax

hA
y
h. But the predictor, the subdomain scheme, and the stabilizer all have

O
(
(∆t)2

)
temporal truncation errors and the SEIDD1 algorithm is also first order

(see [39]). Thus the error introduced by the directional factorization of the subdomain
scheme does not decrease the order of temporal accuracy.

7. Experimental results. In this section, we present some numerical results
obtained by applying the SEIDD algorithms to parabolic problems. Four different
types of problems have been chosen to test the proposed domain decomposition algo-
rithms: a problem with a symmetric and negative definite spatial operator, a problem
with a symmetric and indefinite spatial operator, several problems with nonsymmet-
ric spatial operators, and an unstable problem with a nonsymmetric and indefinite
spatial operator. In the experiments, stability is carefully examined together with
parallel speedup and efficiency of the SEIDD algorithms.
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Ω1 Ω2 Ω3

Fig. 5.

7.1. Stability testing.

7.1.1. The heat equation. We apply the SEIDD algorithms to the two-dimen-
sional heat equation

∂u(t,x,y)
∂t = ( ∂2

∂x2 +
∂2

∂y2 )u, x∈Ω, t≥0

u(t, x, y) = ub(t, x, y), x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

(7.1)

on the rectangular domain Ω = [0, 3]× [0, 1]. The heat equation has a “good” spatial
operator—the Laplacian, which is symmetric and negative definite. In the numerical
experiment, we partition the domain into 192 intervals of length h = 1/64 in the
x-dimension, and partition the y-dimension into 64 intervals of the same mesh size h
as in x-dimension. On this regularly structured grid, we use the second order central
finite difference

fi−1 − 2fi + fi+1

h2
= f ′′

i(7.2)

for the discretization of the Laplace operator with the discrete Laplace operator de-
noted by ∆h. Then the spatially discretized heat equation has the form d

dtuh =
∆huh + bh(t), where bh(t) is resulted from the boundary conditions.

We solved the spatially discretized heat equation using the three SEIDD algo-
rithms presented in sections 4 through 6, with the domain divided into three equal-
sized squares as in Figure 5. The time intervals chosen for simulation are the unit
interval [0, 1]. We have used several different time discretization sizes ∆t. The exper-
iments were carried out on an NCSA Origin 2000 machine using 3 processors, each
of 250 MHz, running an IRIX 6.5.9 operating system. 64-bit arithmetic operations
were used in the numerical experiments. The measured errors of numerical solutions
at time t = 1 are listed in Table 1 for the indicated temporal discretization sizes.

Since the SEIDD algorithms are stabilized EIDD algorithms, for stability com-
parison we also solved the heat equation using the EIDD algorithms—the SEIDD
algorithms without the stabilization. On the other hand, since the backward Euler
(listed as BEuler in the tables) method is the most stable method due to Widder’s the-
orem [1], it can be considered the benchmark for stability. We solved the heat equation
using the backward Euler method on the entire nonpartitioned domain by one pro-
cessor, and the measured errors of the solutions computed by the BEuler method are
also listed in Table 1. It is well known that for an unconditionally stable method, the
simulation error remains small even when the time step size ∆t is large relative to the
spatial mesh size [30]. As indicated by the experimental results in Table 1, the errors
of the SEIDD algorithms remain relatively small when the time step size ∆t is large,
and they are almost as small as those of the backward Euler method, experimentally
supporting the effectiveness of the stabilization of the SEIDD algorithms.
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Table 1
ut = ∆u with u(t, x, y) = e−2t cos(x+y). The table lists the maximal error of the solution at

t = 1. The symbol ∞ denotes an error larger than 1.0e + 100. The spatial domain is [0, 3]× [0, 1]
with a mesh size h = 1/64.

