
GRID EIGEN TRUST

A FRAMEWORK FOR COMPUTING REPUTATION IN GRIDS

BY

BEULAH KURIAN ALUNKAL

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Adviser

Chicago, Illinois
December 2003

c© Copyright by

Beulah Kurian Alunkal

2003

ii

ACKNOWLEDGMENT

I would like to thank my project supervisor Dr.Gregor von Laszewski from

Argonne National Laboratories for his supervision, mentoring, patience and guidance

all through my work. His innovative and critical comments have boosted me to think

more profoundly and critically. The idea of investigating the use of Reputation has

been initiated by him. Part of the work summarized in this thesis has been presented

by him in an oral presentation at the Workshop on Adaptive Grid Middleware, St.

Louis, Sep 28, 2003. The corresponding preprint of the partial contents of that pre-

sentation is available as Argonne preprint ANL/MCS-P1109-090 and was done in

collaboration with Ivana Veljkovic and Kaizar Amin. I express my deep gratitude for

all their help and support.

This work was in part supported by the Mathematical, Information, and Com-

putational Science Division subprogram of the Office of Advanced Scientific Comput-

ing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-

Eng-38. DARPA, DOE, and NSF support Globus Project research and development.

The Java CoG Kit Project is supported by DOE SciDAC and NSF Alliance.

I would like to thank my academic supervisor, Dr. Xian-He Sun and committee

member, Dr. Cynthia Hood for their time, effort and constructive feedback on my

work. I attribute my special thanks to Professor James Dabbert, for his valuable

suggestions regarding the language and grammar. I would like to attribute my special

thanks to Ivana Veljkovic for her support in designing the mathematical model used

in the framework.

Furthermore, I would like to specially thank my parents, Kurian Alunkal and

Leela Kurian, siblings Hephsiba Alunkal and Ebenezer Alunkal for their support and

their continual reassurances that I would be able to finish my thesis successfully.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

CHAPTER

1. INTRODUCTION . 1

1.1 Trust . 2
1.2 Grid Eigen Trust Framework 5
1.3 Overview of Work . 6

2. LITERATURE REVIEW ON TRUST-BASED SYSTEMS . . 7

2.1 Grid Computing . 7
2.2 Peer-to-Peer Networks 11
2.3 Internet Applications 14
2.4 Ubiquitous Computing 16
2.5 Pervasive Computing 17
2.6 Mobile Computing 17
2.7 Others . 18
2.8 Comparative Analysis 19

3. REQUIREMENTS OF GRID EIGEN TRUST 23

3.1 Scalability . 24
3.2 Robustness . 25
3.3 Extensibility . 26
3.4 Cross-Platform Compatibility 26

iv

CHAPTER Page

4. GRID EIGEN TRUST ARCHITECTURE 27

4.1 Terminology . 27
4.2 Layered Architecture 29
4.3 Hierarchical Reputation Model 32
4.4 Components of Reputation Service 34

5. GRID EIGEN TRUST ALGORITHM 37

5.1 Notations . 38
5.2 Calculating the Entity Trust 39
5.3 Calculating the Institution Trust 40

6. IMPLEMENTATION . 44

6.1 Runtime Execution Model 46
6.2 Computation Engine 48
6.3 Reputation Grid Service 49
6.4 Visualizer . 53

7. EXPERIMENTAL EVALUATIONS 55

7.1 Grid Simulators . 55
7.2 Grid Eigen Trust Simulator 56
7.3 Network Model . 57
7.4 Initialization . 57
7.5 Execution . 58
7.6 Feedback Generator 58
7.7 Comparison Criteria 59
7.8 Experimental Scenarios 62
7.9 Limitations . 70

8. POSSIBLE EXAMPLE APPLICATIONS 72

8.1 Application . 73

9. SUMMARY AND CONCLUSIONS 76

9.1 Future Work . 77

BIBLIOGRAPHY . 78

v

LIST OF TABLES

Table Page

2.1 Technology Comparison . 21

2.2 Trust Models Comparison 1 . 22

2.3 Trust Models Comparison 2 . 22

6.1 Web and Grid Services Functionalities 45

6.2 Grid Services Additional Functionalities 45

7.1 Increment Entities in Grid Eigen Trust for USE CASE 1 63

7.2 Increment Entities in Centralized Strategy for USE CASE 1 64

7.3 Comparative Analysis Table for USE CASE 1 64

7.4 Increment Contexts in Grid Eigen Trust for USE CASE 2 66

7.5 Increment Contexts in Centralized Strategy for USE CASE 2 67

7.6 Comparative Analysis Table for USE CASE 2 69

vi

LIST OF FIGURES

Figure Page

3.1 Institutions Forming Virtual Organizations 24

4.1 Layered Architecture of Grid Eigen Trust 28

4.2 Operations to be Supported by Information Service-Part 1 30

4.3 Operations to be Supported by Information Service-Part 2 31

4.4 Hierarchical Model Used in Grid Eigen Trust 32

4.5 Overview of Reputation Services Distribution in Grid 34

4.6 Components of a Reputation Service 34

6.1 Runtime Execution Model . 46

6.2 WSDL Document by the Reputation Service-Part 1 51

6.3 WSDL Document by the Reputation Service-Part 2 52

6.4 Reputation Request String . 53

6.5 Operations Supported by the Reputation Service 53

6.6 Operations Supported by the Reputation Service 53

6.7 Reputations of Services for Different Contexts 54

7.1 Reputation Services Network . 59

7.2 Trust Computations of a Reputation Service 60

7.3 Total Computation Time for USE CASE 1 65

7.4 Total Computation Time for USE CASE 2 68

8.1 A Meteorological Example Application 74

vii

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation Term

API Application Programming Interface

DNS Domain Name Service

GET Grid Eigen Trust

GSDL Grid Services Description Language

GT2 Globus Toolkit 2.0

GT3 Globus Toolkit 3.0

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

MDS Monitoring and Discovering Service

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

TPL Trust Policy Language

UDP User Datagram Protocol

VO Virtual Organization

WSDL Web Services Description Language

viii

ABSTRACT

The Grid approach provides the ability to access, utilize, and control a variety of het-

erogeneous resources distributed across multiple domains and institutions by forming

virtual organizations. Choosing appropriate resources in such a distributed and het-

erogeneous environment brings up several challenges. Several attempts have been

made to select resources based on user requirements and resources availability, but

there has been no attempts made in Grids to provide selection of resources using the

notion of trust and reputation. We introduce Grid Eigen Trust, a new framework

that is based on the concept of dynamic trust and reputation adaptation based on

community experiences to compute reputation of resources, services and users. It has

harnessed the power of web services technologies to allow communication and flexi-

bility in the framework. Our experimental evaluations have shown the framework to

be less computation-intensive, interoperable, cross-platform, and extensible.

ix

1

CHAPTER 1

INTRODUCTION

We are moving from the era of centralized supercomputing to high-performance

computing, distributed computing and peer-to-peer networking systems. Grid ap-

proach [61] is the term that describes all of these various mechanisms that allow mas-

sive number of computers and immense computing power. Grid approach is evolving

as an important trend in high-performance computing. It exploits the advantages of

the power of distributed systems.

Since the conceiving of the World Wide Web as a tool for sharing scientific

information in the year 1990 by Tim Bernes-Lee, the applications of the Web have out-

grown the initial problem of sharing scientific data between scientists. But meanwhile

the scientists at Cern have also outgrown the developments of the Web. Cern’s major

project, The Large Hadron Collider (LHC) [15]1, is set to outweigh the boundaries that

the Web is currently providing. The LHC experiment will accelerate particles close

to the speed of light and crash them into each other using a Large Electron-Positron

(LEP) Collider. LEP data are so accurate that they are sensitive to phenomena that

occur at energies beyond those of the machine itself. This gives us a ’preview’ of

exciting discoveries that may be made at higher energies and allow us to calculate

the parameters of a machine that can make these discoveries. Even though we do

have sophisticated systems that will remove uninteresting data from the huge set of

collected data, the data suitable for analysis will still be in the order of petabytes per

year [48]. The computer power required to solve this problem does not seem to be

feasible at the Cern site using only Cern’s resources. Grid approach seems to be the

appropriate solution to such problems.

The name Grid suggests an analogy with the electrical power grids. For in-

1numbers in brackets correspond to entries in the Bibliography.

2

stance, if we wish to use electricity, we do not worry about where it comes from or

how it is fed into the wall socket. As long as we are able to plug into the electricity

socket, we are able to use the power. Similarly, in order to use the huge computing

resources, the user does not need to know where the application ran, or which storage

was used for running his applications. The vision for the Grid approach is that it

should be consistent, inexpensive, pervasive and dependable. As the Web browsers

and the Web services provide a standard interface to distributed data, the idea of the

Grid is to provide a consistent framework for distributed computing resources in the

same way.

The progress in Grid technology is promising. On the software technology

side, Globus Alliance [26] is on its way to develop frameworks for consistent, perva-

sive, inexpensive and dependable services. Hardware resources can be exploited from

thousands of supercomputing centers, educational institutions and other organizations

across the globe. As for network technology, the broadband access to the internet is

becoming ubiquitous. In order to exploit these resources for high-end scientific so-

lutions, applications that need to span over different organizations and institutions

need to be engineered. The major requirement for design of such collaborative Grid

applications is a robust framework that supports security and trust. Grid Security

Infrastructure [31] handles issues with authentication and authorization within secu-

rity. Grid Eigen Trust seeks to lay a foundation for a robust trust framework for

Grids.

1.1 Trust

Trust is a vital component in every service transaction. For instance, con-

sumers must trust that the producers will provide the service they advertise and

producer must trust the customer is able to pay for the services used. Otherwise trans-

actions cannot take place. Consider an example of a research scientist at Argonne

3

National laboratory requiring to access services of a big cluster located a research lab

in California. There are two ways this cluster can be used. The cluster could be host-

ing a service that does sophisticated scientific calculations and the scientist wishes to

use this service. On the other hand, the scientist might want to transfer an executable

application to run it on the cluster. In the first case, an authentication mechanism

which ensures the identity of the user is sufficient to allow access to the service. But

in the latter case, even though the identity assures that the scientist is authorized to

use the service, it does not guarantee that the application does not perform illegal

operation on the cluster. In this case, information regarding the user’s prior behavior

can avoid suspicion and give access to the cluster. This illustrates that notion of

trust and reputation can greatly enhance development of highly collaborative Grid

applications.

