
Adaptive Fault Management of Parallel
Applications for High-Performance Computing

Zhiling Lan, Member, IEEE Computer Society, and Yawei Li, Student Member, IEEE

Abstract—As the scale of high-performance computing (HPC) continues to grow, failure resilience of parallel applications becomes

crucial. In this paper, we present FT-Pro, an adaptive fault management approach that combines proactive migration with reactive

checkpointing. It aims to enable parallel applications to avoid anticipated failures via preventive migration and, in the case of

unforeseeable failures, to minimize their impact through selective checkpointing. An adaptation manager is designed to make runtime

decisions in response to failure prediction. Extensive experiments, by means of stochastic modeling and case studies with real

applications, indicate that FT-Pro outperforms periodic checkpointing, in terms of reducing application completion times and improving

resource utilization, by up to 43 percent.

Index Terms—Adaptive fault management, parallel applications, high-performance computing, large-scale systems.

Ç

1 INTRODUCTION

IN the field of high-performance computing (HPC), the
insatiable demand for more computational power in

science and engineering has driven the development of
ever-growing supercomputers. Production systems with
hundreds of thousands of processors, ranging from
tightly coupled proprietary clusters to loosely coupled
commodity-based clusters, are being designed and de-
ployed [1]. For systems of this scale, reliability becomes a
critical concern as the systemwide mean time between
failures (MTBF) decreases dramatically with the increasing
count of components. Studies have shown that MTBFs for
teraflops- and petaflops-scale systems are only on the
order of 10-100 hours, even for systems based on
ultrareliable components [2], [3]. Meanwhile, to accurately
model realistic problems, parallel applications are de-
signed to span across a substantial number of processors
for days or weeks until completion. Unfortunately, the
current state of parallel processing is such that the failure
of a single process usually aborts the entire application. As
a consequence, large applications find it difficult to make
any forward progress because of failures. This situation is
likely to deteriorate as systems get bigger while applica-
tions become larger.

Checkpointing is the conventional method for fault toler-

ance. It is reactive by periodically saving a snapshot of the

application and using it for restarting the execution in case of

failures [4], [5]. When one of the application processes

experiences a failure, all the processes, including nonfaulty

processes, have to roll back to the previously saved state prior

to the failure. Thus, a significant performance loss can be

incurred due to the work loss and failure recovery. Unlike
checkpointing, the newly emerged proactive approach (e.g.,
process migration) takes preventive actions before failures,
thereby preventing failure experience and avoiding rollbacks
[6], [7]. Nevertheless, it requires accurate fault prediction,
which is hardly achievable in practice. Hence, the proactive
approach alone is unlikely to be sufficient to provide a reliable
solution for fault management in HPC.

In this paper, we present FT-Pro, an adaptive approach for
fault management of parallel applications by combining the
merits of proactive migration and reactive checkpointing.
Proactive actions enable applications to avoid anticipated
faults if possible, and reactive actions intend to minimize
the impact of unforeseeable failures. The goal is to reduce
application completion time in the presence of failures.
While checkpointing and process migration have been
studied extensively, the key challenge facing the design of
FT-Pro is how to effectively select an appropriate action at
runtime. Toward this end, an adaptation manager is
designed to choose a best fit action from opportunistic
skip, reactive checkpointing, and preemptive migration by
considering a number of factors.

We demonstrate that FT-Pro can enhance fault resilience
of parallel applications and consequently improve their
performance, by means of stochastic modeling and case
studies with parallel applications. Our results indicate that
FT-Pro outperforms periodic checkpointing, in terms of
reducing application completion time and improving
resource utilization, by up to 43 percent. A modest
allocation of spare nodes (less than 5 percent) is usually
sufficient for FT-Pro to achieve the above gain. Addition-
ally, the overhead caused by FT-Pro is less than 3 percent.

FT-Pro is built on the belief that technological innovation
combined with advanced data analysis makes it possible to
predict failures with a certain degree of accuracy. Recent
studies with actual failure traces have shown that with a
proper system monitoring facility, critical events can be
predicted with an accuracy of up to 80 percent [8], [9], [10],
[11], [12]. A distinguishing feature of FT-Pro is that it does

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008 1647

. The authors are with the Department of Computer Science, Illinois
Institute of Technology, 10 W. 31st Street, Chicago, IL 60616.
E-mail: {lan, liyawei}@iit.edu.

Manuscript received 25 Apr. 2007; revised 14 Aug. 2007; accepted 26 Feb.
2008; published online 20 May 2008.
Recommended for acceptance by C.-L. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-04-0140.
Digital Object Identifier no. 10.1109/TC.2008.90.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

not require perfect failure prediction to be effective. As we
will show, FT-Pro outperforms periodic checkpointing as
long as failure prediction is capable of capturing 30 percent
of failures, which is feasible by using existing predictive
technologies.

FT-Pro is intended to bridge the gap between failure
prediction and fault handling techniques by effectively
exploring failure prediction for better fault management. It
complements the research on checkpointing and process
migration by providing adaptive strategies for runtime
coordination of these techniques. The proposed FT-Pro can
be integrated with state-of-the-art failure predictors and
existing fault-tolerant tools [9], [10], [13], [14], [15], [16], [17],
[18], [19], [20] to provide an end-to-end system for adaptive
fault management of parallel applications.

The remainder of this paper is organized as follows:
Section 2 briefly discusses the related work. Section 3 gives
an overview of FT-Pro, followed by a detailed description of
its adaptation manager in Section 4. Section 5 describes our
stochastic modeling and simulation results. Section 6
presents case studies with a number of parallel applications.
Finally, Section 7 summarizes the paper and points out
future directions.

2 RELATED WORK

Checkpointing, in various forms, has been studied exten-
sively over the past decades. A detailed description and
comparison of different checkpointing techniques can be
found in [4]. In the field of HPC, a number of checkpointing
libraries and tools have been developed, and examples
include libckpt [16], BLCR [17], open MPI [18], MPICH-V
[13], and the Cornell Checkpoint (pre)Compiler (C3) [15].
Checkpointing optimization is generally approached by
selecting optimal intervals [21], [22], [23] or reducing the
overhead per operation, such as copy-on-write [24], incre-
mental checkpointing [25], diskless checkpointing [26], [27],
double in-memory technique [28], etc. Generally speaking,
checkpointing is a conservative method. It requires increas-
ing the number of checkpoints to deal with higher failure
rates as the computing scale increases.

Much progress has been made in failure analysis and
prediction. On the hardware side, modern computer
systems are designed with various features (e.g., hardware
sensors) that can monitor the degradation of an attribute
over time for early detection of hardware errors [29], [30],
[31], [32]. On the software side, a variety of predictive
techniques have been developed to infer implicit and useful
fault patterns from historical data for failure prediction.
They can be broadly classified as model-based or data-driven.
A model-based approach derives an analytical or probabil-
istic model of the system and then triggers a warning when
a deviation from the model is detected [33], [34], [35], [36],
[37]. Data mining, in combination with intelligent systems,
focuses on learning and classifying fault patterns without
a priori model [8], [9], [10], [11]. In addition, leading HPC
vendors have started to integrate hardware and software
components into their systems for comprehensive fault
analysis, such as the Cluster Monitoring and Control
System (CMCS) service in IBM Blue Gene systems and the

Cray RAS and Management System (CRMS) in Cray XT
series systems [38], [39].