∆t 1/50 1/100 1/200 1/400 1/800
SEIDD1 4.2e–03 8.9e–04 1.5e–04 5.3e–05 3.1e–05
SEIDD2 3.8e–04 2.2e–04 1.2e–04 6.8e–05 3.6e–05
SEIDD3 4.8e–03 1.1e–03 2.2e–04 3.7e–05 1.4e–05
BEuler 6.1e–04 3.0e–04 1.5e–04 7.6e–05 3.8e–05
EIDD1 ∞ ∞ ∞ ∞ ∞
EIDD2 3.9e+54 2.4e+98 ∞ ∞ ∞
EIDD3 ∞ ∞ ∞ ∞ ∞

7.1.2. An unstable diffusion problem. In this section, we test the SEIDD
algorithms on the problem

∂u(t,x,y)
∂t = ∆u+ 3u, x∈Ω, t≥0

u(t, x, y) = 0, x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

(7.3)

on the rectangular domain Ω = [0, 2π]× [0, π]. On this spatial domain, the eigenvalues

of the Laplace operator are − j2

4 − k2 for j, k = 1, 2, 3, . . . . Thus the spatial operator
A = −∆+ 3 has positive eigenvalues and the homogeneous problem (7.3) could have
solutions of exponential growth, e.g., u(t, x, y) = et sin(x) sin(y) is a solution for the
initial condition u(0, x, y) = sin(x) sin(y). An evolutionary (or dynamical) system
is stable if and only if for all initial conditions and bounded boundary conditions
its solutions stay uniformly bounded as time progresses. This necessitates that all
eigenvalues of the spatial operator be nonpositive for a stable system. Hence the
testing problem (7.3) is unstable.

In the numerical experiment, we choose a spatial grid with the x-dimension di-
vided into 256 subintervals of equal length h = π/128 and the y-dimension into 128
intervals of the same mesh size h = π/128. On this regularly structured grid, we use
the second order central finite difference (7.2) for the discretization of the Laplace
operator and obtain the following spatially discretized problem:

duh

dt
= (∆h + 3)uh.(7.4)

We solved the spatially discretized diffusion equation by the SEIDD algorithms with
the domain divided into two equal-sized square subdomains by line x = π. The
time interval chosen for simulation is the unit interval [0, 1]. Several different time
discretization sizes ∆t have been used. The measured errors of numerical solutions at
time t = 1 are listed in Table 2 for the indicated temporal discretization sizes.

To examine the stabilization effectiveness of SEIDD algorithms, we also have
solved the unstable diffusion problem using the EIDD algorithms and listed the so-
lution errors in Table 2. For stability comparison, we solved the discrete problem
(7.4) using the backward Euler method on the entire nonpartitioned domain by one
processor. Measured errors of the solutions computed by the backward Euler method
(BEuler) are also listed in Table 2. As indicated by the experimental results in Ta-
ble 2, the errors of the SEIDD1 and SEIDD2 algorithms remain relatively small when
the time step size ∆t is large, and they are the same as the errors of the backward
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Table 2
ut = ∆u + 3u with u(t, x, y) = et sin(x) sin(y). The spatial domain is [0, 2π]×[0, π] with mesh

size h = π/128.

∆t 1/25 1/50 1/100 1/200 1/400 1/800
SEIDD1 5.7e–02 2.8e–02 1.4e–02 7.1e–03 3.7e–03 2.0e–03
SEIDD2 5.7e–02 2.8e–02 1.4e–02 7.1e–03 3.7e–03 2.0e–03
SEIDD3 3.0e–01 1.4e–01 7.0e–02 3.5e–02 1.7e–02 8.8e–03
BEuler 5.7e–02 2.8e–02 1.4e–02 7.1e–03 3.7e–03 2.0e–03
EIDD1 3.5e+45 4.4e+94 ∞ ∞ ∞ ∞
EIDD2 3.6e+12 4.3e+33 4.3e+65 ∞ ∞ ∞
EIDD3 2.6e+42 5.9e+88 ∞ ∞ ∞ ∞

Euler method. The errors of the SEIDD3 algorithm are about 3 to 5 times larger than
those of the backward Euler but are much smaller than those of the EIDD algorithms.

7.1.3. Convection-diffusion problems. In this section, we test the SEIDD
algorithms on the problem

∂u(t,x,y)
∂t = ∆u+ 9.9 sin(x) ∂

∂xu− 9.9 cos(x)u, x∈Ω, t≥0,
u(t, x, y) = 0, x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

(7.5)

on the rectangular domain Ω = [0, 2π]× [0, π]. In addition to being nonsymmet-
ric, the problem is also unstable, since the twice differentiable function f(x, y) =
sin(x/2) sin(y) is an eigenvector of A with a positive eigenvalue 8.65.

