Cluster Comput (2016) 19:2241-2250
DOI 10.1007/s10586-016-0656-8

@ CrossMark

A memory-driven scheduling scheme and optimization

for concurrent execution in GPU

Bao-yu Xu!

- Wu Zhang! . Xian-he Sun? . Yang Wang!

Received: 24 May 2016 / Revised: 16 August 2016 / Accepted: 17 September 2016 / Published online: 29 September 2016

© Springer Science+Business Media New York 2016

Abstract Concurrent execution of GPU tasks is available
in modern GPU device. However, limited device memory
is an obvious bottleneck in executing many GPU tasks.
And the task priority and system performance are often
ignored. To address these, a real-time GPU scheduling
scheme is proposed in this paper. A reservation algorithm
based on device memory(RBDM) is adopted to provide more
opportunity for the High-priority task in the scheme. high
priority first wake (HPFW) and small memory HPFW (SM-
HPFW) are employed in the scheduling of waiting tasks to
improve the priority response time and system performance.
A CPU-based monitor is developed to check the GPU task
execution. Experiments show the RBDM can work effec-
tively. Compared with FIFO, HPFW can decrease overall
priority response time significantly. Overall task completion
time can be reduced by 20 % using the SM-HPFW while the
distribution of device memory requirement of GPU tasks is
even.

Keywords GPU - Device memory - Reservation - Schedule

1 Introduction

Graphics Processing Unit (GPU) is often applied in gen-
eral purpose computing such as no-graphics and scientific
computing because it is extreme-scale, cost-effective and
power-efficient. To effectively utilize the resources supplied

B Bao-yu Xu
xbybao@163.com

School of Computer Engineering and Science, Shanghai
University, Shanghai, China

Department of Computer Science, Illinois Institute of
Technology, Chicago, IL, USA

by the GPU, the tasks which originate from a single appli-
cation or/and many independent applications [15] can be
executed concurrently in the mainstream GPU cards such
as Nvidia kepler GPU.

GPU is a PCI device and has fixed memory, which is called
Device memory(DM) in Nvidia product. While handling
many tasks in GPU, the DM often becomes a bottleneck due
to amass of data. The bottleneck usually includes two aspects
[13]. First, CPU and GPU have separate memories. The data
required in GPU execution must be transferred between CPU
and GPU memory, but the DM is limited in size. Second, the
PClI-e link that connects the two memories has limited band-
width.

To address above problems, many applications need to
be optimized through data compression [17] and data min-
ing [4], etc. Additional cache that comes from the host
is supplied for asynchronous data copy between host and
device to solve the lack of device memory [13]. In addition,
some application-aware algorithms, such as FR-RR-FCFS
[7], are used to control the execution of task. FR-RR-FCFS
is adopted to optimize the I/O bottleneck of GPU, which has
been realized in GPU simulator. Remarkably, these meth-
ods are tailored to be suited for some special applications.
First come first serve (FCEFS) is employed to schedule task
in most of GPU cards. First-ready FCFS (FR-FCFS) [18] is
certificated effective in improving the internal bandwidth. C-
AMAT [20] is an accurate metric for analysis of memory wall
in concurrent memory systems. These methods are suitable
for real-time system since they ignore the implementation
details of application.

Many tasks often must be executed in priority order
because they potentially come from different users, which
has been presented in existing GPU scheduling system. For
example, Timegraph [9] is a time-based scheduling system,
which allocates the executing time of GPU to each task

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0656-8&domain=pdf
http://orcid.org/0000-0002-6528-146X

2242

Cluster Comput (2016) 19:2241-2250

depending on their priority. However, these tasks can only be
executed asynchronously in GPU. RCSM [8] is a core-based
scheduling architecture and allows multiple tasks to exe-
cute simultaneously. Experimental result proves the RCSM
validity in the mobile device. Timegraph and RCSM are all
designed in operation-system level and to allocate limited
resource reasonably. Executing time is restrained for single-
task GPU in Timegraph and Core number is less in the mobile
device in RCSM, so the DM is not considered in their design.

For DM importance mentioned above, this paper focuses
on the DM of GPU and try to design memory-driven schedul-
ing scheme, specific to multi-task GPU, to improve the
execution performance . However, obtaining DM cost accu-
rately in executing a task is difficult because some DM
is used in extra operations such as thread synchronization.
Though a few tools, for example nvprof, can check the
size of DM used in the GPU task, extra memory overhead
will be produced if these tools are launched. Additionally,
since DM is limited, high-priority task may lose execu-
tion chance once the DM is all partitioned to low-priority
task physically, which has occurred in some other real-time
scheduling systems [11]. Remarkably, some existing GPU
scheduling systems pay attention to priority response time
but neglect entire system performance, such as RCSM. This
paper makes the following contributions to address these
problems.