Most of our daily work takes trust into consideration even though we are not

aware of it. For instance, we board buses or trains trusting the driver will not incur

accidents, we buy groceries from stores trusting they are not poisoned and so on. The

notion of trust has several meanings associated with it. It could mean authentication

information to any conceivable system, or level of trust put on the system. Azzedin

et al. [8] has classified trust into two categories: identity trust and behavior trust.

Identity trust is concerned with verifying authenticity of an entity, whereas behavior

trust deals with trustworthiness. To understand this concept, let us consider an

example of a Grid user running an executable code on remote supercomputer using

a digitally signed certificate. The certificate only conveys his identity trust that

is concerned with authentication, verification and the authorization that entity can

access. It is handled in Grid using the Grid Security Infrastructure [31]. But it

does not convey the trust in the executable code. It could have been written by a

competent programmer. If, on the other hand, the user is previously known, then his

code may be trusted. Or if it is a new user, then as long as the creator of the code

4

does not employ elaborate methods to evade his accountability, the user can be taken

granted for risks that comes to the remote supercomputer by his usage.

Until now the trust management in Grid has been studied from the perspective

of establishing security policies and credentials and determining whether credentials

match policies. We will focus on the second type of trust the authors have specifically

referred to as “behavior trust” in the rest of the chapters. Words such as “trust” or

“reputation” refer to behavior trust.

A recent study [10] has demonstrated that appropriate feedback mechanisms

can induce calculus-based credibility trust without repeated interactions between two

transacting parties. Feedback mechanism used here is to evaluate the behavior trust.

Researchers have used data from both an on line experiment and an on line auc-

tion market to verify it. They have confirmed that buyers develop trust in sellers’

credibility partly as a result of feedback mechanisms and that trust has a substan-

tial effect on the transaction by generating price premiums. There is also an on line

Reputation Research Network system [54], where people decide who to trust, which

encourages people to be more trustworthy and discourages those who are not trust-

worthy from participating. The concept of trust has been addressed within many

disciplines including philosophy, psychology and sociology and environments such

as Information systems, E-Commerce, On line systems, Peer-to-Peer computing and

Ubiquitous Computing. Currently, it is right time and quite appropriate to apply

concept of trust to Grids.

Moving from centralized system to distributed computing, distributed com-

puting to Internet based applications, means that transaction span a range of orga-

nizations and domains. Coming to Grids, it not only involves information exchange

and sharing but also allows resources and services spanning a large number of or-

ganizations and domains to share and co-ordinate. It is quite obvious that not all

organizations or domains can be trusted to the same extent. Even though the security

5

infrastructure requirements between them may be similar, they may support different

types of security policy based on different trust relationship required by them. This

makes the trust problem complex in Grids.

1.2 Grid Eigen Trust Framework

As Laszewski points out in [5], “Community based adaptive metrics like trust

and reputation serve as building blocks to support quality of service requirements in

Grids. It is important to recognize that the self-evaluation of a service must be an

integral part of the Grid architecture in order to increase reliability and predictability.

Consider the case in which a service claims it will provide a particular level of quality

and engages in a service level agreement with another service. Assume, this service

fails to deliver the promised agreement, and the request is not fulfilled. Choosing

a more reliable service can avoid this problem.” In order to select a more reliable

service, we need information regarding the history of the prior service usage. We

have developed a new framework called Grid Eigen Trust to address this issue and

provide trust and reputation for services based on their past history. Our algorithm

uses EigenVector mathematical model to manage reputation in Grid environment.

That is why we have named it as “Grid Eigen Trust”.

To emphasize the important role that Grid Eigen Trust plays, Laszewski points

out an interesting example in [5]. “Consider the example to design a Grid environment

that agglomerates expensive and specialized resources including high-performance

servers, storage databases, advanced scientific instruments, and sophisticated services

to visualize macromolecules [65] or nano-material [62] structures. In these usage sce-

narios, we require the availability of reliable ad hoc Grid services to fulfill the necessary

quality of service requirements posed by the secured real-time use. Furthermore, the

sporadic and time limited nature of the services and resources used may result in a

lack of historical data posing severe limitations on prediction services. Grid Eigen

6

Trust seems the appropriate framework to handle such situations.”

1.3 Overview of Work

Our work includes aspects such as how can reputation be maintained among

a user, a group, a community, the Grid. It supports reputation for users, resources

as well as services belonging to an organization. Chapter 2 gives an overview of ex-

isting trust and reputation based systems that are prevalent in Grid approach, P2P

Networks, Internet applications, ubiquitous collaborations, pervasive computing en-

vironments, mobile computing and in general on line systems and search engines. It

provides comparison of various technologies and trust models. Chapter 3 describes the

background, the goals of the system, and provides some brief analysis of the system.

Chapter 4 discusses the system architecture, the various components of the system

and the required functions that each component must perform. Chapter 5 describes

the algorithm used by the framework. Chapter 6 discusses the prototype implemen-

tation of the system as a Grid service. Chapter 7 provides experimental evaluations

of our system using simulations. Chapter 8 provides an example of a meteorological

application using our reputation service and other Grid services along with Informa-

tion Services. Chapter 9 concludes the document and provides information of how

Grid Eigen Trust System may be worked into a future system for Grid computing

research.

7

CHAPTER 2

LITERATURE REVIEW ON TRUST-BASED SYSTEMS

There are a variety of systems addressing the problem of trust in various dis-

ciplines. In this Chapter we give a review of work done into five main categories. We

first discuss work already done in trust in the area of Grid computing (Section 2.1).

We then discuss few of the models of trust developed for peer-peer systems (Sec-

tion 2.2), internet applications (Section 2.3), ubiquitous computing (Section 2.4) and

mobile computing (Section 2.6).

2.1 Grid Computing

The traditional Grid Security Infrastructure (GSI) [31] from the Globus Al-

liance, uses the X.509 certificates as its authentication mechanism for security. It

has provided necessary mechanisms needed for authentication, but does not handle

all the security management issues. For instance, there is limited support for policy-

based management, dynamic authorization management and trust management in

situations where the collaborating services do not have any prior knowledge of each

other or their certifying authorities. Although GSI uses the public key infrastructure

to reliably establish the identity of other collaborators, this identity does not convey

information about the likely behavior of the principal. Identity alone therefore can-

not be used for access control decisions. For example, a digitally signed code does

not convey if it was written by competent programmers or if the certificate issuer is

an industrial spy. Because of the sensitivity and vitality of data or information, the

entities prefer to use the services only within closed box resources.

2.1.1 ConCert Software. Chang et al. [16] present ConCert software frame-

work in which the notion of certified code uphold safety, security, and privacy policies.

8

The notion of certifying code attributes trust to the code. It does so by examining

intrinsic properties of native code that is to be run on a remote machine in the Grid.

The examining of code determines if it does try to attempt to perform illegal operation

either intentionally or non-intentionally. Once the testing of the code is done, it is

assumed to be trustworthy. The authors claim that there is no need of any additional

trust mechanism to ensure safety of running code on a remote resource. Their system

provides trust by using the concept of certified code. They assert that the certified

code can be run even in trust less environment.

2.1.2 Managing Trust in Grid Networks. Azzedin et al. [7] have have

studied the importance of trust in Grid environments and have shown how the com-

puting performance in Grid can be improved by using the concept of trust and avoid-

ing the large computational overhead incurred by the security infrastructure. Since

our model exploits few of the advantages of Managing Trust approach, we elaborate

the strategy used in more detail. In [8, 9] several aspects of trust values are consid-

ered as part of the global reputation model. First, the trust values decay with time.

Second, trust relationships are based on a weighted combination of the direct relation-

ship between domains as well as on the global reputation of the domains. Finally, the

trust model should stimulate organizations to sanction entities who are not behaving

consistently in the Grid environment and who break trust relations.

The following notations are introduced in [8, 9].

• Let Di and Dj denote two domains.

• Let Γ(Di, Dj, t, c) denote a trust relationship based on a specific context c at a

given time t of Di towards Dj.

• Let Θ(Di, Dj, t, c) denote a direct relationship for the context c at time t of Di

towards Dj.

9

• Let Ω(Dj, t, c) denote the global reputation of Dj for the context c at time t.

• Let DTT (Di, Dj, c) denote a direct trust table entry of Di for Dj for context c.

It is a table that records the trust value from the last transaction between Di

and Dj.

• Let Υ(t − tij, c) denote the decay function for specific context c where t is

current time and tij is the time of the last update of DTT or the time of the

last transaction between Di and Dj.

Contexts in Grids can be numerous, varying from executing jobs, storing infor-

mation, downloading data, and using the network. The main issue in trust manage-

ment is computing Γ(Di, Dj, t, c). In [8,9], Γ(Di, Dj, t, c) is computed as the weighted

sum of direct relationship between domain and global reputation of the domain.

Γ(Di, Dj, t, c) = α ·Θ(Di, Dj, t, c) + β · Ω(Dj, t, c) (2.1)

where α, β ≥ 0, α + β = 1.

The direct relationship is affected by the time elapsed between inter-domain

contacts, hence

Θ(Di, Dj, t, c) = DTT (Di, Dj, c) ·Υ(t− tij, c) (2.2)

The global trust for domain Dj is computed as

Ω(Dj, t, c) =

n∑
k=1

DTT (Dk, Dj, c) ·R(Dk, Dj) ·Υ(t− tkj, c)

n∑
k=1

(Dk)

(2.3)

where R(Dk, Dj) is the recommender’s trust level.