We partition the x-dimension of the domain into 256 intervals of length h = π/128
and partition the y-dimension into 128 intervals of the same mesh size h = π/128.
On this grid we use the second order finite difference (7.2) for the discretization of
the Laplace operator and discretize ∂

∂xu by the central finite difference

fi+1 − fi−1

h
= f ′

i .(7.6)

We solved the spatially discretized equation by the SEIDD algorithms with the do-
main divided into two equal-sized squares by line x = π. The time interval cho-
sen for simulation is the unit interval [0, 1], and several different time discretization
sizes ∆t were used. The measured errors of numerical solutions at time t = 1 are
listed in Table 3 for the indicated temporal discretization sizes. We have also solved
the problem using the EIDD algorithms and the backward Euler method. The so-
lution errors computed by the EIDD and backward Euler algorithms are listed in
Table 3.

As indicated by the experimental results in Table 3, the errors of the SEIDD1
and SEIDD2 algorithms remain small even when the time step size ∆t is large, and
the errors are the same as those of the backward Euler method. The errors of the
SEIDD3 algorithm are about 30 to 100 times larger than the backward Euler but are
still much smaller than the errors computed by the EIDD methods.

To see how different degrees of nonsymmetry and instability of the problem af-
fect the numerical error or stability of the SEIDD3 algorithm, we test the SEIDD3
algorithm on the problem

∂u(t,x,y)
∂t = ∆u+ α sin(x) ∂

∂xu− α cos(x)u, x∈Ω, t≥0,
u(t, x, y) = 0, x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,
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Table 3
ut = ∆u+9.9 sin(x)ux−9.9 cos(x)u with u = e−2t sin(x) sin(y). The spatial domain is [0, 2π]×

[0, π] with mesh size h = π/128

∆t 1/25 1/50 1/100 1/200 1/400 1/800
SEIDD1 1.1e–02 5.5e–03 2.8e–03 1.5e–03 8.0e–04 4.6e–04
SEIDD2 1.1e–02 5.5e–03 2.8e–03 1.5e–03 8.0e–04 4.6e–04
SEIDD3 1.9e+00 3.7e–01 1.3e–01 5.4e–02 2.5e–02 1.2e–02
BEuler 1.1e–02 5.5e–03 2.8e–03 1.5e–03 8.0e–04 4.6e–04
EIDD1 8.0e+42 1.8e+88 ∞ ∞ ∞ ∞
EIDD2 4.0e+13 1.9e+34 2.0e+66 ∞ ∞ ∞
EIDD3 1.7e+42 4.4e+88 ∞ ∞ ∞ ∞

Table 4
ut = ∆u+α sin(x)ux −α cos(x)u with u = et sin(x) sin(y). The spatial domain is [0, 2π]×[0, π]

with mesh size h = π/128.

α ∆t 1/25 1/50 1/100 1/200 1/400 1/800
0.9 SEIDD3 6.4e–03 3.2e–03 1.6e–03 8.2e–04 4.2e–04 2.2e–04
3.9 SEIDD3 4.5e–02 2.1e–02 1.0e–02 5.2e–03 2.6e–03 1.3e–03
6.9 SEIDD3 2.8e–01 1.0e–01 4.4e–02 2.1e–02 1.0e–02 5.0e–03
9.9 SEIDD3 1.9e+00 3.7e–01 1.3e–01 5.4e–02 2.5e–02 1.2e–02
0.9 BEuler 1.1e–02 5.4e–03 2.7e–03 1.4e–03 6.9e–04 3.5e–04
3.9 BEuler 1.1e–02 5.4e–03 2.7e–03 1.4e–03 7.2e–04 3.8e–04
6.9 BEuler 1.1e–02 5.5e–03 2.8e–03 1.4e–03 7.6e–04 4.2e–04
9.9 BEuler 1.1e–02 5.5e–03 2.8e–03 1.5e–03 8.0e–04 4.6e–04

with varying α. The testing results are listed in Table 4.
We also solved the same problem with varying coefficients α by the backward

Euler method. The maximal errors computed by the backward Euler method are
listed in Table 4. The measured numerical errors indicate that when α is small, the
SEIDD3 algorithm exhibits quite small errors. As α increases, the numerical errors
also increase.