First, combining the developed monitor, a modified reser-
vation algorithm based on device memory is employed in
the multi-task scheduling of GPU. Logical DM partition is
employed in the algorithm according to the priority require-
ment of GPU applications. The monitor only runs in CPU.
The DM cost is predicted by measuring the size of defined
DM in the task code. Second, for the waiting tasks, HPFW
is adopted to increase the priority reponse chance for high-
priority task and SM-HPFW (that is the improving HPFW)
can decrease the overall task completion time to improve
system performance.

The rest of this paper is organized as follows. Section 2
gives a background including GPU and real-time schedul-
ing. Section 3 introduces how to realize DM estimation and
GPU monitor. In Sect. 4, we display the multi-tasks schedul-
ing scheme based on DM, including scheduling architecture,
reserve algorithm and wakeup policy. Performance metric
and experiments are presented in Sects. 5 and 6. We close
this paper with the conclusion.

2 Background
Multi-task GPU which can execute multiple tasks concur-
rently, such as NVIDIA K20 GPU, is adopted as experiment

platform. The GPU application is developed with CUDA [16]
that allows developer to use C as a high level programming

@ Springer

language. Next, we will provide a brief description for them
and display the relevant works in scheduling.

A GPU [16] is built around an array of Streaming Mul-
tiprocessors (SMs) that are designed to execute hundreds
of threads concurrently. The threads may access data from
multiple memory spaces during their execution. The CUDA
programming model assumes a system composed of a host
and a device, each with their own separate memory. Ker-
nels operate out of device memory, so the runtime provides
functions to allocate, de-allocate, and copy, as well as trans-
fer data between host memory and device memory. Device
memory can be allocated using function malloc such as cud-
aMalloc. Multi-task technology has been proposed in Fermi
architecture and improved in Kepler architecture, as shown
in the Fermi and Kepler whitepaper [14,15].

Operation-system level resource allocation and multi-task
scheduling is, in essence, defining a scheduling policy con-
sisting in creating a set of tasks and associating them with
different resource [1]. For example, a simple FIFO is to array
the tasks depending on their orders of entering scheduling
system, and preferentially satisfying the resource demand of
task of head of array.

Reservation [3,10] has been used to provide guaranteed
and predictable memory access performance to real-time
tasks. It allows a task to reserve a portion of the total sys-
tem resource for its exclusive use. Reservation has also been
used in scheduling based on priority, and the reserved object
is the limited resource provided by system. The consider-
able parameters include the size of required resource and
allocation operation. In Timegraph and RCSM, the reserved
resource can never be stolen by other task to maintain the tem-
poral isolation for each task, called physical reservation, so
that the interference among tasks is decreased. Some reserve
techniques are applied to partition the resource logically [5],
called the logical reservation. In general, logical reservation
needs a mechanism to avoid the interference.

3 DM estimation and GPU monitor

The DM costed in executing a task and the rest of GPU DM
are prerequisite before scheduling GPU task, but it is dif-
fcult to acquire them by checking the GPU device because
other existing DM overhead. Therefore, DM estimation is
adopted in our design and a monitor is developed to detect
GPU execution process.

3.1 DM estimation

In CUDA, computing data for the task must be sent to the
GPUs DM from the host memory, through the PCI-E bus
prior to invoking the task. Output data should be written to

Cluster Comput (2016) 19:2241-2250

2243

the GPUs DM first, then returned to the host memory. All
DM used by the task should be pre-allocated [6].

CUDA has tailored special functions to allocate GPU DM
to task. These functions include cudaMalloc, cudaMalloc3D,
cudaMallocArray, etc. Keywords of these functions, such as
cuda and Malloc, and corresponding parameters can be used
to look for correct function and measure the allocated DM
size. For example, the second parameter in function cud-
aMalloc defines the size of allocated DM, as shown in the
following CUDA code.

#include lib.h
type kernel_name(parameter set)

{

// Allocate host memory

unsigned int mesize = com_data_size;

float «h = (float *) malloc(memsize);

/1 Allocate device memory

cudaMalloc((void **) &I, memsize);

/! copy host memory to device

cudaMemcpy(d, h, memsize, cudaMemcpyHostToDevice);
// execution in GPU

// Copy result from device to host

cudaMemcpy(h, d, memsize, cudaMemcpyDeviceToHost);
// Clean up memory

free(h);

cudaFree(d);

cudaDeviceReset();

}

int main(int argc, char sxargv)

(..

The code presents some basic operations of GPU appli-
cation, including DM allocation and data copy between
host and device, which can be realized by special functions
with parameter memsize. The value of memsize defines the
requirement of DM in executing process for a GPU task.
In our system, a developed script need to read the value of
memsize existing in the source code while the scheduling
system receives a execution request, so the source-code file
which has the postfix .cu is necessory.