Leveraging the research on failure prediction, there are
growing interests in utilizing failure prediction for proac-
tive fault management. For example, the HA-OSCAR
project provides high availability for head nodes in Beowulf
clusters by using a failover strategy [40]. There are several
research efforts on failure-aware scheduling [41], [42].
Process or object migration is a widely used proactive
technique [7]. Most migration methods adopt the stop-and-
restart model for the migration of parallel applications, in
which the application takes a checkpoint and then restarts
on a new set of resources—after swapping the failure-prone
nodes with healthy ones [43]. There are several active
research projects on providing live migration support for
MPI applications [19], [20], [44]. While the proactive
approach is cost efficient, it requires accurate failure
prediction. In practice, prediction misses and false alarms
are common. Prediction misses can lead to significant
performance damage, whereas false alarms can introduce
intolerable overhead. Hence, solely relying on the proactive
approach is not sufficient for HPC.

Recognizing the limitations of reactive and proactive
approaches, FT-Pro aims at getting the best of both worlds
by intelligently coordinating process migration with check-
pointing. Similar to cooperative checkpointing [45], FT-Pro
ignores unnecessary fault-tolerant requests when failure
impact is trivial. Further, it enables an application to avoid
imminent failures through preventive migration. The
adaptation between process migration and selective check-
pointing is built upon a quantitative modeling of applica-
tion performance.

The idea of using adaptation for fault management is not
new. It has been used in the fields such as mission-critical
spacecrafts and storage systems [46], [47]. Nevertheless, to
the best of our knowledge, we are among the first to exploit
adaptive fault management for HPC. Different from the
above research that mainly focuses on efficiently utilizing
duplicated components for high availability, this work
centers upon reducing the application completion time by
dynamically choosing between proactive and reactive
actions.

3 OVERVIEW OF FT-PRO

We define a failure as any event in hardware or software

that results in an immediate termination of a running

application. To be effective, FT-Pro requires the presence

of a failure predictor. Predictive techniques mentioned in

Section 2, as well as our own previous work [11], [48],

[49], can be used to provide such an engine. Failure

prediction can be either categorical, where the predictor

forecasts whether a failure event will occur or not in the

near future, or numerical, where the probability of failures

is provided for a given time window. Numerical results

can be easily translated into categorical results by

applying threshold-based splitting; hence, in this paper,

we uniformly describe failure prediction as a process that

periodically estimates whether a node will experience

failures in a given time window (e.g., a few minutes to an

hour). Such a prediction mechanism is generally measured

1648 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

by two accuracy metrics: precision and recall. Precision is

defined as the proportion of correct predictions to all the

predictions made (i.e.,
Tp

TpþFp), and recall is the proportion

of correct predictions to the number of failures (i.e.,
Tp

TpþFn).

Here, Tp is the number of correct predictions (i.e., true

positives), Fp is the number of false alarms (i.e., false

positives), and Fn is the number of missed failures (i.e., false

negatives). Obviously, a good prediction engine should

achieve a high value (closer to 1.0) for both metrics.
A user can issue (or set up) fault-tolerant requests,

denoted as adaptation points, during the application execu-
tion, and FT-Pro makes a runtime decision upon these
points to determine which action should be taken [50]. For
example, a user may set adaptation points to where the
application completes a segment of useful work, i.e., the
computation that is not redone due to a failure [51]. Three
actions are currently considered in FT-Pro:

. SKIP. The fault-tolerant request is ignored. This
action is taken to remove unnecessary actions when
the failure impact is trivial.

. CHECKPOINT. The application takes a checkpoint.
This action is to reduce application work loss caused
by unforeseeable failures.

. MIGRATION. The processes on suspicious nodes
(i.e., the nodes predicted to be failure prone in the
near future) are transferred to healthy nodes. This
action is to avoid an imminent failure. Currently, we
assume that process migration is conducted by
taking a coordinated checkpoint followed by a
stop-and-restart action [43].

The main idea of FT-Pro is illustrated in Fig. 1, where the
useful work is segmented into intervals denoted by Ik.
Suppose the application runs on nodes denoted as
fP1; P2; . . . ; PWg and one spare node, denoted as PS , is
allocated for proactive actions. Spare nodes can be either
reserved at the application submission time or allocated
through the resource manager during execution. Upon each
adaptation point APi, FT-Pro first consults the failure
predictor to get the status of each computation node. It then
triggers the adaptation manager (discussed in Section 4) to

determine a best fit action in response to the failure
prediction, followed by invoking the corresponding action
on the application. Here, the cost monitor component keeps
track of the runtime overhead of different fault-tolerant
actions. If the application fails during checkpointing or
migration, it rolls back to the most recent checkpoint. Let us
take a look at a few examples:

. FT-Pro always grants the first fault-tolerant request
at AP1 by taking a checkpoint.

. At AP2, where the failure predictor does not
anticipate any failure in the near future, given that
the failure impact during the next interval is trivial,
FT-Pro ignores the request by taking a SKIP action.
Similarly, FT-Pro takes a SKIP action at AP7.

. At AP3, considering that the work loss would be
significant if an unforeseeable failure occurred in the
next interval, FT-Pro decides to take a coordinated
checkpoint although no failure warning is issued at
this point.

. At AP4, where the predictor forecasts a failure on PW
(which turns out to be a true positive), FT-Pro
transfers the process from PW to the spare node PS .
The application is first checkpointed, followed by a
process migration. Once repaired, PW becomes a
spare node.

. At AP5, where the predictor fails to warn the
upcoming failure on P3 (e.g., a false negative),
FT-Pro takes a SKIP action. The application
therefore loses the work done between AP5 and
the failure occurrence, suffers from failure recov-
ery, rolls back to the last checkpoint completed at
AP4, recomputes the work due to the failure, and
proceeds to the next adaptation point AP6.

. In case of false alarms, such as at AP6, where the
predictor erroneously gives a warning (e.g., a false
positive), FT-Pro takes a checkpoint.

4 ADAPTATION MANAGER

The adaptation manager is responsible for determining the
most suitable action upon each adaptation point. Designing
an efficient manager is challenging. First, it must consider a
range of factors that may impact application performance.
These include not only the available spare nodes but also
costs and benefits of different fault-tolerant actions. Second,
given that a failure predictor is subjected to false negatives
and false positives, it must take account of both errors
during its decision-making process. Last, it must make a
timely decision without causing noticeable overhead on
application performance.

By considering the above requirements, we develop an
adaptation manager, which is illustrated in Fig. 2. It takes
account of three sets of parameters for decision making,

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1649

Fig. 1. The main idea and steps of FT-Pro.

Fig. 2. Diagram of the adaptation algorithm.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

namely, prediction accuracy, operation costs of different
actions, and the number of available resources for proactive
actions. Before presenting our detailed algorithm, we first
list a set of nomenclatures that will be frequently used in the
rest of the paper (see Table 1).