7.1.4. An unstable convection-diffusion problem. In this section, we test
the SEIDD algorithms on the problem

∂u(t,x,y)
∂t = ∆u+ sin(x) ∂

∂x (sin(x)u) + (3−sin(2x))u, x∈Ω, t≥0,
u(t, x, y) = 0, x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

(7.7)

on the rectangular domain Ω = [0, 2π]×[0, π]. On L2
0(Ω), the spatial operator

Au = ∆u+ sin(x) ∂
∂x (sin(x)u) + (3− sin(2x))u

is indefinite, since, as proven in [39], the function v(x, y) = sin(0.5x) sin(y) ∈ L2
0(Ω)

satisfies 〈Av, v〉+〈v,Av〉 ≥ 1.5‖v‖2.
To solve the problem numerically, we partition the x-dimension of the domain into

256 intervals of length h = π/128 and partition the y-dimension into 128 intervals of
the same mesh size h = π/128. On this grid, we use the second order finite difference
(7.2) for the discretization of the Laplace operator and discretize ∂

∂xu by the central
finite difference (7.6). We solved the spatially discretized equation by the SEIDD
algorithms with the domain divided into two equal-sized squares by line x = π. The
time interval chosen for simulation is the unit interval [0, 1]. We used several different
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Table 5
ut = ∆u + sin(x)2ux + [3 − sin(x) cos(x)]u with u = et sin(x) sin(y). The spatial domain is

[0, 2π]×[0, π] with mesh size h = π/128.

∆t 1/25 1/50 1/100 1/200 1/400 1/800
SEIDD1 5.7e–02 2.8e–02 1.4e–02 7.1e–03 3.7e–03 2.0e–03
SEIDD2 5.7e–02 2.8e–02 1.4e–02 7.2e–03 3.7e–03 2.0e–03
SEIDD3 3.9e–01 1.9e–01 9.1e–02 4.5e–02 2.3e–02 1.1e–02
BEuler 5.7e–02 2.8e–02 1.4e–02 7.2e–03 3.7e–03 2.0e–03
EIDD1 4.4e+45 5.6e+94 ∞ ∞ ∞ ∞
EIDD2 8.6e+21 2.2e+42 1.6e+74 ∞ ∞ ∞
EIDD3 2.6e+42 6.1e+88 ∞ ∞ ∞ ∞

time discretization sizes ∆t. The measured errors of numerical solutions at time t = 1
are listed in Table 5 for the indicated temporal discretization sizes. We also have
solved the problem using the EIDD algorithms and the backward Euler method. The
solution errors computed by the EIDD and backward Euler algorithms are also listed
in the Table 5.

As indicated by the experimental results in Table 5, the errors of the SEIDD1 and
SEIDD2 algorithms remain small even when the time step size ∆t is large, and the
errors are almost the same as those of the backward Euler method. The errors of the
SEIDD3 algorithm are about 5 times larger than the backward Euler but are still much
smaller than the errors computed by the EIDD algorithms. The numerical experiment
data show that the SEIDD1 and SEIDD2 algorithms are robust and exhibit good
stability for unstable, nonselfadjoint problems.

7.1.5. The effects of the subdomain size. To see how the subdomain size af-
fects the stability and numerical error of the method, we choose a convection-diffusion
problem 

∂u(t,x,y)
∂t = ∆u+ 10ux + 6 sin(0.6x+ 1.1y), x∈Ω, t≥0,

u(t, x, y) = ub(t, x, y), x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

(7.8)

on the unit square [0, 1]×[0, 1] with a uniform mesh hx = hy = 1/64. We divide the
square domain into p subdomains of equal size by vertical lines as in Figure 6. We
tested the SEIDD1 method on this problem with p ranging from 1 to 32, where 32 is
the largest possible number for each subdomain to have nonempty interior, i.e., only
one vertical line of interior grid points. The time interval chosen for simulation is
[0, 1]. We used several different time discretization sizes ∆t. The measured errors of
the numerical solutions at time t = 1 are listed in Table 6 for the indicated subdomain
width (W ) and temporal discretization sizes. The width of the subdomains satisfies
W = 64h/p, and henceW = 64h corresponds to the backward Euler method. We also
have solved the problem using the EIDD1 algorithm, and the errors of the numerical
solutions computed by the EIDD1 algorithm are listed in the table.