3.2 GPU monitor

In DM-based scheduling system, the rest of DM should be
obtained before scheduling a task. Even though the return
value of a program can discover whether the DM allocation
is successful or not, developers tend to forget to add the return
value in code. Some specific tools supplied by vendor can get
the detail, but the tools are invisible to user and the additional
DM overload is made as well if they are activated.

Considering GPU task is initiated by CPU process, we can
save DM to trace the GPU task by detecting the related CPU
process. In addition, Some execution imformation available
in device file, such as the linux file /dev/nividia, can be
captured in executing a GPU task. In our system, a GPU
monitor is realized by the linux script according to above
methods. As shown in the following code, the process ID
can be obtained if a GPU task is submitted successfully and
these codes only run in the host and acquire the return signal
from CPU process.

detect DM allocation
submit task &
my_pid=$!

count=0

sleep 10

if ps | grep "$my_pid"
then

count=0

else

count=1

fi

At present, the monitor is only used to trace the allocation
process of DM. If the required DM is allocated for a task, the
task is submitted successfully. In future work, more informa-
tion will be captured from the device file to strengthen the
monitor.

4 Multi-task scheduling based on DM
4.1 scheduling architecture overview

For the multi-task scheduling, the base architecture is com-
posed of ready queue, waiting queue, shceduler and some
policies designed for submission and wakeup, etc. In our
work, the scheduling scheme is used in general-purpose
GPU(GPGPU) computing, such as scientific application.
Figure 1 shows the multi-task GPU scheduling architecture.

Interrupt may generate some wrong results because of
some inconspicuous reasons, which should be avoid for the
long-time GPGPU computing if possible. In addition, if inter-
rupt is frequent, the GPU workload increases rapidly due to
the data transmission and thread synchronization. Therefore,
the interrupt is not considered in the architecture now.

The size of DM needed by each task can be obtained before
the task is submitted by DM estimation, which is realized
in the task analysis. While the task is submitted, the GPU
monitor acquires a return signal to check the execution status
of task and decides what to do next.

Scheduler adopts a scheduling policy depending on DM
reservation to schedule the tasks existing in the ready queue.
To improve the priority reponse time of task and system

@ Springer

2244 Cluster Comput (2016) 19:2241-2250
User applications Ta.blf: 1 RO for different Priority RO
priority
High
Middle
aan;l;is l— Multiple tasks Low 6

Waiting queue

Jt Fail

Ready queue

Fail

Scheduler GPU Wakeup
Monitor
Success JL l JL Success
GPU

Fig. 1 Multi-task scheduling architecture

performance, two wakeup policies are proposed in Wakeup
module. The details of these policies will be illuminated in
the following subsection.

4.2 Scheduling plicy: RBDM

In RBDM algorithm, GPU DM is the reserved object and
is allocated logically for each task. The reservation process
is composed of several reservation operations, called RO,
which is responsible for allocating specified amount of DM
for the task which lies in the ready queue. The amount of
DM of each task depends on its priority, some definitions are
shown next.

Definition the reserved DM of task i, called RM;, is a digital
value which indicates the amount of DM that is assigned to
task i in each reserve operation. R M; can be obtained through
Eq. 1, in which P; is the quantified priority of task i, and M;
is the estimated DM size of task i.

P;M;

RM; =
Pi+P+---+ Py

ey

M; can predict the required DM in execution, though the
latter is often much bigger than the former in execution
process. According to the value of RM;, we can get how
many reserve operations, called R O;, can complete the entire
reserve process for task i. How to get the R O; is shown below.

My P+P+-+ Py
RM; P;

RO; = 2
InEqgs. 1 and 2, the priorities can be quantified by any positive
value, as long as the higher priority is quantified to the larger
value. Suppose there are high priority, middle priority and
low priority, they can be represented with integers 3, 2 and

@ Springer

1, respectively. Table 1 shows RO of tasks with different
priorities.

Since the actual remaining size of GPU DM is unknown,
the scheduling algorithm must combine with the GPU
monitor to detect whether the scheduled task is executed suc-
cessfully. the RBDM is stated in Algorithm 1.

Algorithm 1 RBDM
1: procedure R_A(&Task;, Mij, RM;, cycle, &w_num)

2: budget <0

3: res_signal < fail

4: sub_signal < fail

5: time <— system_time

6: while budget < M; do

7: budget < budget + RM,;

8: if budget < M; then

9: time 4 cycle > reserved synchronization
10: end if

11: res_signal < true

12: end while
13: if w_num = 0 then

14: if res_signal = true then

15: submit Task;

16: sub_signal <— monitor(T ask;)
17: if sub_signal = fail then > submission to fail
18: w_num <— waitqueue(7 ask;)
19: end if

20: end if

21: else

22: w_num <— waitqueue(task)

23: end if

24: return sub_signal

25: end procedure

In Algorithm 1, the res_signal and sub_signal record
whether the reservation and submittion are successful or not.
The w_num indicates the number of waiting tasks. The cycle
is the time constant which is equal to a RO period. In a period
of cycle, task i is allocated the specifed RM; once. Each
task is submitted if it acquires enough logical DM or sent to
waiting queue otherwise.