10

Since reputation is primarily based on what domains say about another do-

main, the recommender’s trust factor R(Dk, Dj) is introduced to prevent cheating

through collusions among a group of domains. Hence, R(Dk, Dj) is a value between

0 and 1 and will have a higher value if Dk and Dj are unknown or have no prior

relationship among each other and a lower value if Dk and Dj are allies or business

partners.

This approach has several limitations. First, under the assumption that we

have several domains, it is costly to compute the global trust (Equation 2.3). Even

though scalability in terms of storage of trust values is improved by using the concept

of domain, it does not solve the scalability issue related to computation of global trust

value. Since the formula constitutes direct summation, the computational overhead

increases as the number of domains increase in the network. According to the formula

(Equation 2.3), we need to to consider all domains in the network for increased accu-

racy. This limits its computational scalability. Second, the authors suggest limiting

the number of contexts, to reduce the fragmentation of the trust management space,

in their study. Specifically, the authors reduced the number of contexts in the study

to only three: printing, storage, and computing. However, in Grid environments we

deal with many more contexts than just printing, storage, and computing. An ex-

ample would be the evaluation of trust and reputation for network characteristics

which is an essential part of any Grid infrastructure. So the problems existing due to

space fragmentation in implementation, when the number of context increases does

not seem to be feasible for Grids.

We conclude that, a model that scales well for large computation should be

adopted to compute global reputation, and the problem rising out of the consideration

of very large number of contexts be solved using new models or techniques.

11

2.2 Peer-to-Peer Networks

Peer-to-Peer provide an infrastructure to locate information and trade prod-

ucts. Gnutella [29] and Kazaa [42] are few of the extremely popular decentralized

peer-to-peer systems used by millions of users worldwide. The anonymous, open na-

ture of these systems, which is one of the most attractive features, offers an almost

ideal environment for malicious users to infect the network. Various trust models

being developed to reduce the risk of malicious users and inauthentic files in the

network. Few of them are discussed in the following subsections.

2.2.1 EigenTrust Algorithm for P2P Networks. A reputation man-

agement algorithm for P2P networks, called EigenTrust, is introduced in [41]. Every

peer i rates other peers based on the quality of service they provide. Therefore, every

peer j with whom i had business, will be rated with a grade sij. To globalize this

algorithm the individual grading scheme is normalized as described in [41]. Hence,

for each peer j, the normalized local trust value cij is defined as follows:

cij =
max(sij, 0)∑

j

max(sij, 0)
(2.4)

The normalized local trust values throughout the P2P domain needs to be

aggregated. This procedure can be done by means of a transitive trust mechanism:

peer i asks its acquaintances for their opinions about other peers and weighs the

opinion by the trust it places in his friends:

tij =
∑

k

cikckj (2.5)

where tij represents the trust that peer i puts in peer j based on the opinion of

his friends {k}. The coefficients are assembled into a matrix, C = [cik], hence the

equation (2.5) is written in matrix notation as shown in equation (2.6).

12

~Ti = CT ~ci (2.6)

These normalized local trust values are aggregated using transitive trust (i.e.,

T = (CT)2ci would mean that peer i is asking for opinion of his friends’ friends,

and T = (CT)3ci for the opinions of their friends). Therefore, after n iterations,

where n is the rank of the matrix, the transitive trust is obtained. Hence, T should

converge to the same vector for every peer i. Since C is a row stochastic matrix, its

largest eigenvalue is 1. Hence, the principal eigenvector of CT is computed (i.e. the

left eigenvector of C). The derivation of computation of trust shows that if the trust

ratings between different entities is written in the form of a matrix, then trust of each

entity is given by the principal eigenvector of the matrix. This algorithm converges

very fast because of the size of the second eigenvalue as shown in [32].

The eigenvalue approach chosen in 2.2.1 is explicitly designed for P2P net-

works. It basically involves only a single context, which is file downloads. It cannot

be directly applied to the underlying architecture of Grids that introduce virtual or-

ganizations providing an explicit classification of resources, users, and their multiple

contexts.

2.2.2 Reputation-Based Approach for Choosing Reliable Resources

for P2P Systems. Damiani et al. [19] have proposed a self-regulating system using

a distributed polling algorithm by which resource requesters can assess the reliability

of a resource offered by a participant before initiating the download. The algorithm

uses a specific protocol, which consists of six phases. The Resource searching phrase

consists of a Query message similar to a standard Gnutella interchange [29]. The

second phase constitutes the Resource selection and trust vote polling where the poll

responses includes a public key with which poll responses will need to be encrypted.

This ensures the confidentiality of votes and association with those who have expressed

13

them. The third phase is vote evaluation, wherein the validation of votes is done. The

fourth phase which is the Best servent check, decides on the best reliable source for

download and the final phase is resource downloading.

2.2.3 PeerTrust. PeerTrust [50] aims to develop a trust mechanism for

system in which peers can quantify and compare the trustworthiness of other peers

and perform trusted interactions based on their past interaction histories without

trusted third parties. Work includes a trust model and a decentralized and secure trust

manager. A reputation-based trust model for P2P electronic communities has [67,68]

has been developed. The model incorporates total number of transaction a peer

performs and the credibility of the feedback sources in addition to the feedback a

peer receives through its transactions with other peers.

2.2.4 Managing Trust in Decentralized Applications. This project [46]

aims to provide solutions for decentralized trust management. The main focus is on

turning current decentralized information systems into trusted environments in which

participants can accurately assess the trustworthiness of their eventual partners in

electronic exchanges [2]. Their major goal is to help P2P systems become trust-

aware environments and develop many P2P applications, ranging from file exchange or

playing chess on-line to P2P auctioning and other e-commerce oriented applications.

2.2.5 Free Haven System. The Free Haven Project (www.freehaven.net)

aims to deploy a system for distributed, anonymous, persistent data storage which

is robust against attempts by powerful adversaries. It describes a design for a pub-

lishing system that can resist the attempts of powerful adversaries to find or destroy

any stored data. Reputation in P2P Anonymity Systems [20] focuses on anonymous

publishing and explain why the systems can benefit from reputation. They describe

designing reputation systems while still ensuring anonymity.

14

2.3 Internet Applications

Several trust management solutions are discussed for trust within internet

applications [1]. Few of them are classified in the following subsections.

2.3.1 Public Key Infrastructure(PKI). The PKI [3] certificate systems

mainly deal with authentication. They authenticate the owner’s identity using a

digital certificate. A digital certificate is issued by a certification authority and it

verifies only the authentication. It does not handle the policies regarding what re-

sources or services are permitted to be accessed by a user. The two best known

certificate systems are the PGP and X.509. In PGP system [51] a user generates

a (PublicKey, SecretKey) pair that is associated with his unique ID that is of the

form(Name, EmailAddress). A user may specify the degree of trust that may be

designated unknown, untrusted, marginally trusted or completely trusted. X.509 [55]

contains more information than PGP. It contains the names of the signature schemes

used to create them and the time interval in which they are valid. It differs from PGP

in its level of centralization of information. Everyone will obtain certificates from an

official certifying authority(CA) in X.509 framework.

2.3.2 Web of Trust. In web of trust [28], trust relationships and reputations

are distributed and locally managed by each participant. The common ancestor of this

approach is probably PGP, that allows users to certify other users’ public keys without

need for a Certification Authority. A PGP public key infrastructure consisting of a

global database with public keys of participants together with claimed identities and

signatures can be treated as web of trust. As a member of this infrastructure, one

can decide whom to trust as an introducer of new keys to a lesser or stronger degree.

Communication can take place between two identities if a link can be established

between them. It employs certain heuristic to do such computations and provide

15

trust.

2.3.3 Platform for Content Selection (PICS). PICS [38] was developed

by the World Wide Web Consortium to protect children from pornography on the

Internet. The basic purpose of PICS is to provide filter between the potential viewer

and web documents. Few of the filtering softwares use PICS rating to determine

appropriateness of a given web page. The W3C has also published PICS Rules that

can filter web pages based on policies.

2.3.4 ATT PolicyMaker. PolicyMaker is a trust management application

that specifies what a public key is authorized to do. Blaze et al. [12] were one of

the pioneers to study on trust management in decentralized systems. Their main

goal was to provide a solution to the trust management problem that is independent

of any particular application or service. They developed a trust management system

called Policy-Maker, which binds public keys to access control without authentication.

PolicyMaker binds public keys to predicates in policy. Certificates and policies are

responsible for describing who are to be trusted and what are the actions they can

perform. The PolicyMaker is responsible for ensuring that described actions actually

conform to policies and certificates. Though PolicyMaker is a powerful analytical tool,

the non-programmers who are likely to develop policies may have difficulty expressing

policies using PolicyMaker.

2.3.5 Rule-controlled Environment For Evaluation of Rules and Ev-

erything Else (REFEREE). REFEREE [18] is a trust management system for

making access decisions relating to Web documents. It needs to be integrated into a

host application in order to provide trust management. It uses the PICS rating and

PolicyMaker theoretical framework for interpreting trust policies and administering

the trust protocols represented as software modules. It consists of two phases. One is

16

the bootstrap phase and the other is the query phase. In the bootstrap phase the host

application gives a set of trusted assertions. In the query phase, the host application

provides with action and required arguments such as credentials. REFREE runs the

interpreter with the policy and list of arguments and returns an answer to the host

application.

2.3.6 IBM Trust Establishment Framework. IBM Trust Establishment

Framework [34] views trust management as enabling factor for e-business. It uses

concept of certificates for managing trust. They have developed a role-based control

model that uses certificates, a Java-based Trust Establishment module and a Trust

Policy Language(TPL). The Trust Establishment module validates client certificate

and maps a role to the owner of the certificate. TPL is used to specify local policy

which defines what a role is permitted to do. This framework is used in web ap-

plications such as kids communities wherein only children can participate, access to

large medical databases for research while limiting access to authorized people only,

a business policy to select a reliable supplier or a reliable transportation. Trust man-

agement framework can be used to define policies for all such applications and enforce

the policies to achieve the goal.