The experimental data show that the SEIDD methods retain good stability for
all tested cases, although the numerical error for simultaneously small W and large
∆t are relatively large when compared to those from the backward Euler method. We
further tested the SEIDD1 using one of the partitions in Table 6 that produces the
narrowest subdomains, i.e., the partition where the unit square domain is divided into
32 equal-sized subdomains. In the tests, we choose large ∆t’s with respect to h’s and
let ∆t shrink proportionally with h so that their ratios remain fixed. The maximal
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Ω1 Ω2 · · · Ωp

Fig. 6.

Table 6
ut=∆u+10ux+6e−1.57t sin(0.6x+1.1y) with u=e−1.57t cos(0.6x+1.1y). The spatial domain is

[0, 1]×[0, 1] with mesh size h = 1/64.

W ∆t 1/25 1/50 1/100 1/200 1/400 1/800 1/1600
64h SEIDD1 4.0e–04 2.0e-04 1.0e-04 5.0e-05 2.6e-05 1.3e-05 7.1e-06
32h SEIDD1 6.9e–03 1.8e-03 3.8e-04 7.7e-05 1.0e-05 8.1e-06 5.8e-06
16h SEIDD1 2.9e–02 2.7e-03 9.6e-04 2.1e-04 4.0e-05 3.2e-06 3.4e-06
8h SEIDD1 6.8e–02 2.3e-02 1.9e-03 4.6e-04 1.0e-04 1.8e-05 8.5e-07
4h SEIDD1 3.3e–01 7.2e-02 4.1e-03 9.6e-04 2.3e-04 5.0e-05 8.6e-06
2h SEIDD1 5.1e–01 9.8e-02 2.9e-02 1.9e-03 4.8e-04 1.1e-04 2.4e-05
32h EIDD1 4.0e+66 ∞ ∞ ∞ ∞ ∞ ∞
16h EIDD1 4.1e+66 ∞ ∞ ∞ ∞ ∞ ∞
8h EIDD1 4.2e+66 ∞ ∞ ∞ ∞ ∞ ∞
4h EIDD1 4.0e+66 ∞ ∞ ∞ ∞ ∞ ∞
2h EIDD1 2.6e+66 ∞ ∞ ∞ ∞ ∞ ∞

Table 7
ut=∆u+10ux+6e−1.57tsin(0.6x+1.1y) with u=e−1.57tcos(0.6x+1.1y.) The domain [0, 1]×[0, 1]

is divided by 31 vertical lines into 32 equal-sized subdomains.

∆t/h h = 1/64 1/128 1/256 1/512 1/1024

∆t = 1/32 1/64 1/128 1/256 1/512
2 Error= 4.0e− 01 1.9e− 01 1.6e− 01 9.2e− 02 2.4e− 03

∆t = 1/50 1/100 1/200 1/400 1/800
1.28 Error= 9.8e− 02 1.2e− 01 3.7e− 02 7.0e− 03 2.0e− 03

∆t = 1/100 1/200 1/400 1/800 1/1600
0.64 Error= 2.9e− 02 5.6e− 03 2.0e− 03 9.9e− 04 5.0e− 04

errors at time t = 1 are listed in Table 7. These measured errors seem to suggest that
as long as the partition of the domain is fixed, the SEIDD1 method converges even
when the subdomain width is small and the ∆t is relatively large.

7.2. Efficiency and scalability testing. Analyses given in section 3 show that
the stabilization of SEIDD methods add negligible costs (computation and communi-
cation) to EIDD methods when the subdomains have a much larger number of grid
points than the interface boundaries. To experimentally examine the overhead of the
stabilization, we carried out a numerical experiment to compare the total cost (com-
putation and communication) of SEIDD versus EIDD. We chose the heat equation on
spatial domain [0, 8π]×[0, 2π]. The domain is divided into four square subdomains of
equal size, each assigned to a processor. In the test, we chose a sufficiently small time
step size so that all EIDD methods converged for the testing problem. The measured
execution times are listed in Table 8. From the testing data, no increased computa-
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Table 8
Execution Time: SEIDD methods vs. EIDD methods. The equation is ut = uxx + uyy with

u = e−2t cos(x+y). The domain is [0, 8π]×[0, 2π], which is divided into 4 subdomains. Spatial mesh
size h = π/64 with each subdomain of 128×128 grid points. The simulation time interval is [0, 1]
with time step size of ∆t = 1/2000.