By the algorithm, these tasks may be executed concur-
rently, but submitted orderly due to only one scheduling
managerment. Especially, FIFO is only applied to schedule
the waiting task (that is, the head of task in waiting queue is
submitted first) to test the RBDM. FIFO focuses on the order
of time but not on the demand of application. The scheduling
improvement in waiting queue will be discussed below.

Cluster Comput (2016) 19:2241-2250

2245

Waiting queue

1(3,1)

t(l,m) t(Z,h)

«———

FIFO

t(l,m) t(Z,h) t(3,l)

GPU Wake

HPFW

t(Z,h) t(l,m) t(3,l)

Fig. 2 The task wakeup order in waiting queue by FIFO and HPFW

4.3 Scheduling improvement

The task with higher priority may not be submitted earlier
by RBDM. A usual case is the GPU DM has been exhausted
while the high-priority task is submitted. The unexecuted task
will be pushed into waiting queue in disregard of its priority
and often be awaken by the FIFO policy, i.e., the first entering
task has the highest priority. In fact, the priorities of all tasks
existing in waiting queue are reset by FIFO so that they can
not be processed in line with their original priorities.

4.3.1 HPFW

By HPFW, the tasks that lie in waiting queue are submitted
again according to their priorities from high to low. If the
former is fail in submission, the rest will wait even if the
unused DM is enough for one of them. Figure 2 shows the
difference between FIFO and HPFW.

In Fig. 2, there are three tasks with respective priorities
labeled as i, m and [, indicating high priority, middle prior-
ity and low priority, respectively. The order of entering the
waiting queue is indicated by digital subscript. HPFW sched-
ules the waiting tasks in the priority order(#2 ny.f(1,m)-{3,1)),
compared with FIFO.

No matter FIFO or HPFW is adopted as scheduling policy
of waiting queue, the utilization efficiency of DM tends to be
neglected. For example, the execution block, which comes
from the DM lack for the first task, can not be canceled even
if there is a task with the same priority as the first and can be
executed in remainning GPU DM. Additionally, the execut-
ing time of task(ETT) is often determined according to the
required DM of the task(DMT). The exponential growing
is often presented between ETT and DMT because of data
transmission and synchronization, etc, which is also verified
by some experiments.

We repeatedly execute the Matrix Multiplication (MM),
the benchmark supplied by CUDA, by increasing matrix
scale before each execution. As shown in Fig. 3, the abscissa

25000
g ETT (s€C)

«++@++ DMT(MB)
20000 /

15000
10000

5000

=

L A e e e A LA A o
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
task number

Fig. 3 ETT and DMT in MM test

3500
e ETT (seC)

== DMT(MB)

2500
2000
1500
1000 -

500 -

1 13 15 17 19 21 23 25 27 29 31 33

task number

Fig. 4 ETT and DMT in FFT test

is the the serial number of these tasks in MM test, and the
rising trend of DMT is presented as the dot line which is aux-
iliary. For example the number 16 respresents the 16th MM
task in which the DMT is 867(MB) and the ETT is 1530(s).
The result shows the ETT increases rapidly along with the
DMT.

Similar to MM test, a simple application, which realizes
some FFT operations including positive transform, inverse
transform and convolution, is repeatedly executed by increas-
ing the signal size. The library cufft, which is supplied by
CUDA, is used in the application code because of its good
scalability in GPU environment. As shown in Fig. 4, the ETT
and DMT increase in value, but ETT has a faster speed than
DMT.

@ Springer

2246

Cluster Comput (2016) 19:2241-2250

Waiting queue

Lann|lein | ans | Lass

|
|
|
v

l‘(1,h)b) t(S,h,s) t(2,l,b) t(4,l,s) HPEW

GPU Wake
SM-
t(3,h,s) t(l,h,b) 1(4,1,5) I(z,l,b) HPEW

Fig. 5 The task wakeup order in waiting queue by HPFW and SM-
HPFW

4.3.2 SM-HPFW

Combining the ETT effect with the priority requirement,
Small-Memory HPFW (SM -HPFW) policy is employed to
awake the waiting tasks. The wakeup prioritization order of
SM-HPFW is: (1) high-priority wakeup over low-priority
wakeup, (2) small-DMT wakeup over big-DMT wakeup.
Specifically, the high-priority task can be awaken prior to
the low-priority no matter HPFW or SM-HPFW is adopted
as scheduling policy. For tasks with the same priority, the
task with smallest DMT can be awaken first in SM-HPFW.