2.3.7 Logic-Based Formalisms of Trust. Relational formalisms have been

used to model trust [36] The Authorization Specification Language(ASL) is used to

specify authorization rules. They also support role-based access control. It can be

used as a tool for specification and analysis of resource access trust.

2.4 Ubiquitous Computing

Study in Ubiquitous Trust [60] show that the trust is likely be an important

component in the successful deployment of ubiquitous computing environments. It

17

examines cognitive, social, institutional, societal and technological factors to be ex-

amined within the context of ubiquitous computing.

2.5 Pervasive Computing

Trust-Based Security in Pervasive Computing Environments [39] proposes a

security architecture applicable to distributed systems but geared towards pervasive

computing. The trust management involves developing security policy, assigning cre-

dentials to entities, verifying that the credentials fulfill the policy, delegating trust

to third parties and reasoning about users’ access rights. The work is similar to a

role-based access control - an approach in which access decisions are based on the

roles that individual users have as a part of an organization such as doctor, nurse,

manager or student. The user’s access rights are computed from its properties. It

allows delegation chain in which users only delegate rights to other users that they

trust. Once users are given certain rights, they are responsible for the actions of the

users to whom they subsequently delegate those rights and privileges.

2.6 Mobile Computing

In mobile computing, a mobile agent will not be restricted to a single domain

at any point of time. It will be expected to be able to navigate between different

security domains and handle them. Another issue concerned in mobile computing

is agent-to-agent interaction. Work has been done highlighting trust management

mechanisms, policies and mobility protocols but no trust framework has been designed

or implemented.

Wilhelm et al. [66] have analyzed the problem with trust in mobile agent

system. A mobile agent for e-commerce might be required to hold data related to

the service provider such as the maximum price or lowest QoS. The agent might

require information regarding multiple credit cards of user or even need personal

18

information in some situations. Finally, the agent might want to convey some very

sensitive financial information information depending on the owner of the agent. To

ensure security in such situations, they have identified four foundations as they refer

to them. The foundations constitute blind trust, trust based on (a good) reputation,

trust based on control and punishment and trust based on policy enforcement. Blind

trust indicates that there is no particular motivation or belief or trust in a principal.

Trust based on (a good) reputation, stems from the fact that the principal in question

is well known. Trust based on control and punishment means that the trust comes

from the underlying technical and legal framework to ensure the principal’s proper

behavior. Finally, trust based on policy enforcement is supposed to be negated by

appropriate punishment.

At times it is very difficult to reliably discover a policy violation. A policy

might be composed of many different rules. They establish the fact that it is not

possible to enforce rules within a policy without relying on some piece of trusted

hardware (TPE). But in order for the user to trust in these guarantees, it is necessary

that he also trust in the TPE manufacturer. So this approach only replaces the trust

with arbitrary service provider with trust in a TPE manufacturer.

2.7 Others

Reputations are also effectively used in electronic marketplaces [6, 21] as a

measure of the reliability of participants. For instance, with eBay [21], buyers and

sellers can express their votes(-1, 0, or 1) for each other after each transaction. Votes

so collected are used by eBay to provide cumulative ratings of users that are made

known to all participants. In systems like eBay, reputations are associated with

physical identities and are managed at the eBay server.

Google, which is one of the well-known applications, uses the notion of trust to

display the relevant information from internet web pages. It retrieves and displays the

19

relevant documents by sorting the web pages according to the PageRank of each web

page. PageRank is one of the methods Google uses to determine a page’s relevance

or importance. Google employs the principal eigenvector of the matrix to compute

the PageRank [40].

Reputation Systems such as CNET.com, EXP.com and expertcentral.com com-

pute reputations by taking the feedback from experts and reviewers. OpenPrivacy

(www.openprivacy.org) introduces a set of reputation services that can be used to

create, use, and calculate results from accumulated opinions and reputations. Sierra,

Talon, and Reptile [49] are OpenPrivacy projects that incorporate reputations to

enhance searching as well as to discard unwanted information. There are also com-

putational models [44], using social factors such as reciprocity, constituting social

dictum “Be nice to others who are nice to you”. The ReferralWeb system [53] helps

to explore social networks.

Our Grid Eigen Trust framework does not provide any monitoring or brokering

services for resources in Grid. It only provides a trust based framework. There

are several monitoring based systems such as Ganglia [22] used for monitoring high

performance computing systems. There are also few resource management frameworks

suggested as part of traditional Grid approaches such as Condor/G [27], Nimrod/G

[14] and AppLeS [11]. They do not consider the notion of trust and reputation in

their frameworks.

2.8 Comparative Analysis

We provide comparative analysis to differentiate various technologies such as

Grid, Peer-to-Peer, Web and Distributed Computing before comparing the models

developed for these technologies. We will then compare various trust models based

on the features and characteristics they support.

20

2.8.1 Technologies. Grid approach is not considered to be a revolution

but the latest and most complete evolution of familiar developments such as the

Web, peer-to-peer, distributed computing, computing and virtualization technologies

according to [24, 25, 33]. “Like the Web, grid computing keeps complexity hidden:

multiple users enjoy a single, unified experience, but unlike the Web, which mainly

enables communication, grid computing enables full collaboration toward common

business goals. Like peer-to-peer, grid computing allows users to share files, but un-

like peer-to-peer, grid computing allows many-to-many sharing not only files but other

resources as well. Like clusters and distributed computing, grids bring computing re-

sources together, but unlike clusters and distributed computing, which need physical

proximity and operating homogeneity, grids can be geographically distributed and

heterogeneous. Like virtualization technologies, grid computing enables the virtual-

ization of IT resources, but unlike virtualization technologies, which virtualize a single

system, grid computing enables the virtualization of vast and disparate IT resources.”

The differentiation is shown in table 2.1. We use the features such as allowing to share

information, files, and resources to distinguish these technologies. For instance, all

the technologies enable sharing of inforamtion and files in one way or the other. But

coming to sharing of resources, the web does not support sharing of resources and the

Distributed computing requires physical proximity to allow sharing of resources.

2.8.2 Trust Models. The problem with many of these trust management

systems are that they are used to identify a static form of trust (Sections 2.6, 2.3.4,

2.3.5 and 2.3.6). But it is quite important to address trust that dynamically changes

with respect to time. In most of the models the trust and reputation are taken to

be the same across multiple contexts. Few of the systems such as PGP and X.509

focus on authentication and data-integrity, but do not relate to actual need or require-

ment of trust. Work done in trust management in Grids (Section 2.1) emphasizes on

21

Table 2.1: Technology Comparison

Features Grid P2P Distributed Web
Computing

Shares Information Yes Yes Yes Yes
Shares Files Yes Yes Yes Yes
Shares Resources Yes No Yes No
Allows Collaboration Yes Yes Yes No
Requires Physical Proximity No No Yes No
Protocol Independent Yes No No Yes
Platform Independent Yes No No Yes

avoiding the overhead that comes from the current security infrastructure by pro-

viding alternative solutions to ensure trust. But some of the features supported by

security infrastructure, such as mutual authentication and single sign-on, which are

the backbones that enable Grid computing, should not be sacrificed for performance

issues.

Trust evaluation should be dynamic having a notion of learning and adapta-

tion. We have compared our approach with other approaches. The table 2.2 and

table 2.3 provides a detailed comparative analysis of the various trust models. The

distinguishing features in table 2.2 include the support of multiple or single contexts,

the amount of total computational overhead, the scalability of the model and the com-

putation methodology employed within various models. The table 2.3 distinguishes

them based on the form of trust, whether static or dynamic, the type of model, its

language dependency, dependence on Certificate Authority and specific hardware re-

quirements to support the trust model. Our work exploits advantages from two of the

existing models. One is The EigenTrust for P2P systems discussed in Section 2.2.1

and the other is Integrating Trust in Grid discussed in Section 2.1.2

22

Table 2.2: Trust Models Comparison 1

Trust Section Context Computation Scalability Computation
Model No Overhead Methodology
Grid Eigen Trust N/A multiple Negligible Yes Distributed
Trust in Grid 2.1.2 multiple Reasonable No Centralized
P2P EigenTrust 2.2.1 single Negligible Yes Distributed
PeerTrust 2.2.3 multiple Reasonable Partially Distributed
Mobile Computing 2.6 multiple Reasonable Partially Centralized
ATT PolicyMaker 2.3.4 N/A Reasonable Partially Centralized
REFREE 2.3.5 multiple Reasonable Partially Centralized
IBM Trust Mgmt 2.3.6 N/A Reasonable Yes Distributed

Table 2.3: Trust Models Comparison 2

Trust Form Type Language Certificate Hardware
Model Dependent Authority Required
Grid Eigen Trust dynamic global No No No
Trust in Grid dynamic global No No No
P2P EigenTrust dynamic global No No No
PeerTrust static global No No No
Mobile Computing static not global No No Yes
ATT PolicyMaker static not global Yes No No
REFREE static not global No No No
IBM Trust Mgmt static not global Yes No No

23

CHAPTER 3

REQUIREMENTS OF GRID EIGEN TRUST

A number of technical and behavioral factors interplay to influence success of

any design and deployment. Trust has become one such factor in computing field.

Ample trust is needed for successful deployment of various computing environments.

When facing social dilemmas or uncertainties, individuals always try to seek opinions

and trust on subjects of concern.

To apply trust frameworks to community Grids, [64], Laszewski points out that

it is important to revisit in more detail the role of virtual organizations(VOs) and

institutions participation in creating them to illustrate its complexity. In discussions

with Laszewski, we have found that as shared resources in a virtual organization

are contributed by various institutions, it is important to recognize the need of an

elaborate reputation service network that deals with the fact that resources can be

part of multiple domains and VOs. The different cases are depicted in Figure 3.1.

Here, the institutions I1, I7 and I2 are a part of virtual organizations A, B and C

respectively, whereas one part of I3 belongs to VO A and the other part belongs to VO

C. Institution I6 does not belong to any of these virtual organizations. Considering

these various possibilities, the management of reputation in Grids becomes quite

complex.