Upon each adaptation point APi, if the failure predictor
anticipates any failure on a computation node, the manager
takes account of prediction precision. Specifically, it
estimates Enext—the expected time for the application to
reach the next adaptation point APiþ1—and selects the action

that minimizes Enext. Suppose the current interval index is
lcurrent. Due to the uncertainty of the exact failure time, a
conservative policy is adopted by assuming that the failure
will occur immediately before the next adaptation point.
Here, “conservative” is with respect to the amount of work
loss. The choices of actions of the manager are described as
follows:

. SKIP. 1) If a failure occurs in the next interval, the
application spends I time for the execution, Cr time
for the recovery, and then ½I þ ðlcurrent � llastÞ � I�
time to reach the next adaptation point from the
most recent checkpoint. 2) If no failure occurs, the
application smoothly proceeds to the next adapta-
tion point. By using the total probability law, we
have

Enext ¼ Cr þ ð2þ lcurrent � llastÞ � I½ � � fappl
þ I � ð1� fapplÞ;

fappl ¼ 1� ð1� precisionÞN
f
W :

ð1Þ

Here, Nf
W denotes the number of computation nodes

that are predicted to be failure prone in the next
interval.

. CHECKPOINT. The application first spends Cckp for
performing checkpointing and then updates llast.
1) If a failure occurs in the next interval, the
application spends I time for the execution, Cr time
for the recovery, and then I time to reach the next
adaptation point from the current adaptation point.
2) If no failure occurs, the application smoothly
proceeds to the next adaptation point. Thus, we have

Enext ¼ðCckp þ Cr þ 2IÞ � fappl þ ðI þ CckpÞ � ð1� fapplÞ;

fappl ¼ 1� ð1� precisionÞN
f
W :

ð2Þ

. MIGRATION. The application first spends Cpm for
process migration and updates llast. Due to the
possibility of multiple simultaneous failures, the
number of spare nodes may not be enough to
accommodate all the migration requests. FT-Pro uses
a best effort strategy to migrate as many processes as
possible. Enext is calculated as follows:

Enext ¼ðCpm þ Cr þ 2IÞ � fappl þ ðI þ CpmÞ � ð1� fapplÞ;

fappl ¼
1� ð1� precisionÞN

f
W
�Nh

S ; Nf
W > Nh

S;

0; Nf
W � Nh

S:

(

ð3Þ

Here, Nh
S denotes the number of spare nodes that

will be failure free during the next interval.

Upon an adaptation point where the failure predictor

does not give any warning, the manager takes account of

prediction recall. Given the possibility of unpredictable

failures, the performance loss could be significant when a

number of SKIP actions have been taken continuously

before an unpredicted failure. Hence, when the number of

consecutive SKIP actions reaches a threshold, rather than

blindly relying on the prediction, the manager enforces a

checkpoint. The rationale here is to enforce a checkpoint in

case the failure prediction is wrong. Currently, the thresh-

old is set to MTBF
I�ð1�recallÞ . It is based on an intuitive estimation

that the expected time between false negatives is MTBF
ð1�recallÞ .

Clearly, if recall is equal to 1.0, the threshold is1, meaning

that there is no need to enforce preventive checkpoints as

the predictor is able to capture every failure.
The special cases are when precision or recall is zero. If

precision is zero, it means that every alarm provided is a

false alarm. According to (1)-(3), a SKIP action is selected

upon these adaptation points. If recall is zero, it means that

1650 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

TABLE 1
Nomenclature

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

every failure is missed by the predictor. In this case,

periodic checkpointing is adopted.
In addition, the adaptation manager adopts an automatic

mechanism to assess the application-specific parameters

listed in (1)-(3), namely, the checkpointing overhead Cckp
and the migration overhead Cpm, for its decision making.

Both parameters depend on many factors like the imple-

mentations of checkpointing and migration, system config-

urations, computation scale, and application characteristics.

The manager automates the acquisition of these parameters,

without user involvement, in the following ways:

. Upon the initiation of the application, it records the
application starting cost. Further, it always grants
the first checkpoint request (see Fig. 1). A recent
study done by Oliner et al. has proved that any
strategy that skips the first checkpoint is noncompe-
titive [52]. At the second adaptation point, the
manager uses the recorded checkpointing overhead
Cckp and estimates Cpm as the summation of Cckp and
the application starting cost.

. During the subsequent execution, it always keeps
track of these parameters via the cost monitor
component and uses the last measured values for
decision making at the next adaptation point.

The adaptation manager can be easily implemented on

top of existing checkpointing tools. For instance, we

implement FT-Pro with MPICH-VCL [13] by adding the

adaptation manager as a new component (see Fig. 8).

5 STOCHASTIC MODELING

We now proceed to comprehensively evaluate the perfor-

mance of FT-Pro. In this section, we present a stochastic

model of FT-Pro, and case studies with applications will be

discussed in the next section.

5.1 Performance Metrics

Three performance metrics are used to compare FT-Pro

with periodic checkpointing:

1. Execution time. Considering that the main objective of
HPC is to reduce application execution time, we
therefore use it as our primary metric:

T ¼ Tckp using checkpointing;
Tft�pro using FT-Pro:

�
ð4Þ

2. Time reduction. For the convenience of comparison,
we also measure the relative time reduction by using
FT-Pro over periodic checkpointing. It is defined as

Tckp � Tft�pro
Tckp

: ð5Þ

3. Service unit (SU) reduction. In production HPC
systems, users are generally charged based on
SUs—the product of the number of processors and
time—used by their applications. Thus, we measure
the relative reduction on SUs, which represents the

improvement of FT-Pro with respect to system
utilization. It is defined as

NW � Tckp � ðNW þNSÞ � Tft�pro
NW � Tckp

: ð6Þ

5.2 Model Description

Application performance (e.g., application completion
time) can be regarded as a continuous accumulated reward,
which is affected by many factors, including failure
arrival/recovery, fault-tolerant actions, and available spare
nodes. Such behaviors are difficult to be modeled by the
traditional stochastic Petri net (SPN); hence, we built a fluid
SPN (FSPN) to analyze FT-Pro and to validate its adaptive
strategy. Basically, FSPN is an extension of the classical
SPN and is capable of modeling both discrete and
continuous variables. Additional details about FSPN can
be found in [53].

Fig. 3 presents our FSPN model of FT-Pro. It is generated
by using the SPNP package developed at Duke University
[53]. The model consists of three subnets. The first
subnet—subnet of failure behavior—describes the failure
behavior of the system, the second one—subnet of adaptation
manager—models the behavior of the adaptation manager in
FT-Pro, and the last one—subnet of application performance—
uses the continuous fluid to model application completion
time. The detailed explanation of the model is given in
Appendix A.

A FSPN model is also built for periodic checkpointing.
We then used these models to study FT-Pro as against
periodic checkpointing.

5.3 Modeling Results

Four sets of simulations are conducted to examine the
impact of computation scales, allocation of spare nodes,
prediction accuracies, and operational costs, respectively.
The baseline configuration is summarized in Table 2. These
parameters and their corresponding ranges are selected
based on the results reported in [5], [42], and [54]. Note that
the interval I, calculated based on the well-known optimal
frequency [21], is used as the adaptation interval for FT-Pro
and the checkpoint interval for periodic checkpointing.

5.3.1 Impact of Computation Scales

In the first set of simulations, we tune the number of
computation nodes from 16 to 192 (the maximum number
of processing units allowed in SPNP is 200), with only
one spare node being allocated. The purpose is to study
the impact of computation scales on the performance of
FT-Pro.