In SM-HPFW, each task has an attached subscript includ-
ing the order of entering waiting queue, priority and DMT
size. Two priority levels, high priority and low priority, are
abbreviated respectively with the letters 4 and /. The letter s
or b describes the small or big DM size which is needed for
the awaken task.

Figure 5 shows the difference between HPFW and SM-
HPFW. Though task #(1 5) and task (3,) have a same
priority, the latter can be awaken prior to the former because
of smaller DMT.

Remarkably, SM-HPFW is unfair for the big-DMT task
because it is not considered preferentially, which will be
improved in the future multi-GPU scheduling.

5 Performance metric

Response time or makespan has been one of the most impor-
tant issuses in the design of a computer system [2,22]. In
our work, the metrics applied in performance evaluation of
scheduling system are priority response time (that is the time
between the arrival of the task and the beginning of its compu-
tation) and task completion time (i.e., the time between the
arrival of the task and the completion of its computation).
The priority response time is applied to determine whether
the scheduling is effective for task priority or not. The task
execution time can show the result of system improvement.

@ Springer

For evaluating the general perfomance, the following
performance metric is more valid than the above. T;;, the
Normalized overall Priority response time (that is the sum
of the priority response time of all tasks with priority i), is
defined as

T,; =SUM(TR;),j=1,2,...,n (3)

where 7 is the number of all tasks with priority 7 and TR is
the priority response time of the jth task.

Another important metric is 7,;, the normalized overall
task completion time (i.e., the sum of the task completion
time of all tasks with priority i), can be written as

T = SUM(TC)j),j=1,2,....n)

where 7 is the number of all tasks with priority i and TC} is
the task completion time of the jth task. The overall task com-
pletion time can discover whether the policy improves the
system performance. Smaller overall task completion time
indicates better performance of scheduling system in gen-
eral.

6 Experiment

The experiments are carried out on a server with two Intel
Xeon E5-2650 and 96 GB memory, and Nvidia Kepler K20M
GPU card with 2600Mhz and 4.8 GB device memory. The
server is running the GNU/Linux operation system with task
version 2.6.32 and CUDA runtime version 5.5. The bench-
mark is from the CUDA 5.5 SDK and coded by C language.

We focus on the limited DM rather than other GPU
resource in the following experiments. To avoid the extra
influence from different computing process, we attempt to
find a general GPU application to examine these policies.
Matrix Multiplication (MM) is adopted in our experiment
because the GPU is often used in the matrix-based compu-
tation [12] and MM is highly scalable on the GPU [19] and
a typical benchmark in CUDA SDK [16,21]. The stream-
operation code is added into the benchmark to execute
concurrently. The executed tasks are generated in random.
The difference of these tasks is the task priority and matrix
scale.

First, twenty tasks are used to test the improvement in the
order of obtainning DMT by RBDM. As shown in Table 2,
the numbers 3, 2 and 1 represent the priority high, middle
and low, respectively. Column RBDM or FCFS indicates
the execution order of these tasks after they are scheduled by
RBDM or FCFS. Compared with FCFS, RBDM can obvi-
ously accelerate the DMT obtainment for the high priority
task.

2247

HPFW

w
w

LU FIFO

"WFIFO 74/ HPFW
I FIFO 7ZHPFW

-
/

||||||||||||||||||||||||| °

[\

7
%
%

70000

Cluster Comput (2016) 19:2241-2250

60000
50000
40000
30000
20000
10000 -
90000
80000
70000
60000
40000
30000 -
20000 -
70000
60000
50000
40000
30000
20000
10000

8 50000

(o9s)owiy asuodsas Apaoud jjesano (09@s)awy asuodsas Aysoud jjesano (o9s)aw} asuodsas Ayaond |jeaano ueaw

gh
Fig. 7 The overall priority response time (test 2)
7
%
High
Fig. 8 The overall priority response time (test 3)
7
7
gh

To examine the HPFW validity in runtime, the above tasks
are rescheduled according to RBDM and awaken by HPFW