Method T total T comp T comm Max Err nprocs
SEIDD1 5.3e+01 5.24e+01 3.0e–01 2.1e–04 4
SEIDD2 5.4e+01 5.28e+01 3.0e–01 2.1e–04 4
SEIDD3 2.5e+01 2.44e+01 3.0e–01 1.3e–04 4
EIDD1 5.3e+01 5.22e+01 3.0e–01 2.1e–04 4
EIDD2 5.3e+01 5.25e+01 3.0e–01 2.1e–04 4
EIDD3 2.5e+01 2.46e+01 3.0e–01 1.3e–04 4

tion time beyond machine variation range was recorded, experimentally supporting
the analysis that SEIDD methods incur negligible amount of overhead by stabilizing
EIDD methods.

To examine the scalability of the SEIDD algorithms, we apply the SEIDD1 and
SEIDD3 to the convection-diffusion equation

∂u(t,x,y)
∂t = ∆u+ sin(x)ux − cos(x)u, x∈Ω, t≥0,

u(t, x, y) = 0, x∈∂Ω, t≥0,
u(0, x, y) = u0(x, y), x∈Ω,

on spatial domains [0, pπ]×[0, π], where p is the number of subdomains. The domain
partitioning is along the x-direction as shown in Figure 2, with each subdomain being
a square and assigned to a processor. Uniform grid is applied to the domain with
mesh size π

256 in both the x- and y-directions. On this grid we use the second order

finite difference (7.2) for the discretization of the Laplace operator and discretize ∂
∂xu

by the central finite difference (7.6). The simulation time interval is [0, 1], and the
time step size is ∆t = 1/200.

We solved the problem by the SEIDD1 and SEIDD3 algorithms on a dedicated
queue of an NCSA Origin 2000 machine with a maximum of 256 nodes, each of 250
MHz, running an IRIX 6.5.9 operating system. In the experiments, we measured the
computation time (T comp), the communication time (T comm), the total execution
time (T total), and the maximal errors of the numerical solutions at time t = 1.
These measured data are listed in Tables 9 and 10 together with parallel speedup and
efficiency calculated using the total execution time T total. In the tables, the unit of
T comp, T comm, and T total is second.

The experimental data show that the computation time almost remains the same
as the problem size increases with the machine ensemble size such that the memory
usage on each processor remains the same, namely, the problem size is scaled up follow-
ing the memory-bounded constraint [35]. This phenomenon is well under expectation
since the stabilization has a very low computation overhead. The communication time
increases slowly as the number of processors increases. As the number of processors
increases from 1 to 128, the efficiency has decreased less than 4 percentage points
for the SEIDD1 algorithm and dropped about 9 percentage points for the SEIDD3
algorithm. This rate of performance decrease is very slow, matching well with the
analysis given in section 3.

The difference in the decreased percentage between the SEIDD1 and SEIDD3
algorithms is due to the difference of computation costs of the two algorithms. The
computation time used by the SEIDD3 algorithm is less than half of that used by the
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Table 9
Solving ut = ∆u+ sin(x)ux − cos(x)u by SEIDD1. Speedup and efficiency are computed using

T total. The spatial domain is [0, pπ]×[0, π] with h = π/256, where p is the number of processors.
The testing time interval is [0, 1] with ∆t = 1/200.

nprocs T total T comp T comm Speedup Efficiency Max-Err
1 2.08e+01 2.08e+01 0.0e-02 1 100% 1.4e-03
2 2.12e+01 2.10e+01 1.1e-01 1.96 98.1% 1.4e-03
3 2.12e+01 2.10e+01 1.9e-01 2.94 98.1% 1.4e-03
4 2.12e+01 2.10e+01 1.5e-01 3.92 98.1% 1.4e-03
5 2.12e+01 2.10e+01 1.7e-01 4.91 98.1% 1.4e-03
6 2.13e+01 2.10e+01 2.5e-01 5.86 97.7% 1.4e-03
7 2.13e+01 2.11e+01 2.9e-01 6.84 97.7% 1.4e-03
8 2.13e+01 2.11e+01 2.2e-01 7.81 97.7% 1.4e-03
10 2.14e+01 2.11e+01 3.1e-01 9.72 97.2% 1.4e-03
12 2.14e+01 2.10e+01 4.1e-01 11.7 97.2% 1.4e-03
14 2.14e+01 2.10e+01 3.7e-01 13.6 97.2% 1.4e-03
16 2.14e+01 2.10e+01 3.8e-01 15.6 97.2% 1.4e-03
20 2.15e+01 2.10e+01 4.8e-01 19.3 96.7% 1.4e-03
24 2.15e+01 2.11e+01 4.3e-01 23.2 96.7% 1.4e-03
28 2.16e+01 2.11e+01 5.0e-01 27.0 96.3% 1.4e-03
32 2.16e+01 2.10e+01 5.6e-01 30.8 96.3% 1.4e-03
48 2.12e+01 2.09e+01 3.3e-01 47.1 98.1% 1.4e-03
64 2.15e+01 2.10e+01 5.1e-01 61.9 96.7% 1.4e-03
128 2.14e+01 2.10e+01 4.4e-01 124 97.2% 1.4e-03