To reflect the fact that the checkpointing overhead and the
migration overhead generally grow with the application size,
we make corresponding changes on the values of Cckp and
Cpm. How to accurately set these parameters is difficult, as
they are application dependent. Considering the principle of
coordinated checkpointing, we use a simple model of
ðOIO þOmsgÞ, where OIO is a fixed I/O overhead, and Omsg

is the message passing overhead, which is linearly increased
with the growing scale of computation. According to this
formula, the checkpointing overhead Cckp is set to 0.625,

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1651

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

0.917, 1.5, 2.667, 3.833, 5.0, 6.167, and 7.33 minutes as the

number of computation nodes NW changed from 8 to 192.

Depending on the migration implementation (e.g., stop-

and-restart model [43] or live migration [19]), the overhead

caused by migration may be different too. Here, we set the

migration overhead Cpm to be twice the value of the

corresponding Cckp.
Fig. 4a shows the Time Reduction and SU Reduction

achieved by FT-Pro with different computation scales. It

shows three interesting patterns. First, although FT-Pro

yieldss a positive value on Time Reduction when the

computation scale is set to 16, the SU Reduction value is

negative. This indicates that when the computing scale

is relatively small (e.g., 16), the time reduction brought by

FT-Pro may be overshadowed by the use of additional

computing resources, thereby resulting in negative resource

utilization. Second is the increasing gain achieved by FT-Pro

as the number of computation nodes is increased from 16

to 96. When more nodes are used, application failure

probability is getting higher, thereby implying more

opportunities for FT-Pro to reduce the performance over-

head by avoiding failures. The third feature is the

decreasing benefit when the number of computation nodes

is increased beyond 96. As shown in Table 2, in this set of

simulations, only one spare node is allocated even when

the number of computation nodes is set to 192. As a result,

FT-Pro cannot avoid imminent failures due to the lack of

available spare nodes. Note that even when the scale

increases beyond 128 with only one spare node, FT-Pro

still outperforms periodic checkpointing by more than

8.4 percent in terms of Time Reduction and 7.9 percent in

terms of SU Reduction.
Fig. 4b shows the breakdown of the gain achieved by

FT-Pro. The benefit of FT-Pro comes from two parts: one is

1652 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

TABLE 2
Baseline Parameters

Fig. 3. FSPN modeling of FT-Pro. It consists of three subnets: 1) subnet of failure behavior, 2) subnet of adaptation manager, and 3) subnet of

application performance. Together, they model the execution of parallel applications running on clustering systems in the presence of failures.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

to take preventive migration to avoid imminent failures,
and the other is to skip unnecessary checkpoints when the
failure impact is low. The figure indicates that the benefit
achieved by selective checkpointing is relatively low. This
is caused by the fact that we use an optimal frequency for
checkpointing, thereby resulting in few chances for FT-Pro
to skip unnecessary checkpoints. Obviously, failure avoid-
ance through preventive migration dominates the gain,
especially when the computing scale is large. For instance,
when the number of computation nodes is set to 16,
68 percent of the gain comes from proactive migrations.
The percentage increases to nearly 100 percent when the
computation scale is increased beyond 160. We observe a
similar pattern in our case studies (see Section 6). This
suggests that to fully utilize failure prediction, taking
proactive actions, in addition to skipping unnecessary
checkpoints, is essential for reducing the performance loss
caused by potential failures.

5.3.2 Impact of Spare Nodes

In this set of simulations, we investigate the sensitivity of
FT-Pro to the allocation of spare nodes.

Fig. 5 presents the Time Reduction and SU Reduction

achieved by FT-Pro over periodic checkpointing, where the
number of spare nodesNS is ranging between 1 and 16. There
are two curves in each plot, showing the result with the
number of computation nodes set to 64 and 128, respectively.

As shown in Fig. 5a, although the improvement on
Time Reduction becomes less obvious as the number of

spare nodes increases, it grows monotonically with the
increasing number of spare nodes. With more spare nodes
allocated, FT-Pro can more effectively avoid simultaneous
failures. In other words, if time is the only concern, then
allocating more spare nodes definitely helps. A better
performance is achieved with the 128-node setting, as
compared to the 64-node setting. The main reason is that the
larger a computation is, the higher chance the application
has to experience failures and the more amount of work loss
can be introduced in case of failures. As a result, FT-Pro has
more opportunities to provide improvement.

Fig. 5b presents SU Reduction with varying numbers of
spare nodes. While the gain is always positive, it also
indicates that allocating more spare nodes does not always
increase the overall resource utilization, as SU Reduction
decreases beyond a certain point. According to the figure,
when the number of computation nodes is set to 64 and 128,
the optimal allocation is 2 and 4, respectively. The figure
also shows that in general, by allocating less than 5 percent
of nodes for accommodating preventive actions (e.g., one to
three when NW is 64, and one to six when NW is 128), the
adaptive fault management approach outperforms periodic
checkpointing by 14 percent-24 percent in terms of both
Time Reduction and SU Reduction. The optimal allocation
of spare nodes depends on many factors, including failure
behaviors (e.g., how often are simultaneous failures) and
application size (e.g., how many nodes are requested for
computation). A theoretic proof of the optimal allocation of
spare nodes is the subject of our ongoing research.

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1653

Fig. 4. Impact of computation scales, where the number of spare nodes is set to one. (a) Time Reduction and SU Reduction achieved by FT-Pro.

(b) The breakdown of the gain achieved by FT-Pro. Generally, FT-Pro does better than periodic checkpointing. The decreasing performance when

the size of computation is increased beyond 96 is due to the scarce number of spare nodes. The majority gain of FT-Pro comes from proactive

migration, suggesting that avoiding failures in response to prediction is essential for reducing the performance loss caused by potential failures.

Fig. 5. Impact of spare nodes, where the number of spare nodes ranges from 1 to 16. (a) Time Reduction achieved by FT-Pro as against periodic

checkpointing. (b) SU Reduction achieved by FT-Pro as against periodic checkpointing. Obviously, the more number of spare nodes is allocated, the

better Time Reduction is. However, allocating more spare nodes does not always increase the overall resource utilization.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

5.3.3 Impact of Prediction Accuracies

The performance of FT-Pro is influenced by prediction
accuracy. Obviously, the more accurate a prediction
mechanism is, the better performance FT-Pro can achieve.
In this set of simulations, we simulate different levels of
prediction accuracies and quantify the amount of gain
achieved by FT-Pro under different precision and recall
values.

Table 3 lists the application completion times obtained
by using FT-Pro, where precision and recall range from 1.0
to 0.1. Here, the computation scale is set to 128, and only
one additional spare node is allocated. In Fig. 6, we
pictorially show the distributions of Time Reduction and
SU Reduction with regard to different precision and recall
values.

The results clearly show that the more accurate a
prediction mechanism is, the higher the gain that FT-Pro
can provide. For example, the best performance is achieved
when precision ¼ recall ¼ 1:0 (perfect prediction), and the
worst case occurs when precision ¼ recall ¼ 0:1 (meaning
that 90 percent of the predicted failures are false alarms and
90 percent of the failures are not captured by the failure
predictor). Under perfect prediction, the optimal gain
achieved by FT-Pro is 26.72 percent on Time Reduction
and 26.15 percent on SU Reduction. When both precision

and recall are in the range of [0.6, 1.0], FT-Pro outperforms
periodic checkpointing by over 10 percent. Our prediction
studies have shown that with a proper error-checking
mechanism, it is feasible to predict failures with both rates
above 0.6 [11]. Similar results have also been reported in [9]
and [10].