and FIFO respectively if the task lies in waiting queue. The

a
Bl v maosrswowornrcc oagoo=3m0n /////é
% 3
0 s
2R e e |
Ol o+ vi 0o~ 00 © — o v o~ o0 O 0 TS
59 _ e e e e e e e o - N
, =
~ 2 -
B w 4 12}
Z |3 2 N
n | & S 0 WV — 0 OV N N AN O VO N = > = O N Vv o — N L
S|IE Y9 S T dodadonmS VO amnn RO nd A\ T o 2
~ "B = O = n A B RO + A = Q o —~ ° SANNNNNNANNY T 6 £
< | # - - - 2 T s 8
= [S . o
< - [72)
AR . :
o|a Z
| g
Z2IE|l ot o@D =~ &~ A © WO = MmO~ o~ 2
S|l o @0 9o =3 =90 % T PV F A O A N =
20 T -0 QA = O VLS =& = 1 — 0 — &~ 3
S|A| o o — & o - 0 A A = [) N / - =
S NN 5 &
= i < =
L [[e Rl <
s/ 00000 SIS =
Q s — T T R R ek (5}
2 g >
o [.9 S
= | 'E Q
= A~ — N —~ N N — N N~ = &N AN N o~ — N o~ N o~ — T T T T : 2
o o o o o o o o T
o o o o o o o
N <] S o 1) o <] 1)
o o o o o o o o o
IlD v ~ o wn <t o ~ - R
7] o0
= | & S -~ a4 o ¥ v o = ® a 9 29s)awi} asuodas Aysoud |jesano o
FlElc e o s v o ewedsddsddszldd (oas)ouny woudn)

pringer

As

priority
In above tests, we record the overall task completion time

respectively. As shown in Fig. 10, they are nearly equal
between the HPFW and FIFO, which means the HPFW can

To examine the SM-HPFW, we should first get a criteria
to decide which task has small DM requirement. However,
it is diffcult to set the criteria due to the diversity of the
GPU hardware and application such as the read/write speed

not improve the system performance significantly.

Fig. 9 The mean overall priority response time

experiment is repeated with two more groups of tasks. The
overall priority response time for each group is shown in Figs.

To show the holistic performance clearly, all results in
three tests are corrected in Fig. 9. As shown in the figure, the

6, 7 and 8, respectively.
time of high-priority task versus the FIFO. The overall prior-

ity response time can be decreased down to 53.5 % of FIFO
for high-priority tasks. So the execution of high-priority task

HPFW can significantly shorten the overall priority response
is brought forward obviously by HPFW.

2248

Cluster Comput (2016) 19:2241-2250

12000

- -
EER

Fig. 10 The overall completion time with FIFO/HPFW

| D //\\
2 %\\ A\ /A\

Fig. 11 The overall completion time with HPFW/SM-HPFW

of GPU memory, PCI bandwidth and data character of appli-
cation. Unfortunately, a reasonable criteria also can not be
found in other research. Therefore, we try to get an empirical
criteria.

As shown in Fig. 3, the task completion time increases
rapidly while its DMT size exceeds 1 GB, so the size 1GB is
regarded as a boundary between small DMT and big DMT.
The task whose DMT size exceeds 1GB is treated as big
task in our experiment, and the other is treat as small task.
The empirical value is not precise but useful for finding the
difference between SM-HPFW and HPFW.

Noting that the probability proportionate to DMT size and
priority is the same for each task in the real-time system, we
generate three groups of tasks. The rules of generation tasks
for each group are (1) the number of tasks with different
priority is the same and (2) the distribution of tasks is even
in two kinds of DM size (small and big).

Figure 11 depicts the overall task completion time where
the SM-HPFW and HPFW is employed in three group of
tasks respectively. Compared with HPFW, SM-HPFW can
reduce the overall task completion time by 21 % for group
3, 16.7 % for group 2, and 17 % for group 1, respectively.

@ Springer

7 Conclusion

A DM-based and multi-task scheduling scheme is intro-
duced for the real-time GPU system. The logical reserve is
employed to facilitate task to obtain the GPU DM depend-
ing on priority. The required DM of task can be predicted in
advance. In addition, the HPFW is proposed to reduce the pri-
ority response time. The SM-HPFW, a improving HPFW, is
employed to improve the system performance. A CPU-based
tool is used to monitor the GPU task execution. Experimental
results show RBDM is effective and can obviously shorten
the overall priority-response time associating with HPFW.
The syetem performance can be improved if SM-HPFW is
adopted in some cases.

The I/O bottleneck is not considered and the SM-HPFW
is unfair for some data-intensive applications. In our future
work, we intend to develop real-time scheduler and improved
monitor for multiple GPUs since the distributed computing
is an optional method for the data-intensive application. For
some special applications, new algorithms will be attempted,
such as data compressing and asynchronous transmission, to
reduce the amount of I/O data.