In such complex Grid settings, any given reputation framework for the Grid

must adhere to a basic set of minimal requirements. Grid Eigen Trust focuses on the

following smaller issues which are highly related to the more general issues of Grid

computing research.

• Scalability

• Robustness

24

Figure 3.1: Institutions Forming Virtual Organizations

• Extensibility

• Cross-platform compatibility

Each of these features will be described in brief in this chapter, with additional

information available with the discussion of the implementation of the system.

3.1 Scalability

There are two different aspects of scalability that Grid Eigen Trust focuses on;

one is scalability in terms of number of services, users or resources using the system,

the other is scalability in terms of computation and storage.

Grid computing enables seamless integration of computing systems, clusters,

data storage, specialized networks as well as sophisticated and scientific instruments

and softwares. Each of these provide different services and different contexts. Main-

taining and evaluating trust and reputation for each of these services for the multiple

contexts they provide is a daunting task. The system should be able to support any

new context or service that might be dynamically added to the system at any point of

25

time. The organization of these services and resources as shared domains and virtual

organizations make the problem more complex. A hierarchical based computational

model is designed to tackle this issue. Reputations are computed at various levels.

At the lowest level the reputation of each entity either a resource or service or user is

computed. The next higher layers compute the reputation of overall reputation of the

organization or institutions to which the entities belong. The highest layers handle

the reputation of virtual organizations formed.

The other aspect of scalability is related to the computational overhead that

increases as the size of the network increases. This issue is addressed using standard

mathematical model to perform computations. EigenVector mathematically model,

which is used by well known reputation systems [32,41], shows to converge fast as the

systems scales along large networks. Distributed storage mechanisms are employed

to ensure scalability in storage systems.

The system should adhere to a simple design that enables minimal overhead

in terms of computational, infrastructure, storage requirements. As the system scales

to larger networks, the computation should be distributed so that the computational

overhead is minimal.

3.2 Robustness

Loss of failure of any services should not imply loss of any reputation in-

formation. The systems need to be fault tolerant. The system should not enable

advantages for malicious entities with poor reputations to continuously change their

identities to obtain new status. To avoid false reporting a mechanism must be pro-

vided to evaluate the accuracy of the reported reputation. The framework should

be fair while calculating the reputation without giving any preference to newcomers.

Ideally, the reputation of an institution should not calculated within the institution;

rather it must be computed by combining independent evaluations from external ser-

26

vices reusing the institutions entities. We incorporate notion of automated feedback

mechanism to handle this issue by preventing human interaction and delegating the

task to specialized services.

3.3 Extensibility

It would be impractical to think that Grid Eigen Trust could, in its current

form, satisfy all of the possible requirements for a reputation system in a Grid comput-

ing environment. It is for this reason that Grid Eigen Trust System has extensibility

at the very core of the system.

Much of this extensibility comes from the use of web services technologies

such as SOAP [13] and WSDL [17] for object access and object description. Even

though HTTP [23] is currently used as transfer protocol, it is possible to use to use

other transport and invocation methods such as FTP [52], BEEP [56], SMTP [43] or

another yet undeveloped protocol to transfer the requests from one host to another.

It also allows multiple programming languages to be used although the use of SOAP

causes additional overhead over straight XML.

3.4 Cross-Platform Compatibility

The cross-platform compatibility is achieved by designing our system within

The Open Grid Services Architecture (OGSA) [26] framework. OGSA builds on

the Web services technology mechanisms to uniformly expose Globus Grid services

semantics to support integration with various underlying native platforms. OGSA

includes the use of the Web Services Description Language (WSDL) [17] to describe

the methods of a service and the Simple Object Access Protocol (SOAP) [13] to

actually utilize the system.

27

CHAPTER 4

GRID EIGEN TRUST ARCHITECTURE

Grid Eigen Trust has a layered architecture and adopts a hierarchical model

for computation of reputation. Its methodology and specifications are discussed in

detail in this chapter. First, we explain few of the terms we often use in our framework

before we present our new architecture.

4.1 Terminology

In this section we define the basic terminology that will be used throughout

the rest of the chapters.

4.1.1 Definition: Trust. Trust is an ambiguous concept that defies exact

definition. However, a notion of trust can be established with sufficient detail for

specific operational purpose.

T. Grandison and M. Sloman [1] have defined Trust in the following way.

“Trust is a complex subject relating to belief in honesty, truthfulness, competence,

reliability etc. of the trusted person or service.” It summaries to say that “trust is

really a composition of many different attributes such as reliability, dependability,

honesty, truthfulness, security, competence, and timeliness, which may have to be

considered depending on the environment in which trust is being specified.” They

define Trust in simple terms as “the firm belief in the competence of an entity to act

dependably, securely and reliably within a specified context” and distrust as “the lack

of firm belief in the competence of an entity to act dependably, securely and reliably

within a specified context.”

For our framework, we define trust as the underlying principle for a security

mechanism applicable in a global context. As such, trust is a mechanism for reducing

28

risk in unknown situations. Hence, trust has an important role as a commodity that

enables interactions in an unfamiliar environment while weighing the risks associated

with actions performed in that environment.

4.1.2 Definition: Reputation. We use the definition of Reputation given in

[5]. According to Laszewski, “Reputation refers to the value we attribute to a specific

entity, including agents, services, and persons in the Grid, based on the trust exhibited

by it in the past. It reflects the perception that one has of another’s intentions and

norms. Resource reputation provides a way of assigning quality or value in regards to

a resource.” If a resource is known to provide certain qualities over a period of time,

then it is assumed to have good reputation.

4.1.3 Entity. We do not provide a definition for an Entity. We refer to an

entity as a resource, service, or a user. We use the term entity in place of a resource

or service or a user throughout the remaining chapters.

Figure 4.1: Layered Architecture of Grid Eigen Trust

29

4.2 Layered Architecture

The layered architecture of the Grid Eigen Trust is depicted in Figure 4.1.

At the highest level in the hierarchy is the users who wish to use Grid Services.

This could be a software or a human user interacting with the system. A user in-

teracts with underlying application through any of the operating systems prevalent

such as Windows, Unix or MacOS. At the next level is the Information Services. The

users contact the information services for the details about reputation of services or

resources required. The Reputation Services form the next layer. These services pro-

vide reputation information to the Information Services so that they can be published

and available to the users. Furthermore, the Reputation Services can contact the In-

formation Services for information regarding the resources or services that were not

registered to the reputation service.

The communication between Reputation Services and Information Services

takes place through an InformationService interface. The interface is shown in Fig-

ure 4.2 and Figure 4.3. The authentication methods retrieve the essential authen-

tication information to access the information service. The binding templates and

description provides the technical details of services. The contact information and

discoveryURL provides the information about the owner of the services being pub-

lished in the registry. There is also a set and get property method that enables the

Information service to store a property that is specific to a service. It could be the

reputation value that the service holds or could be any other qos related property.

At the bottom level in the layered architecture is the set of actual services or

resources. Reputation Services compute the reputation of these entities and publishes

them in the Information Registries. The communication takes place from higher to

lower layers. There is also a possibility of users directly contacting the reputation

services for reputation information.

At the core of each Reputation Service is the Grid Eigen Trust computation

30

public interface InformationService{

/**

* get Authentication Information

* @return authentication value

*/

public String getAuthenticate() ;

/**

* Get Binding template information

* @return binding Template info.

*/

public String getBindingTemplate() ;

/**

*

* @return contact of the service

*/

public String getContact() ;

/**

* @return description of the service

*/

public String getDescription() ;

/**

* @return the URL of service

*/

public String getDiscoveryURL() ;

/**

* @return user defined property

* such as reputation

*/

public String getProperty() ;

Figure 4.2: Operations to be Supported by Information Service-Part 1

31

/**

* Set the authentication information.

* @param string

*/

public void setAuthenticate(String string) ;

/**

* Set binding template information

* @param string

*/

public void setBindingTemplate(String string) ;

/**

* Set contact information

* @param string

*/

public void setContact(String string) ;

/**

* Set description about service.

* @param string

*/

public void setDescription(String string) ;

/**

* Set the discovery URL.

* @param string

*/

public void setDiscoveryURL(String string) ;

/**

* Set the property that is associated with

* service. It could be reputation data or any

* other qos data.

* @param string

*/

public void setProperty(String string);

}

Figure 4.3: Operations to be Supported by Information Service-Part 2

32

engine. The computation engine uses an hierarchical reputation model for computing

the reputation.

4.3 Hierarchical Reputation Model

The hierarchical reputation model used in our computation engine is shown in

Figure 4.4. This model was designed with suggestions from Laszewski. At the lowest

level in the hierarchy are the entities. Entities support various contexts. The trust

associated at this level with the entities is named as Entity Trust. The next higher

level constitutes the institutions to which entities belong. Institution Trust refers to

trust attributed to institutions. The top level constitutes Virtual Organizations and

the trust attributed to them is referred to as VO rust.

Figure 4.4: Hierarchical Model Used in Grid Eigen Trust

4.3.1 Entity Trust. We establish a trust value for each entity based on

various contexts it supports within an institution. This trust is termed as Entity

Trust.

4.3.2 Institution Trust. We use the term Institution Trust for referring to a

trust value for each institution. Institution Trust differs from other context trust due

to the fact that it agglomerates several context trust values to a single one. It reflects

33

a general opinion of the reliability of an institution to provide accurate information

on what resources this institution supplies. Due to this simplification a institution

trust between institutions can be calculated quickly to obtain the global trust.

4.3.3 VO Trust. We attribute trust value to virtual organizations based on

the institution trust of the institutions that constitute the virtual organization. We

term this trust as VO Trust.