Additionally, as long as both precision and recall are
in the range of [0.3, 1.0], FT-Pro always surpasses
periodic checkpointing with a positive gain in terms of
Time Reduction. In other words, to be effective, the failure

predictor should be able to capture at least 30 percent of failures.
The figure also suggests that FT-Pro could be further
improved by turning off adaptation when either of
precision and recall is lower than 0.3.

The figure also indicates that FT-Pro is more robust to
precision than to recall. For instance, under the extreme
case where precision is 0.1 (meaning that there is only one
true failure for every 10 predicted failures), FT-Pro is still
capable of producing a positive Time Reduction and
SU Reduction as long as recall is controlled above 0.50.
Note that FT-Pro adopts a cooperative mechanism for
adaptive management such that the user sets his/her fault-
tolerant requests, and FT-Pro makes runtime decisions on
the invocation of different actions upon these points. If the

1654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

TABLE 3
Application Completion Times by Using FT-Pro (in Hours), Where the Application Completion Time

by Using Periodic Checkpointing Is 6,500 Hours

The number of computation nodes NW is 128, and the number of spare nodes NS is set to one.

Fig. 6. Impact of prediction accuracies, corresponding to Table 3. Under perfect prediction, FT-Pro outperforms periodic checkpointing by about

26 percent. For FT-Pro to be effective, the prediction engine should be able to capture 30 percent of failures.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

warning is a false alarm, rather than blindly triggering a

MIGRATION action, FT-Pro may take a different action

based on its evaluation, thereby making it robust to false

positives.

5.3.4 Impact of Operation Costs

Finally, we investigate the impact of operation costs on the

performance of FT-Pro. More specifically, we change the

ratio between the migration overhead and the checkpoint-

ing overhead by fixing Cckp and varying Cpm. The results

achieved by FT-Pro as against periodic checkpointing are

plotted in Fig. 7. Here, the number of computation nodes is

set to 128, and only one spare node is allocated. Obviously,

a more efficient migration support can yield better

performance. Even when the migration overhead is four

times the checkpointing overhead, FT-Pro still maintains

Time Reduction at 11 percent.
In our current design, we use a stop-and-restart migra-

tion, meaning that the application is stopped and restarted

on a new set of computation nodes after the suspicious

nodes are replaced by spare nodes. Our case studies with

real applications (discussed in the next section) show that

with such an expensive migration support, the migration

overhead Cpm is generally less than 3Cckp. We believe that

the development of live migration such as the tool listed in

[19] and [20] can significantly reduce the migration over-

head, thereby making FT-Pro more promising.

5.4 Modeling Summary

In summary, the above stochastic study has indicated the

following:

. Compared to the conventional checkpointing, FT-Pro
can effectively reduce application completion time
by avoiding anticipated failures through proactive
migration and skipping unnecessary fault-tolerant
requests through selective checkpointing.

. When both precision and recall are in the range of
[0.6, 1.0], FT-Pro outperforms periodic checkpointing
by over 10 percent; as long as both metrics are above
0.3, FT-Pro does better than periodic checkpointing.

. In general, a modest allocation of spare nodes—less
than 5 percent—is sufficient for FT-Pro to achieve
the above performance gain.

. To fully utilize failure prediction, the combination of
failure avoidance and removing unnecessary fault-
tolerant actions is of great importance for improving
application performance.

. A more efficient migration support such as a live
migration support can further improve the perfor-
mance of FT-Pro.

6 CASE STUDIES

In this section, we evaluate FT-Pro by using trace-based
simulations. Application traces and a failure trace
collected from production systems are used to investigate
the potential benefit of using FT-Pro in realistic HPC
environments.

We implement FT-Pro in the open source checkpointing
package MPICH-VCL 0.76 [13]. Note that FT-Pro is indepen-
dent of the underlying checkpointing tool and can be easily
implemented with other tools such as LAM/MPI [14].

Fig. 8 illustrates our implementation. There are four
major components:

1. FT-Pro daemons, which are colocated with applica-
tion processes on computation nodes,

2. the dispatcher, which are responsible for managing
computation resources,

3. the adaptation manager, which is in charge of decision
making, as described in Section 4, and

4. the CKP server, which is used to perform coordinated
checkpointing.

The migration support is based on the stop-and-restart
model.

6.1 Methodology

The simulator is provided with a failure trace, an applica-
tion trace, a computation scale NW , and an interval I. Here,
an application trace includes the application-failure-free
execution time Tappl and fault-tolerant overheads such as
Cckp and Cpm. The details about the applications and the
failure trace will be described in the following sections.

In the case of using periodic checkpointing, the application
takes a coordinated checkpoint at a constant interval of I. In
the case of using FT-Pro, a runtime decision is made at a
constant time of I and the application takes an action from
SKIP, CHECKPOINT, or MIGRATION according to the
decision made by the adaptation manager. The outputs
provided by the simulator are application completion times,

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1655

Fig. 7. Impact of operation costs, where the ratio between the migration
overhead and the checkpointing overhead is tuned between 0.1 and 5.0.
The number of computation nodes is set to 128, and only one spare
node is allocated. The performance gain achieved by adaptive fault
tolerance is apparent. A more efficient migration support such as live
migration can make FT-Pro more promising.

Fig. 8. Integrating FT-Pro with MPICH-VCL.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

i.e., Tckp by using periodic checkpointing and Tft�pro by
using FT-Pro.

6.2 Parallel Applications

Six parallel applications, including parallel benchmarks and
scientific applications, are tested in the study. They are the
benchmark CG and three pseudoapplications (BT, LU, and
SP) from NPB [55], the cosmology application ENZO [56],
[58], and the molecular dynamics application GROMACS
[57] (see Table 4). This test suite is from a mixture of
scientific domains, thereby enabling us to have a fair
evaluation of FT-Pro across a broad spectrum of HPC
applications.

Application traces are collected on an IA32 Linux cluster
at Argonne National Laboratory (part of the TeraGrid).
The cluster consists of 96 nodes, each equipped with two
2.4-GHz Intel Xeon processors and 4G-Mbyte memory. All
the nodes are connected via Gigabyte Ethernet. A 4-Tbyte
storage is shared among the nodes via NFS. The operation
system is SuSE Linux v8.1, and the MPICH-V is of
version 0.76.

Table 5 lists the measured data. The data includes a single-
process checkpoint image, the checkpointing overhead, and
the migration overhead. Due to the special requirement on
computation scale, the number of computation nodes used
for BT and SP has to be in the form of N2 (N is an integer).

According to the table, the size of a single-process
checkpoint image decreases linearly with the increasing
scale of computation. This is understandable due to the
divide-and-conquer principle. An interesting feature is with
Cckp. It first drops and then starts to increase as the number

of processors increases. This is caused by the increasing
synchronization overhead by using coordinated check-
pointing. It implies that process coordination can be a
potential performance bottleneck when the computation
scale is substantially large [5]. Migration cost Cpm, in
general, increases with the growing computation scale.
The main reason is that the stop-and-restart migration
mechanism is used and the current MPICH_VCL device
instantiates the processes in a sequential order. As shown in
the table, generally, Cpm � 3Cckp.