Table 10
Solving ut = ∆u+ sin(x)ux − cos(x)u by SEIDD3. Speedup and efficiency are computed using

T total.The spatial domain is [0, pπ]× [0, π] with h = π/256, where p is the number of processors.
The testing time interval is [0, 1] with ∆t = 1/200.

nprocs T total T comp T comm Speedup Efficiency Max-Err
1 9.89e+00 9.89e+00 0.0e-02 1.00 100% 8.4e-04
2 1.04e+01 1.02e+01 1.9e-01 1.90 95.1% 8.4e-04
3 1.04e+01 1.02e+01 2.3e-01 2.85 95.1% 8.4e-04
4 1.05e+01 1.02e+01 2.9e-01 3.77 94.2% 8.4e-04
5 1.05e+01 1.02e+01 3.4e-01 4.71 94.2% 8.4e-04
6 1.06e+01 1.02e+01 3.5e-01 5.60 93.3% 8.4e-04
7 1.05e+01 1.02e+01 3.1e-01 6.59 94.2% 8.4e-04
8 1.05e+01 1.02e+01 2.8e-01 7.54 94.2% 8.4e-04
10 1.05e+01 1.02e+01 2.7e-01 9.92 94.2% 8.4e-04
12 1.05e+01 1.02e+01 3.0e-01 11.3 94.2% 8.4e-04
14 1.07e+01 1.01e+01 5.5e-01 12.9 92.4% 8.4e-04
16 1.06e+01 1.02e+01 4.1e-01 14.9 93.3% 8.4e-04
20 1.05e+01 1.01e+01 4.1e-01 18.8 94.2% 8.4e-04
24 1.05e+01 1.01e+01 4.0e-01 22.6 94.2% 8.4e-04
28 1.06e+01 1.02e+01 3.5e-01 26.1 93.3% 8.4e-04
32 1.07e+01 1.01e+01 5.5e-01 29.6 92.4% 8.4e-04
48 1.09e+01 1.00e+01 8.7e-01 43.6 90.7% 8.4e-04
64 1.07e+01 1.01e+01 5.6e-01 59.2 92.4% 8.4e-04
128 1.08e+01 1.01e+01 6.7e-01 117 91.6% 8.4e-04

SEIDD1 algorithm, while the communication time consumed by the two algorithms
are the same. This difference in computation time is well under expectation since,
as analyzed in section 6, the SEIDD3 has a linear order computation cost, while
the SEIDD1 algorithm using an FFT-based subdomain solver has an O(N logN)
computation cost on a grid with N grid points [42].
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8. Concluding remarks. We developed a class of stabilized explicit-implicit do-
main decomposition methods by adding a stabilization step to the explicit-implicit do-
main decomposition methods. The EIDD methods are globally noniterative, nonover-
lapping domain decomposition methods, which are computationally and communi-
cationally efficient for each time step when compared with Schwarz-method-based
parabolic solvers. However, EIDD methods suffer from either stability- or consistency-
related time step size restrictions, while Schwarz methods could maintain the good
stability condition of implicit temporal discretization schemes. The proposed SEIDD
methods have inherited the advantages of EIDD methods in time-stepwise efficiency
while exhibiting excellent stability experimentally. But more importantly for parallel
computing, especially for large-scale simulation problems, the SEIDD methods achieve
good stability without adding any communication cost or measurable computation
cost to the EIDD methods. As confirmed by tests on SGI Origin 2000 computers, the
excellent parallel speedup and scalability of the SEIDD methods suggest potential for
large-scale simulation on massively parallel machines.
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