Details about the computation are discussed in the algorithm explained in

Chapter 5. We have addressed the complexity of computing reputation for each con-

text by using this notion of hierarchy in computing reputation. To illustrate this

concept, let us consider the scenario shown in Figure 4.5. In this scenario, two VOs

are depicted containing two institutions each. Each institution has a set of entities,

specifically physical resources, services, and users. Each of these entities support mul-

tiple contexts. The total number of entities belonging to these virtual organizations

along with the context they support might be large. The problem becomes more com-

plex as the number of institutions increase. Our implicit hierarchical model handles

this issue and breaks the problem of reputation computation to three levels as already

mentioned. By using such a kind of approach, we are able to break the unmanage-

able complex problem into simple manageable trust computations. Our reputation

services uses this hierarchical model.

There can be a number of reputation services running within a virtual orga-

nization or institution. Each reputation service is responsible for a subset of entities

within the hierarchy. The reputation services compute the reputation in a collab-

orative, but distributed fashion. Reputation values are distributed among various

reputation services in the network in order to increase lookup speeds. In order to

calculate and maintain the reputation, each reputation service uses the Grid Eigen

Trust algorithm discussed in Chapter 5.

34

Figure 4.5: Overview of Reputation Services Distribution in Grid

4.4 Components of Reputation Service

Apart from the computation, the reputation service is also responsible for

several other functions such as data gathering, information storing and retrieval. The

various components of the reputation service is shown in Figure 4.6. It consists a

collection manager, calculation engine, data collection manager, and reporter.

Figure 4.6: Components of a Reputation Service

When an application submits a request for a service, cast in a qualitative

statement, to a reputation service, the reputation service evaluates the statement and

computes the reputation for all the entities providing the required service using the

heuristics explained in Chapter 5. It contacts other reputation services, if required,

35

and returns the information regarding the services and their reputations back to the

requester. The requester can decide to select the most appropriate service by looking

at the reputation values. This procedure can be easily modified for enabling and

enhancing automated resource selection decisions in the Grid. We describe each of

the components of a reputation service and the functionalities they support in the

following subsections.

4.4.1 Data Collection Manager. The collection manager is responsible for

evaluating the quality statement describing the requested reputation, and collecting

relevant data from the Information Services and entities such as resources, services

and users. It gives the collected data to the computation engine. There are two

different types of data that needs to be collected. One is the feedback data that is

required for updation after using the services. The other one is the data related to

registration information of new services. The important feature of the this component

is that the data that is collected needs to be authentic. Automated data collection

mechanisms can be deployed to ensure the authenticity.

4.4.2 Computation Engine. The computation engine is the focal point in

the architecture. It computes the Entity Trust, Institution Trust and VO Trust. It

uses the heuristics explained in Chapter 5 to compute reputation values.

4.4.3 Storage Manager. The storage manager is responsible for the storage

of reputation values. There are two kinds of data which we wish to store. One is the

data required by computation engine which we call Computational data. The second

one is the Reputation data, which is the final reputation values computed at any

given time. We handle the Computational data by storing the trust values in a

distributed fashion within each reputation service. Reputation data requires type of

storage that ensure reliability and avoid loss of data in case of occurance of a system

36

or service failure. The Information Registry services or file based systems is used for

such storages.

4.4.4 Reporter. The reporter is responsible for retrieving the required

reputation information. It contacts the storage manager to report the reputation

values whenever queried by some entity in the Grid.

37

CHAPTER 5

GRID EIGEN TRUST ALGORITHM

Grid Eigen Trust algorithm is designed considering few main characteristics of

trust. The definition of trust is given in Chapter 4. Here we give the characteristics

of trust that we considered in designing our algorithm. We use the most often used

names John, Mary and Peter to explain the characteristics. They can be given as

follows:

• Trust is limited to a specific context. John trusts Mary to use his computer

does not mean he trusts her to handle his finances.

• Trust changes with respect to time. The trust John acquired five years ago in

a specific context might not be the same as the trust attributed to him in the

same context, a year ago.

• Trust is transitive. If John trusts Mary, and Mary trusts Peter, then we can

conclude that John trusts Peter.

• Social trust affect the trust factor. A person is more likely to be trusted if he

is trusted by other people. The trust of other people provide a basis of one’s

trust.

• Trust is dynamic. Managing trust involves collecting information, monitoring

the current relations and evaluating the trust.

• The degree of trust that is how much we trust is important. Quantification of

trust is important and should be evaluated on mathematically sound basis.

Now we need to convert these formulations to mathematical formulas as re-

ported in [5]. An hierarchical model which divides the computation of reputation at

38

various levels is proposed as discussed earlier. By combining Institution Trust of the

institution, which is not present in the existing trust models, and Entity Trust within

institution (for specific context c at time t), we can derive a reliable trust value for the

given entity for a specific context at a given point of time. We apply the eigenvector

mathematical model to compute the Institution Trust of an institution. Currently, we

compute the reputation of a virtual organization as weighted sum of the reputations

of all institutions that belong to the virtual organization.

To describe our GridEigenTrust algorithm, we use the notations described in

the next section.

5.1 Notations

• Let Ei denote an entity and Ii and Ij denote two institutions.

• Let Γ(Ei, t, c) denote total trust based on a specific context c at a given time t

of entity Ei.

• Let Θ(Ei, t, c) denote direct trust for the context c at time t of Ei.

• Let κ(Ii, Ij, t) denote direct trust at time t of Ii towards Ij.

• Let Ω(Ei, t, c) denote the global trust of Ei for the context c at time t.

• Let Υ(t−tij, c) denote the decay function for specific context c where t is current

time and tij is the time of the last update of reputation value.

There are two main computations involved. First is the calculation of Entity Trust

which is at the lowest level as described in Section 4.3. The second one is the computa-

tion of Institution Trust between institutions. The higher levels of trust are computed

39

based on the Institution Trust and as per the policies defined within virtual organi-

zations. These values are computed at the application level. Here we discuss the

computation of the Entity Trust and Institution Trust.

5.2 Calculating the Entity Trust

All entities that use resources or collaborate with users within another insti-

tution, grade the quality and reliability of the requested entity. When the entity

represents a certain resource or service, we usually call this trust value service repu-

tation. When entities represent users, this value represents a user reputation, trust,

or reliability parameter associated with the user. The overall grade of the entity is

established as the weighted sum of the previous grade (which decays with time) and

the new grade. It is also important to consider how much we trust the institution

from which the remote entity (i.e. entity that gives the grade) originates its requests.

If Θp(Ei, ti, c) is the previous cumulative grade established at time ti for entity

Ei within context c, Gj(t, c) is a new grade given by entity from institution Ij and

T (Ij) institution trust of institution Ij, overall new cumulative grade Θ(Ei, t, c) can

be calculated as

Θ(Ei, t, c) =
α(c) ·Θp(Ei, ti, c) ·Υ(t− ti) + β(c) · T (Ij) ·Gj(t, c)

α(c) + β(c)
(5.1)

where α(c), β(c) ≥ 0.

The parameters α(c) and β(c) reflect the context importance of the latest grade

the entity received.

If an institution just joined the Grid, the initial trust values will be set to a

low initial value since the trust must be earned first. However, if the entity for which

we assign the trust is sufficiently similar to others in the already existing Grid, an

40

initial value can be obtained from these already integrated entities. We chose the

lowest trust value. However, it will be penalized with a linear correction function.

Let Θ0(Ei, t0, c) denote the initial trust value for an entity Ei within our insti-

tution for a context c. Let Θ(Ei, ti, c) denote the cumulative reputation value gathered

from other entities (defined by equation (5.1). Then the initial trust of the entity is

the weighted sum between these two values:

Γ(Ei, t, c) =
γ(c) ·Θ0(Ei, t0, c) + δ(c) ·Θ(Ei, ti, c)

γ(c) + δ(c)
(5.2)

where γ(c), δ(c) ≥ 0.

5.3 Calculating the Institution Trust

As the number of organizations increase, it becomes very difficult if we use

weighted summation formulas to compute reputation. So we take take the advantage

that the trust ratings can be normalized and considered as a matrix. Because the

matrix is stochastic, the right eigenvector associated with the eigenvalue of 1 is the

stationary distribution associated with the stochastic matrix. The values in the eigen-

vector represent the reputations of the institutions. The derivation of computation

of trust given in EigenTrust algorithm 2.2.1, shows that if the trust ratings between

different entities is written in the form of a matrix, then trust of each entity is given

by the principal eigenvector of the matrix. So we could directly compute eigenvectors

to get the reputation values. This is the reason we use EigenVector Mathematical

Model to compute institution trust. Unfortunately, the values thus obtained are often

global in nature, and lack context dependence. We solve this issue by using the Entity

Trust in conjunction with the Institution Trust.

The institution trust of institution Ii toward institution Ij reflects the opinion

of institution Ii about the quality and trustworthiness of information institution Ij

41

supplies. Therefore, we introduce global context, besides maintaining individual con-

texts (compare Section 2.1.2). In case we do have a priori knowledge about the initial

trust information, we assign this value at initialization time of our algorithm.

Let the initial value of trust be represented as C(Ij). Institution trust should

be obtained through the weighted sum of direct experience and global trust value of

institution Ij.

Direct experience can be calculated in the same way as in equation 5.1. It is

a normalized weighted sum between C(Ij), the cumulative grade from the previous

period κp(Ii, Ij, tij) and the new grade G(t).

Users within institution Ii grade the reputation of a certain entity Ej within

institution Ij with grade Φ(Ej). Also, institution Ij advertises the quality of service of

this entity with grade ∆(Ej). Then, institution Ii will grade reliability of information

given by institution Ij with grade G(t). For determining grade G(t) we have three

cases:

• If Φ ∈ [∆− ε, ∆− ζ], new grade G(t) is 1.

• If Φ > ∆− ζ, new grade G(t) is bigger than 1.

• If Φ < ∆ − ε, new grade G(t) is less than 1, depending on how much the Φ

differs from ∆

Direct experience that institution Ii has with Ij at some time t, κ(Ii, Ij, t) can

be calculated in the same way as in equation 5.1. It is a normalized weighted sum

between C(Ij), cumulative grade from the previous period κp(Ii, Ij, tij) and the new

grade G(t).