6.3 Failure Trace

Rather than using synthetic failure events, we use a failure

trace collected from a production system at NCSA [27]. The

machine has 520 two-way SMP 1-GHz Pentium-III nodes

(1,040 CPUs), 512 of which are compute nodes (2-Gbyte

memory), and the rest are storage nodes and interactive

access nodes (1.5-Gbyte memory). Table 6 gives the statistics

of the failure trace. We randomly select 96 nodes to match the

testbed.
The trace-based simulator scans the failure trace in the

time order and simulates a failure when a real failure entry

is encountered. The prediction accuracy is emulated as

follows:

1. Recall. If there exists a failure on a node between the
current and the next adaptation point, the predictor
reports a failure of its type with the probability of
recall on the node.

2. Precision. Suppose the predictor has totally reported

x failures for the intervals with actual failures.

1656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

TABLE 4
Description of Parallel Applications

TABLE 5
Measured Operation Costs and Application Execution Times Using CKP

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

According to the definition of precision, for intervals

without an actual failure, the predictor randomly

selects x�ð1�precisionÞ
precision intervals and gives a false alarm

on each of them.

6.4 Results

Table 7 lists our trace-based simulation results. Here, Tappl

denotes the application execution time in a failure-free

computing environment, and Tckp and Tft�pro represents the

application completion times in the presence of failures by

using periodic checkpointing and FT-Pro, respectively. We

increase application-failure-free execution times to simulate

long-running applications. In the case of using FT-Pro, an

additional spare node is allocated to accommodate proac-

tive actions. The parenthesized numbers in the table denote

performance overheads (in percentage) on the application

by using periodic checkpointing or FT-Pro; it is defined as
Tckp�Tappl
Tappl

when using periodic checkpointing and
Tft�pro�Tappl

Tappl

when using FT-Pro. Note that the performance overhead

includes the application recovery time and the delay time

caused by fault management.
As we can see in the table, the overhead caused by

checkpointing is not trivial. For example, when the

computing scale is 64, the extra overhead introduced by

checkpointing is more than 50 percent for BT, SP, CG, and

ENZO. In contrast, the performance overhead introduced

by FT-Pro is usually less than 3 percent. Further, for both SP

and ENZO, we observe that the application completion

times on 64 computation nodes are longer than those on
32 nodes by using periodic checkpointing, whereas FT-Pro
is able to reduce them as the computing scale grows. It
implies that FT-Pro has better scalability.

Fig. 9 shows the Time Reduction and SU Reduction
introduced by FT-Pro with these applications. It shows that
in general, both metrics increase with the growing scale of
computation. The larger the scale of an application is, the
higher probability that it has to experience failures, thereby
resulting in more opportunities for FT-Pro to improve its
performance.

As presented in Figs. 9a and 9b, Time Reduction is in the
range of 2 percent-43 percent, depending on the applica-
tions and computation scales. The value is relatively small
with GROMACS than with other applications. This is due to
the use of a small-sized computation domain with
GROMACS. As shown in Table 5, a small checkpoint image
per process is observed with GROMACS, thereby reducing
the potential gain that can be brought by removing
unnecessary checkpoints by using FT-Pro.

According to Figs. 9c and 9d, when the computation
scale is smaller than 10, FT-Pro may result in negative
SU Reduction. A major reason is that the allocation of one
spare node by FT-Pro is not trivial when the computation
scale is small (e.g., four, eight, or nine). If the time
reduction brought by FT-Pro is small, then the use of
additional computing resources can overshadow its gain,
thereby resulting in negative gain on SU Reduction. In
general, FT-Pro provides positive results in terms of
Time Reduction and SU Reduction when the computing
scale is larger than 16.

We also plot the gain achieved through proactive migra-
tions on these applications (see Fig. 10). Note that FT-Pro
improves over checkpointing from two aspects: one is to
avoid failures via preventive migrations, and the other is to
skip unnecessary checkpoints. The figure only plots the first
part, and the second part can be easily inferred from the
figure. These results are consistent with those shown in Fig. 4,
that is, failure avoidance through proactive migrations is the
dominant factor for improvement. In general, more than

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1657

TABLE 6
Statistics of Failure Events

TABLE 7
Application Completion Times by Using FT-Pro and Periodic Checkpointing

The parenthesized numbers in the table are performance overheads (in percentage) on the application by using periodic checkpointing or FT-Pro.
The interval I is set to 0.56 hours. With FT-Pro, in addition to NW , one spare node is allocated. Both precision and recall are set to 0.7.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

50 percent of performance gain is achieved by proactive
actions, and this percentage is increased to nearly 100 percent
when the computation scale is increased to 64. Again, it
demonstrates that in order to effectively utilize failure
prediction, proactive migration is indispensable for substan-
tially improving application performance under failures.

We have also evaluated the performance of FT-Pro with

these applications by changing spare node allocations and

tuning prediction accuracies [59]. The results are similar to

those shown in Section 5. For instance, when the computa-

tion scale is set to 64, by allocating one or two spare nodes,

the relative gain achieved by FT-Pro over checkpointing is

between 14 percent and 43 percent, and FT-Pro is more

sensitive to false negatives.

6.5 Summary of Case Studies

In summary, our trace-based simulations with six different

applications have shown that FT-Pro has the potential to

reduce application completion times in realistic HPC

environments. The results are consistent with those

obtained by using stochastic modeling. Our studies show

that the performance overhead caused by FT-Pro is very

low (i.e., less than 3 percent). Further, FT-Pro can be easily

integrated with existing checkpointing tools by adding the
adaptation manager as a new module.

7 CONCLUSIONS

In this paper, we have presented an adaptive fault
management approach called FT-Pro for parallel applica-
tions. An adaptation manager has been proposed to
dynamically choose an appropriate action from SKIP,
CHECKPOINT, and MIGRATION at runtime in response
to failure prediction. We have studied FT-Pro under a wide
range of parameters through stochastic modeling and case
studies with parallel applications.

Experimental results demonstrate that FT-Pro can effec-
tively improve the performance of parallel applications in
the presence of failures. Specifically, 1) FT-Pro outperforms
periodic checkpointing, when both precision and recall are
greater than 0.3, 2) a modest allocation of spare nodes (i.e.,
less than 5 percent) is usually sufficient for FT-Pro to
provide the aforementioned performance gain, and 3) the
performance overhead caused by FT-Pro is very low, e.g.,
less than 3 percent on the applications tested.

Our study has some limitations that remain as our future
work. First, we will investigate how to modify our

1658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Fig. 9. Time Reduction and SU Reduction achieved by FT-Pro against periodic checkpointing. The performance gain achieved by FT-Pro increases

as the size of computation increases.

Fig. 10. Performance benefit achieved by FT-Pro through proactive migration (in percentage).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

algorithm to work with other checkpointing mechanisms
such as log-based [4], [13] and live migration [19], [20], [44].
Second, we plan to provide a theoretic proof on the optimal
allocation of spare nodes. Last, we are in the process of
integrating our prediction work [11], [48], [49] with FT-Pro.
Upon completion, we will evaluate it with parallel applica-
tions on production systems.