Acknowledgements This research is supported by NSFC and Shang-
hai Municipal Education Commission. I would like to extend my sincere
gatitude to my friends at Illinois Institute of Technology (IIT), who have
provided selfless help for my work and life abroad during my visiting
scholar career. I gratefully acknowledge IIT who has offered me a cosy
work environment and my colleagues of HPCC, Shanghai university.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G.,
Mellor-Crummey, J., Tallent, N.R.: StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures. Concurr.
Comput. Pract. Exp. 22, 685-701 (2010). doi:10.1002/cpe

2. Chong, E.K.P.: Performance for imprecise evaluation computer of
scheduling systems algorithms. J. Syst. Softw. 15,261-277 (1991)

3. Eswaran, A., Rajkumar, R.: Energy-aware memory firewalling for
QoS-sensitive application. Proc. Euromicro Conf. Real-Time Syst.
2005, 11-20 (2005). doi:10.1109/ECRTS.2005.14

4. Fang, W., Lau, K.K., Lu, M., Xiao, X., Lam, C.K., Yang, PY.,
He, B., Luo, Q., Sander, P.V., Yang, K.: Parallel data mining on
graphics processors. Ph.D. thesis, Hong Kong University (2008).
http://gpuminer.googlecode.com/files/gpuminer.pdf

5. Hardy, D., Puaut, I.: Predictable code and data paging for real time
systems. In: Proceedings—Euromicro Conference on Real-Time
Systems, pp. 266-275 (2008). doi:10.1109/ECRTS.2008.16

6. Hung, C.L., Hua, G.J.: Local alignment tool based on Hadoop
framework and GPU architecture. BioMed Res. Int. 2014, 1-7
(2014). doi:10.1155/2014/541490

7. Jog, A., Bolotin, E., Guz, Z., Parker, M., Keckler, S.W., Kandermir,
M.T., Das, C.R.: Application-aware memory system for fair and
efficient execution of concurrent GPGPU applications. In: Work-
shop on General Purpose Processing Using GPUs(GPGPU-7), pp.
1-8 (2014). doi:10.1145/2576779.2576780

8. Joo, W., Shin, D.: Resource-constrained spatial multi-tasking for
embedded GPU. In: 2014 IEEE International Conference on Con-
sumer Electronics (ICCE), pp. 2010-2011 (2014)

http://dx.doi.org/10.1002/cpe
http://dx.doi.org/10.1109/ECRTS.2005.14
http://gpuminer.googlecode.com/files/gpuminer.pdf
http://dx.doi.org/10.1109/ECRTS.2008.16
http://dx.doi.org/10.1155/2014/541490
http://dx.doi.org/10.1145/2576779.2576780

Cluster Comput (2016) 19:2241-2250

2249

9.

11.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Kato, S., Lakshmanan, K., Rajkumar, R.R., Ishikawa, Y.: Time-
Graph: GPU scheduling for real-time multi-tasking environ-
ments. In: 2011 USENIX Annual Technical Conference (USENIX
ATCI11), p. 17 (2011)

Kim, H., Rajkumar, R.: Shared-page management for improving
the temporal isolation of memory reservations in resource kernels.
In: Proceedings—18th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, RTCSA
2012—2nd Workshop on Cyber-Physical Systems, Networks, and
Applications, CPSNA, pp. 310-319 (2012). doi:10.1109/RTCSA.
2012.50

Kim, H., Rajkumar, R.: Memory reservation and shared page man-
agement for real-time systems. J. Syst. Archit. 60(2), 165-178
(2014). doi:10.1016/j.sysarc.2013.07.002

Lindholm, E.N.: Nvidia tesla:aunified graphics and computing
architecture. Micro IEEE 28(0272-1732), 39-55 (2008)

. Mokhtari, R., Stumm, M.: BigKernel—high performance CPU-

GPU communication pipelining for big data-style applications. In:
Proceedings of the 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium, pp. 819-828 (2014). doi:10.1109/
IPDPS.2014.89

Nvidia: NVIDIA’s Next Generation CUDA Compute Architec-
ture:Kepler GK110. http://www.nvidia.com/content/PDF/kepler/
NVIDIA-kepler-GK110-Architecture- Whitepaper.pdf

Nvidia: Whitepaper NVIDIAs Next Generation CUDA Com-
pute Architecture:Fermi (2009). doi:10.1016/j.immuni.2005.11.
006. http://www.nvidia.com

Nvidia: Cuda c programming guide (2013). http://docs.nvidia.com/
cuda/cuda-c-programming- guide

O’Neil, M.a., Burtscher, M.: Floating-point data compression at 75
Gb/s on a GPU. In: Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units - GPGPU-4, pp.
1-7 (2011). doi:10.1145/1964179.1964189. http://portal.acm.org/
citation.cfm?doid=1964179.1964189

Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.:
Memory access scheduling. In: Proceedings of 27th International
Symposium on Computer Architecture (IEEE Cat. No.RS00201),
vol. 27, pp. 1-11 (2000). :10.1145/342001.339668

Stuart, J.a., Owens, J.D.: Multi-GPU MapReduce on GPU clusters.
In: Proceedings—25th IEEE International Parallel and Distrib-
uted Processing Symposium, IPDPS 2011, pp. 1068-1079 (2011).
doi:10.1109/IPDPS.2011.102

Sun, X.H., Wang, D.: Concurrent average memory access time.
IEEE Comput. 47(5), 74-80 (2014)