κ(Ii, Ij, t) =
α · C(Ij) + β · κp(Ii, Ij, tij) ·Υ(t− tij) + γ ·G(t)

α + β + γ
(5.3)

where α, β, γ ≥ 0.

42

Institution trust of institution Ij, can now be calculated using the EigenTrust

methodology explained in the Section 2.2.1. If we replace sij with κ(Ii, Ij, t) in Section

2.2.1, we obtain cij as follows:

cij =
max(κ(Ii, Ij, t), 0)∑

j

max(κ(Ii, Ij, t), 0)
(5.4)

The initial vector also needs to be replaced as ~T0 = t0(i), t0(i) = C(Ii). Now

we have all the ingredients to apply a power iteration for computing the principal

eigenvector of CT , which represents global institution trust values for institutions in

Grids.

Similar to the approach in 2.1.2, the overall computation of the reputation can

be given using the formula (5.5).

Γ(Ei, t, c) = α ·Θ(Ei, t, c) + β · Ω(Ei, t, c) (5.5)

We can summarize the basic steps of the algorithm as follows:

Entity Ei within institution I1 wants to use entity Ej within institution I2 in

the context c at time t.

• Consider the institution trust of I2 computed using the EigenTrust algorithm.

• Ask I2 about Θ(Ej, t, c), the trust value of entity Ej within institution I2.

• In calculating the overall trust value for entity Ej, in formula (5.5) replace

Ω(Ej, t, c) with institution trust of I2 times Θ(Ej, t, c).

• Compute the overall trust for the entity Γ(Ej, t, c) with formula (5.5).

After computing the trust values, we can compare them to suggest the re-

source with highest reputation. Various modifications, such as the introduction of a

43

statistical selection algorithm based on random variables, are obviously possible.

5.3.1 Advantages. This combined approach has several advantages. First,

the EigenVector mathematical model used for computing Institution Trust converges

rapidly. The proof is given in [32]. Secondly, it introduces less computational over-

head than directly computing global trust values for individual entities within every

context. The reason is that the number of values for computation is not too large

since we are computing global trust values of institutions through hierarchies, not on

overall pool of individual entities for specific contexts. The global reputation of the

institutions computed affects the global reputation of each of the entities for each of

the context they support, thus ensuring that global trust is computed for individual

entities. We provide the experimental evaluation of our strategy with centralized

summation strategy using simulations in Chapter 7.

44

CHAPTER 6

IMPLEMENTATION

We have provided a prototype implementation of the system along with the

specification of Grid Eigen Trust. This chapter documents the design of the system

and implementation decision of that design. The implementation for Grid Eigen Trust

is built on the following tool sets:

• Globus Toolkit 3.0

• Java CoG Kit 1.1

• Java (JSDK 1.4.2)

The Globus Toolkit is a software toolkit that allows us to program and de-

velop Grid-based applications. Globus Toolkit 3.0 (GT3) [25] is a usable implemen-

tation of the formal and technical specification OGSI [57] of the concepts described

in OGSA. The Open Grid Services Architecture (OGSA) [26] defines common and

standard architecture for Grid-based applications using concept of Grid Service as

its core. Grid Services are an extension of Web Services. Web services is a dis-

tributed computing technology that allows to create client/server applications. They

are platform-independent and language-independent. Web services are rapidly matur-

ing based upon key technologies of SOAP, WSDL and UDDI. The table 6.1 provides

a summary of important services provided by each of them in Web Services. Similar

technologies used in Grid Services are also summarized in the table 6.1.

There are features lacking in Web services, such as persistence, notification

and life-cycle management, which make them less versatile. Grid Services provides

functionalities supporting these features. The features supported by Grid Services

apart from the ones supported by Web Services are summarized in the table 6.2

45

Table 6.1: Web and Grid Services Functionalities

Name Web Services Grid Service Functionality
Service Discovery UDDI MDS3 Find Web Services
Service Description WSDL GSDL Describe Web Services
Service Invocation SOAP SOAP Invoke and Pass messages.
Transfer Protocol HTTP,FTP HTTP,FTP Transmit messages

BEEP,SMTP BEEP,SMTP

Table 6.2: Grid Services Additional Functionalities

Services Functionality
Factory Create transient services
Life-Cycle management Maintain service lifetime (creation, destruction)
Notifications Subscribe and Notify.
Service Data Index capabilities and characteristics of services

We have implemented Grid Eigen Trust as a Grid Service which supports

the above mentioned functionality. Due to its OGSA service orientation, it can be

easily integrated with other services such as a registry service or a brokering service.

A registry could be a distributed service that integrates information from several

sources. A brokering service could be a QoS service that negotiates with a variety of

service providers to identify resources that meet user requirements. Chapter 8 shows

an example application that involves integration of Grid Eigen Trust with other Grid

and information services.

Java CoG Kits [63] provide good support for developing client side interfaces

to the services provided in the Globus Toolkit. It can be used for formulating tasks

that are generic in regards to GT2 and GT3 technologies. We have used this tool to

generate tasks in our simulator. More details of how we use it are given in Section 7.2.

Java [37] is a cross-platform object oriented programming language that was

first initiated by Patrick Naughton, Mike Sheridan, and James Gosling of Sun in 1991.

The decision to implement Grid Eigen Trust in Java was straight forward since there

46

are only two languages which provide appropriate bindings required for Grid services.

One is Java and the other is Microsoft’s .NET, which is not mature or well supported

as Java. In addition, the object oriented programming features of Java helps in writing

code that is re-usable, easy to read and maintain. Modularity and information hiding

can be achieved by using encapsulation. It has built in exception handling procedures

that helps to produce robust applications and components. In short Java is known

for producing portable, architecturally neutral, robust, and dynamic code. Another

great advantage of Java is that it is an open source language. The limiting factor of

using Java is with its execution speed. Since Grid Eigen Trust framework does not

demand high speed, Java was chosen for its implementation.

Figure 6.1: Runtime Execution Model

6.1 Runtime Execution Model

Figure 6.1 shows the runtime execution model supporting interaction with

other specialized services. It interacts with users to retrieve, update and acquire rep-

utation values. On the other hand, it also communicates with the Information Services

to publish the reputation values so that other services can directly retrieve from the

information services. Since it runs within the OGSA framework, it can interact with

any other OGSA-based Grid Service either for feedback or for reporting reputation

information. The runtime model constitutes different phases of a reputation service.

47

The various phases describe the life cycle of a reputation service. The four different

phases in a reputation service are described in the following subsections.

6.1.1 Creation Phase. The system begins by starting up an instance of

a Reputation Service. The instance fetches the initial reputation values of entities

belonging to an institution or organizations directly from Information Services or

from an external user. This instance tries to find out if there are any other instances

of the reputation services running in its domain or vicinity and tries to reference them

as neighbors.

6.1.2 Registration Phase. An entity can register to the Reputation Ser-

vice at any point of time. It needs to provide information regarding its name, the

contexts it supports and the various initial reputation values it attributes to each of

these contexts. It can be registered as part of an existing institution, which is regis-

tered under the reputation service, or be registered under a new institution. If the

registering entity does not specify the institution ID, then the service creates a new

ID for the institution and registers the entity under it.

6.1.3 Updation Phase. Reputation values are updated in this phase. Rep-

utation Service get the feedback either from other services which are OGSI based

or directly from users. Whenever an entity being registered to Reputation Service

is being used, it has to get a feedback either from brokering services which manage

scheduling or directly from users who use the services. This can be designed based on

the application requirement. We can exploit the notification mechanisms supported

by OGSA framework to automatically fetch feedback to Reputation Service.

Reputation Service supports a parameter for frequency of update.This param-

eter is used to decide how often the reputation values needs to be updated. Currently

this parameter can be set by the user directly. More sophisticated or automated

48

mechanisms given in Performance Analysis [35] can be used to automate this process.

Our current implementation does not use this methodology. It allows the user to set

the time frame as to how often it is to be updated.

6.1.4 Termination Phase. In this phase, the service updates all the repu-

tation values to the information services before terminating.

6.2 Computation Engine

The major part of the implementation constitutes the computation engine,

which is at the core of Grid Eigen Trust framework. There are two main computations

performed within this engine. One is Entity Trust that is reputation of each entity for

specific context. The other is Institution Trust that is the reputation of institution

which is independent of context.

6.2.1 Entity Trust. Entity Trust is updated every time a service is being

used by another entity. Its updation does not require reputation services to interact

with other reputation service instances.

6.2.2 Institution Trust. Institution trust is updated only based on the time

frame set within the Computation Engine. It requires that the reputation service

compute the value in a distributed manner. Our implementation adopts the Dis-

tributed EigenTrust algorithm developed for P2P systems [41] to calculate the global

reputation value using EigenVector Mathematical model. Once we do the basic com-

putations as required by our algorithm, we perform the computation in a distributed

manner. The steps can be given as follows:

• Each institution stores its own institution trust and a set of trust values belong-

ing to its neighboring institutions which uses its resources or services.

49

• Using the algorithm explained in Chapter 5 the computation engine calculates

the weighted trust value of each institution using the previous value, the feed-

back values collected and importance given to initial reputation values if present.

• Each institution sends this information to all the other institutions about which

they have opinion.

• The power iteration continues till the values converge.

• The resultant values computed constitute institution trust values of each insti-

tution.

The Distributed EigenTrust algorithm [41] has proved to have several advantages.

Since there are computations to be done are distributed among various reputation

services, it is not computational intensive. The algorithm has shown to converge very

fast and the reason for the fast convergence is discussed in [32].

6.2.3 Virtual Organization Trust. This trust is computed based on the

policies written within virtual organization. It is computed as the weighted sum of

institution trust of institutions multiplied by the proportion to which they contribute

to the virtual organization. This trust is rarely used because the virtual organizations

are dynamic in nature.

6.3 Reputation Grid Service

We have implemented our system within the OGSA framework as discussed

in Section 6.1. It uses the Grid Eigen Trust algorithm to manage reputations. As the

reputation service operates in a Open Grid Service Infrastructure (OGSI), the service

has a number of ‘operations’ can be used by other components.