APPENDIX A

DESCRIPTION OF FSPN MODELING

A.1 Subnet of Failure Behavior

We first describe failure behaviors on computation nodes.
When the application starts, all the computation nodes are
in the Wup state. A firing of the timed transition Tprob
represents a failure arrival, and the corresponding node
enters the vulnerable state Wprob. If the failure event is
predicted via the transition Tdetect, the node enters the state
Wdetected; otherwise, it enters Wmissed via the transition
Tmissed. The node at Wdetected goes to Wdown with a firing of
Tfail if there are enough spare nodes available. The nodes at
Wmissed will eventually enter Wdown via a deterministic
transition Tfail. The crashed nodes at Wdown recover back to
Wup when Tnoderepair fires. The transition Tfalsefail simulates
the false alarm behavior of the predictor. When it fires, the
nodes at Wup enters Wfalsedetected and then automatically
goes back to Wup via Tfalsefail.

The spare nodes have similar state transitions, except
that failures on spare nodes do not pose a direct
performance penalty on the application.

A.2 Subnet of Adaptation Manager

We use the state Ptimer and the deterministic transition
Ttimeout to represent the adaptation interval. The firing
of Ttimeout makes the subnet enter the Pdecision state, where
FT-Pro makes a runtime decision. Upon invocation, the
subnet enters one of the three states: 1) Pskip when Tskip fires,
which means that a SKIP action is taken, and the subnet
enters Pskip and immediately returns to the state Ptimer,
2) Pckp when Tckp fires, which means that a CHECKPOINT
action is taken, and the subnet waits for the firing of the
timed transition Tcheckpoint (i.e., representing the checkpoint-
ing overhead) and then returns to Ptimer, and 3) Ppm when
Tpm fires, which means that a MIGRATION action is taken,
and the subnet waits for the firing of the timed transition
Tmigrate (i.e., representing the migration cost) and then
returns to Ptimer. Further, the firing of Tmigrate swaps
vulnerable nodes at Wdetected and Wfaseledetected with the
spare nodes at Sup and Smissed.

A.3 Subnet of Application Performance

In this subnet, we use fluid places to model the continuous
quantities like time and workload. The transition Ttime
pumps fluid to the place Pexec with a constant rate of 1.0,
representing the elapsed time. Similarly, Twork pumps fluid
to the place Pvol, representing the accumulated volatile
work. Through three inhibitor arcs, Twork is disabled if the
subnet is at Pckp, Ppm, or Wdown. Pckp, Ppm, and Wdown

represent the checkpointing overhead, the migration over-
head, and the recovery cost. Through the impulse arcs to
Tfail, the work at Pvol is flushed out to zero, representing the

work loss due to failures. The work is flushed out to Psaved

via the impulse arcs to Tmigrate or Tcheckpoint, representing the

work saved to a stable storage. Once the accumulated work

at either Pvol or Psaved exceeds the application workload,

Tfinish fires, and the subnet enters Pfinish. The fluid at Pexec is

the application completion time.

ACKNOWLEDGMENTS

The authors appreciate the valuable comments and sugges-

tions from the anonymous referees. Many thanks are due to

the members of the Scalable Computing Systems Labora-

tory at the Illinois Institute of Technology. This work was

supported in part by US National Science Foundation

Grants CNS-0720549, CCF-0702737, and NGS-0406328 and a

TeraGrid Compute Allocation. Some preliminary results of

this work were presented in [50] and [59].

REFERENCES

[1] The Top500 Supercomputer Site, http://www.top500.org, 2007.
[2] D. Reed, C. Lu, and C. Mendes, “Big Systems and Big Reliability

Challenges,” Proc. Int’l Conf. Parallel Computing (ParCo), 2003.
[3] B. Schroeder and G. Gibson, “A Large Scale Study of Failures in

High-Performance-Computing Systems,” Proc. Int’l Conf. Depend-
able Systems and Networks (DSN), 2006.

[4] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys, vol. 34, no. 3, 2002.

[5] E. Elnozahy and J. Plank, “Checkpointing for Peta-Scale Systems:
A Look into the Future of Practical Rollback-Recovery,” IEEE
Trans. Dependable and Secure Computing, vol. 1, no. 2, Apr.-June
2004.

[6] V. Castelli, R. Harper, P. Heldelberger, S. Hunter, K. Trivedi,
K. Vaidyanathan, and W. Zeggert, “Proactive Management of
Software Aging,” IBM J. Research and Development, vol. 45,
no. 2, 2001.

[7] S. Chakravorty, C. Mendes, and L. Kale, “Proactive Fault
Tolerance in Large Systems,” Proc. First Workshop High Performance
Computing Reliability Issues (HPCRI), 2005.

[8] R. Vilalta and S. Ma, “Predicting Rare Events in Temporal
Domains,” Proc. IEEE Int’l Conf. Data Mining (ICDM), 2002.

[9] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, and S. Ma,
“Critical Event Prediction for Proactive Management in Large-
Scale Computer Clusters,” Proc. ACM SIGKDD, 2003.

[10] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo,
“Blue Gene/L Failure Analysis and Prediction Models,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN), 2006.

[11] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A Meta-
Learning Failure Predictor for Blue Gene/L Systems,” Proc. Int’l
Conf. Parallel Processing (ICPP), 2007.

[12] A. Oliner and J. Stearley, “What Supercomputers Say: A Study of
Five System Logs,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN), 2007.

[13] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and
F. Cappello, “Mpich-V: A Multiprotocol Automatic Fault Tolerant
MPI,” Int’l J. High Performance Computing and Applications, 2005.

[14] J. Squyres and A. Lumsdaine, “A Component Architecture for
LAM/MPI,” Proc. 10th European PVM/MPI Users’ Group Meeting,
2003.

[15] M. Schulz, G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali,
and P. Stodghill, “Implementation and Evaluation of a Scalable
Application-Level Checkpoint-Recovery Scheme for MPI Pro-
grams,” Proc. ACM/IEEE Conf. Supercomputing (SC), 2004.

[16] J. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,” Proc. Usenix Winter Technical Conf.,
1995.

[17] J. Duell, P. Hargrove, and E. Roman, “Requirements for Linux
Checkpoint/Restart,” Technical Report LBNL-49659, Berkeley
Lab, May 2002.

LAN AND LI: ADAPTIVE FAULT MANAGEMENT OF PARALLEL APPLICATIONS FOR HIGH-PERFORMANCE COMPUTING 1659

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

[18] E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation,” Proc. 11th European PVM/MPI
Users’ Group Meeting, 2004.

[19] C. Du and X. Sun, “MPI-Mitten: Enabling Migration Technology
in MPI,” Proc. Sixth IEEE Int’l Symp. Cluster Computing and the Grid
(CCGrid), 2006.

[20] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A Job Pause
Service under LAM/MPIþBLCR for Transparent Fault Toler-
ance,” Proc. 21st Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2007.

[21] J. Young, “A First Order Approximation to the Optimal
Checkpoint Interval,” Comm. ACM, vol. 17, no. 9, 1974.

[22] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-Max
Checkpoint Placement under Incomplete Failure Information,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN), 2004.

[23] S. Toueg and O. Babaoglu, “On the Optimum Checkpoint
Selection Problem,” SIAM J. Computing, vol. 13, no. 3, 1984.

[24] O. Babaoglu and W. Joy, “Converting a Swap-Based System to Do
Paging in an Architecture Lacking Page Reference Bits,” Proc.
Eighth Symp. Operating Systems Principles (SOSP), 1981.

[25] J. Sancho, F. Petrini, G. Johnson, J. Fernandez, and E. Frachtenberg,
“On the Feasibility of Incremental Checkpointing for Scientific
Computing,” Proc. 18th Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2004.