Volkov, V., Demmel, J., Berkeley, U.C.: Benchmarking g GPUs
to Tune Dense Linear Algebra. In: Proceedings of the 2008
ACM/IEEE Conference on Superconducting (SC *08), pp. 1-11
(2008)

Yazdanpanah, H.: Evaluation performance of task scheduling algo-
rithms in heterogeneous environments. Int. J. Comput. Appl.
138(8), 1-9 (2016)

e |

Bao-yu Xu was bornin 1980. He
graduated from Jiangxi Normal
University in 2002, received his
Master degree from the School
of Computer Engineering and
Science, Shanghai University, in
2008. He has been in the Scalable
Computing Software laboratory
at Illinois Institute of Technol-
ogy (Chicago, 2014-2015) as a
visiting scholar. Now, he is an
Engineer at Shanghai University.
His research interests include
High Performance Computing,
big data system and application.

Wu Zhang is a Professor of
Shanghai University. He gradu-
ated from Nanjing Aeronautical
Institute in 1980, obtained his
Mater Degree of Computational
Mathematics at Xi’an Jiaotong
University in 1984 and Ph.D. of
Aerodynamics at Northwestern
Polytechnic University in 1988.
He was postdoctoral research
fellow of CFD at Peking Uni-
versity during 1989-1991 and
Applied Mathematics at UNC
Charlotte, USA, during 1996—
1998, respectively. Before he

joined the School of Computer Engineering and Science, Shanghai Uni-
versity, in 2002, he worked at Beijing University (1991-1993), Xi’an
Jiaotong University (1993-2001), and visited, as Associate Professor,
EE Department of UNC (Charlotte, 1995-1996), and, as visiting pro-
fessor, CS Department of Illinois Institute of Technology (Chicago,
2000-2001). He has been working on the research areas of Numerical
Solutions of PDEs, CFD, Parallel Algorithms and Applications.

@ Springer

http://dx.doi.org/10.1109/RTCSA.2012.50
http://dx.doi.org/10.1109/RTCSA.2012.50
http://dx.doi.org/10.1016/j.sysarc.2013.07.002
http://dx.doi.org/10.1109/IPDPS.2014.89
http://dx.doi.org/10.1109/IPDPS.2014.89
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/10.1016/j.immuni.2005.11.006
http://dx.doi.org/10.1016/j.immuni.2005.11.006
http://www.nvidia.com
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://dx.doi.org/10.1145/1964179.1964189
http://portal.acm.org/citation.cfm?doid=1964179.1964189
http://portal.acm.org/citation.cfm?doid=1964179.1964189
http://dx.doi.org/10.1145/342001.339668
http://dx.doi.org/10.1109/IPDPS.2011.102

2250

Cluster Comput (2016) 19:2241-2250

Xian-he Sun is a Distin-
guished Professor of Computer
Science at the Illinois Insti-
tute of Technology (IIT). He
is the director of the Scal-
able Computing Software labo-
ratory at IIT and a guest faculty
in the Mathematics and Com-
puter Science Division at the
Argonne National Laboratory.
Before joining IIT, he worked
at DoE Ames National Labora-
tory, at ICASE, NASA Langley
Research Center, at Louisiana
State University, Baton Rouge,

and was an ASEE fellow at Navy Research Laboratories. He is an
IEEE fellow and is known for his memory-bounded speedup model,
also called Sun—Ni’s Law, for scalable computing. His research interests
include parallel and distributed processing, memory and I/O systems,
software systems for big data applications, and performance evaluation.
He has over 200 publications and 5 patents in these areas. He is a former
IEEE CS distinguished speaker, a former vice chair of the IEEE Techni-
cal Committee on Scalable Computing, the past chair of the Computer
Science Department at IIT, and is serving and served on the editorial
board of leading professional journals in the field of parallel processing.

@ Springer

Yang Wang, currently work as
an experimentalist in School
of Computer Engineering and
Science, Shanghai University,
received his M.Sc. degree
from Department of Mechanics,
Peking University in 2008, and
B.Eng. degree from Depart-
ment of Engineering Mechanics,
Sichuan University in 2005. He
has been in Temple University
in USA from March 2013 to
March 2014 as a visiting scholar.
His research areas include High
Performance Computing, Com-
putational Fluid Mechanics, etc.

	A memory-driven scheduling scheme and optimization for concurrent execution in GPU
	Abstract
	1 Introduction
	2 Background
	3 DM estimation and GPU monitor
	3.1 DM estimation
	3.2 GPU monitor

	4 Multi-task scheduling based on DM
	4.1 scheduling architecture overview
	4.2 Scheduling plicy: RBDM
	4.3 Scheduling improvement
	4.3.1 HPFW
	4.3.2 SM-HPFW

	5 Performance metric
	6 Experiment
	7 Conclusion
	Acknowledgements
	References