[26] J. Plank, K. Li, and M. Puening, “Diskless Checkpointing,” IEEE
Trans. Parallel and Distributed Systems, vol. 9, no. 10, Oct. 1998.

[27] C.-D. Lu, “Scalable Diskless Checkpointing for Large Parallel
Systems,” PhD dissertation, Univ. of Illinois at Urbana-
Champaign, 2005.

[28] G. Zheng, L. Shi, and L. Kale, “FTC-Charm++: An In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and
MPI,” Proc. IEEE Int’l Conf. Cluster Computing (Cluster), 2004.

[29] B. Allen, “Monitoring Hard Disks with Smart,” Linux J., Jan. 2004.
[30] Hardware Monitoring by LM Sensors, http://secure.netroedge.

com/-lm78/info.html, 2007.
[31] Health Application Programming Interface, http://www.renci.

org, 2007.
[32] Intelligent Platform Management Interface, http://www.intel.

com/design/servers/ipmi, 2007.
[33] K. Trivedi and K. Vaidyanathan, “A Measurement-Based Model

for Estimation of Resource Exhaustion in Operational Software
Systems,” Proc. 10th Int’l Symp. Software Reliability Eng. (ISSRE),
1999.

[34] G. Weiss and H. Hirsh, “Learning to Predict Rare Events in Event
Sequences,” Proc. ACM SIGKDD, 1998.

[35] G. Hoffmann, F. Salfner, and M. Malek, “Advanced Failure
Prediction in Complex Software Systems,” Proc. 23rd Int’l Symp.
Reliable Distributed Systems (SRDS), 2004.

[36] G. Hamerly and C. Elkan, “Bayesian Approaches to Failure
Prediction for Disk Drives,” Proc. 18th Int’l Conf. Machine Learning
(ICML), 2001.

[37] J. Hellerstein, F. Zhang, and P. Shahabuddin, “A Statistical
Approach to Predictive Detection,” Computer Networks: The Int’l
J. Computer and Telecommunications Networking, 2001.

[38] A. Gara et al., “Overview of the Blue Gene/L System Architec-
ture,” IBM J. Research and Development, vol. 49, nos. 2/3, 2005.

[39] Cray, Cray XT Series System Management, http://docs.cray.com/
books/S-2393-15/S-2393-15.pdf, 2005.

[40] C. Leangsuksun, T. Liu, T. Raol, S. Scott, and R. Libby, “A Failure
Predictive and Policy-Based High Availability Strategy for Linux
High Performance Computing Cluster,” Proc. Fifth LCI Int’l Conf.
Linux Clusters, 2004.

[41] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and
A. Sivasubramaniam, “Fault-Aware Job Scheduling for Blue
Gene/L Systems,” Proc. 18th Int’l Parallel and Distributed Processing
Symp. (IPDPS), 2004.

[42] Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. Sahoo,
“Performance Implications of Failures in Large-Scale Cluster
Scheduling,” Proc. 10th Workshop Job Scheduling Strategies for
Parallel Processing (JSSPP), 2004.

[43] T. Tannenbaum and M. Litzkow, “Checkpointing and Migration
of Unix Processes in the Condor Distributed Processing System,”
Dr. Dobbs J., Feb. 1995.

[44] C. Clark et al., “Live Migration of Virtual Machines,” Proc. Second
Symp. Networked Systems Design and Implementation (NSDI), 2005.

[45] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative Checkpointing:
A Robust Approach to Large-Scale Systems Reliability,” Proc. 20th
Ann. Int’l Conf. Supercomputing (ICS), 2006.

[46] G. Brown, D. Bernard, and R. Rasmussen, “Attitude and
Articulation Control for the Cassini Spacecraft: A Fault Tolerance
Overview,” Jet Propulsion Laboratory technical report, 1997.

[47] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total
Recall: System Support for Automated Availability Management,”
Proc. First Symp. Networked Systems Design and Implementation
(NSDI), 2004.

[48] Z. Lan, P. Gujrati, Y. Li, Z. Zheng, R. Thakur, and J. White, “A
Fault Diagnosis and Prognosis Service for Teragrid Clusters,”
Proc. Second TeraGrid Conf., 2007.

[49] Z. Zheng, Y. Li, and Z. Lan, “Anomaly Localization in Large-Scale
Clusters,” Proc. IEEE Int’l Conf. Cluster Computing (Cluster), 2007.

[50] Y. Li and Z. Lan, “Exploit Failure Prediction for Adaptive Fault-
Tolerance in Cluster Computing,” Proc. Sixth IEEE Int’l Symp.
Cluster Computing and the Grid (CCGrid), 2006.

[51] J. Plank and M. Thomason, “Processor Allocation and Checkpoint
Interval Selection in Cluster Computing Systems,” J. Parallel and
Distributed Computing, vol. 61, no. 11, 2001.

[52] A. Oliner, L. Rudolph, and R. Sahoo, “Cooperative Checkpointing
Theory,” Proc. 20th Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2006.

[53] G. Ciardo, J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net
Package,” Proc. Third Int’l Workshop Petri Nets and Performance
Models (PNPM), 1989.

[54] L. Wang, K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Modeling
Coordinated Checkpointing for Large-Scale Supercomputers,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN), 2005.

[55] NASA NAS Parallel Benchmarks, http://www.nas.nasa.gov/
Resources/Software/npb.html, 2007.

[56] G. Bryan, T. Abel, and M. Norman, “Achieving Extreme
Resolution in Numerical Cosmology Using Adaptive Mesh
Refinement: Resolving Primordial Star Formulation,” Proc. ACM/
IEEE Conf. Supercomputing (SC), 2001.

[57] H. Berendsen, D.V. der Spoel, and R. van Drunen, “Gromacs: A
Message-Passing Parallel Molecular Dynamics Implementation,”
Computer Physics Comm., vol. 91, pp. 43-56, 1995.

[58] Z. Lan, V. Taylor, and G. Bryan, “Dynamic Load Balancing for
Structured Adaptive Mesh Refinement Applications,” Proc. ACM/
IEEE Conf. Supercomputing (SC), 2001.

[59] Y. Li and Z. Lan, “Using Adaptive Fault Tolerance to Improve
Application Robustness on the Teragrid,” Proc. Second TeraGrid
Conf., 2007.

Zhiling Lan received the BS degree in mathe-
matics from Beijing Normal University in 1992,
the MS degree in applied mathematics from the
Chinese Academy of Sciences in 1995, and the
PhD degree in computer engineering from North-
western University in 2002. She has been an
assistant professor in the Department of Com-
puter Science, Illinois Institute of Technology,
Chicago, since 2002. Her research interests are
in the area of parallel and distributed systems, in

particular, fault tolerance, dynamic load balancing, and performance
analysis and modeling. She is a member of the IEEE Computer Society.

Yawei Li received the BS and MS degrees from
the University of Electronic Science and Tech-
nology of China in 1999 and 2002, respectively.
He is currently a PhD candidate in the Depart-
ment of Computer Science, Illinois Institute of
Technology, Chicago. He specializes in parallel
and distributed computing and scalable software
systems. His current research focuses on adap-
tive fault management in large-scale computer
systems, checkpointing optimization, and load

balancing in the Grid environment. He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 12, DECEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 15:35 from IEEE Xplore. Restrictions apply.