50

6.3.1 Operations. The operations supported by reputation services are

implemented as an API with a set of primitives, briefly described as:

• register: is invoked when a new entity requires to be registered to reputation

service for its reputation to be computed.

• request: is invoked when other services require reputation information.

• update: to update an existing trust value using the feedback.

• unregister: is invoked when a service does not want to be considered for repu-

tation calculation.

With this set of methods any Grid service can interact with the Reputation Service,

either for using reputations or for registering or updating the trust values.

6.3.2 Design. The design of reputation service is based on object-oriented

methodology. The advantage is that it promote reuse of classes for further extensions

of the service in future. The operations described in Section 6.3.1 are exposed in the

service interfaces as Grid service operations as as shown in the WSDL Listing 6.2

and 6.3. The WSDL document gives the details about the signatures of the methods

supported by the service. The namespace for the Grid Service is defined in the

beginning of the document. OGSI namespaces are included next, which represents

the OGSI bindings. The next important step is to import all the OGSI-specific types,

messages and portTypes. There are four operations defined: register, unregister,

update and request. By looking at the message types, any other service can invoke

these methods.

6.3.3 Input/Output XML Strings. Requests to the reputation service

are made in the form of XML string. We use simple xml notations to collect and

51

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://reputation.cog.globus.org/Reputation"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:gridservicesoapbinding="http://www.gridforum.org/namespaces/2003/03/OGSI/bindings"

xmlns:impl="http://reputation.cog.globus.org/Reputation"

xmlns:intf="http://reputation.cog.globus.org/Reputation"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import location="../../ogsi/ogsi_bindings.wsdl"

namespace="http://www.gridforum.org/namespaces/2003/03/OGSI/bindings"/>

<wsdl:types>

<schema targetNamespace="http://reputation.cog.globus.org/Reputation"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="requestReputation">

<complexType>

<sequence>

<element name="in0" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="requestReputationResponse">

<complexType>

<sequence>

<element name="requestReputationReturn" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="updateReputation">

<complexType>

<sequence>

<element name="in0" type="xsd:string"/>

</sequence>

</complexType>

</sequence>

</complexType>

</element>

<element name="updateReputationResponse">

<complexType>

<sequence>

<element name="updateReputationReturn" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="registerReputation">

<complexType>

<sequence>

<element name="in0" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="registerReputationResponse">

<complexType>

<sequence>

<element name="registerReputationReturn" type="xsd:string"/>

</element>

Figure 6.2: WSDL Document by the Reputation Service-Part 1

52

<element name="unregisterReputation">

<complexType>

<sequence>

<element name="in0" type="xsd:string"/>

</sequence>

</complexType>

</sequence>

</complexType>

</element>

<element name="unregisterReputationResponse">

<complexType>

<sequence>

<element name="unregisterReputationReturn" type="xsd:string"/>

</sequence>

</complexType>

</element>

</schema>

</wsdl:types>

<wsdl:message name="unregisterReputationRequest">

<wsdl:part element="impl:unregisterReputation" name="parameters"/>

</wsdl:message>

<wsdl:message name="registerReputationResponse">

<wsdl:part element="impl:registerReputationResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="unregisterReputationResponse">

<wsdl:part element="impl:unregisterReputationResponse" name="parameters"/>

</wsdl:message>

</wsdl:message>

<wsdl:message name="requestReputationRequest">

<wsdl:part element="impl:requestReputation" name="parameters"/>

</wsdl:message>

<wsdl:message name="updateReputationRequest">

<wsdl:part element="impl:updateReputation" name="parameters"/>

</wsdl:message>

<wsdl:message name="requestReputationResponse">

<wsdl:part element="impl:requestReputationResponse" name="parameters"/>

</wsdl:message>

<wsdl:message name="registerReputationRequest">

<wsdl:part element="impl:registerReputation" name="parameters"/>

</wsdl:message>

<wsdl:message name="updateReputationResponse">

<wsdl:part element="impl:updateReputationResponse" name="parameters"/>

<wsdl:part element="impl:updateReputationResponse" name="parameters"/>

</wsdl:message>

<wsdl:portType name="ReputationPortType">

<wsdl:operation name="requestReputation">

<wsdl:input message="impl:requestReputationRequest"/>

<wsdl:output message="impl:requestReputationResponse" />

</wsdl:operation>

<wsdl:operation name="updateReputation">

<wsdl:input message="impl:updateReputationRequest"/>

<wsdl:output message="impl:updateReputationResponse" />

</wsdl:operation>

<wsdl:operation name="addReputation">

<wsdl:input message="impl:registerReputationRequest"/>

<wsdl:output message="impl:registerReputationResponse"/>

</wsdl:operation>

<wsdl:operation name="removeReputation">

<wsdl:input message="impl:unregisterReputationRequest"/>

<wsdl:output message="impl:unregisterReputationResponse"/>

</wsdl:operation>

</wsdl:portType>

</wsdl:definitions>

Figure 6.3: WSDL Document by the Reputation Service-Part 2

53

<service_request>

<service_name>Math service</service_name>

<service_context>3</service_context>

<service_reputation>50</service_reputation>

<service_cost>8</service_cost>

</service_request>

Figure 6.4: Reputation Request String

<service_reply>

<institution_id>1</institution_id>

<service_reputation>0.94</service_reputation>

<service_context>3</service_context>

<service_id>1068586241634</service_id>

</service_reply>

Figure 6.5: Operations Supported by the Reputation Service

<service_update>

<service_name>Math service</service_name>

<service_context>3</service_context>

<service_reputation>78</service_reputation>

<service_id>1068586241637</service_id>

<institution_id>1</institution_id>

</service_update>

Figure 6.6: Operations Supported by the Reputation Service

send reputation requests and responses. Sample input, output and update strings are

shown in Figure 6.4, Figure 6.5 and Figure 6.6 respectively.

In the output string, here only one listing is shown, but there could be multiple

such replies concatenated together. The client can parse this simple xml string and

display the output in any desired format. Optionally these values can be directly

given to other services for automated resource selection.

6.4 Visualizer

A visualizer is also developed using to view the changing reputation values of

various entities belonging to a reputation service. A simple sample screen-shot show-

54

ing 20 services with three context that each of them support is shown in Figure 6.7.

There can be thousands of such entities. Visualization can be changed as per appli-

cation requirements. User specific selections can be developed as part of graphical

user interface to make viewing more flexible. As the simulation cycle progresses, the

chart shows updated reputation values.

Figure 6.7: Reputations of Services for Different Contexts

55

CHAPTER 7

EXPERIMENTAL EVALUATIONS

In order to evaluate Grid Eigen Trust systems and understand its behavior

when the number of users, resources and services increase within virtual organiza-

tions we have developed a simulator. There are several simulators present in Grid

community. But none of them provides an environment to simulate our system. A

survey of existing simulators are given in Section 7.1.

7.1 Grid Simulators

Existing Grid simulators include Bricks, MicroGrid, SimGrid and GridSim.

• Bricks: The Bricks [4] focuses on client/server interaction in global high perfor-

mance computing systems. It allows for a centralized scheduling strategy, which

does not scale well to large Grid systems. Our system is not a scheduler neither

a replacement for scheduling. As such we could not use Bricks to simulate our

system.

• MicroGrid: MicroGrid [47] is an emulator modeled after Globus. It allows

for the execution of Globus enabled applications on a virtual Grid system. It

imposes severe overhead in development as it requires the construction of an

actual application to test the scheduling systems. The MicroGrid is also a

scheduling simulator. Since it is application dependent it does not provide the

flexibility to modify it to provide to our requirements, we could not extend it

to run our simulations.

• SimGrid: SimGrid [59] is designed to simulate application scheduling. It is

restricted to a centralized scheduler and time-shared systems. Simulating com-

peting users, applications and schedulers each with their accompanying policies

56

can only be done by manually extending the simulator. Using SimGrid, we get

the advantages of event-modeling required for schedulers. Since our system is

not a scheduler we do not derive advantages using SimGrid.

• GridSim: GridSim [30] allows for the simulation of distributed schedulers, and is

specifically aimed at simulating market-driven economic resource models. While

its computational resource models are highly configurable, it only supports a

basic notion of network connectivity. It does not simulate the underlying net-

work’s dynamics to a high degree of accuracy which is required when we wish

to evaluate the performance. Since it is mostly used for simulating clusters, we

do not find it appropriate to use for our framework.

• GridG: Recently research is being done in developing a tool called GridG [50],

that is used for synthesizing realistic computational Grids. It produces struc-

tured network topologies that obey the power laws of Internet topology. This

work is still in progress.

7.2 Grid Eigen Trust Simulator

Many of the simulators discussed in Section 7.1 are designed towards testing

resource schedulers. Since we do not find advantages extending these simulators, we

have developed a simulator that simulates feedback mechanisms for Grid Eigen Trust

framework. We assume that these feedbacks currently generated by the simulator are

to be produced in real-time using specialized services such as quality of service man-

agers. The values can be set optionally using human interaction from applications.

Simulations were basically done to test the behavior of Grid Eigen Trust system in

Grid networks with multiple virtual organizations in various settings.

57

7.3 Network Model

The simulator simulates a number of reputation services running in several

virtual organizations. Each reputation service has one or more institutions associated

to it. These institutions are interconnected to each other by a power-law network. The

reason we use the power-law networks for our simulation is due to the fact that the

future Grids will be embedded in the Internet topology, thereby follow their power-

law networks. The World Wide Web, Gnutella [29] and The Electrical Power Grid

follow the power law network topology. In a power-law network, a new node always

tries to connect to the node which has largest number of other nodes connected to it.

This means that a new node tries to connect to a highly interconnected node.

For network related assumptions such as network bandwidth and latency we

run simulations using values based on the observations made in a measurement study

[58] in peer-to-peer systems for real networks. More specific details are given in

Section 7.7.

7.4 Initialization

The simulator generates m i number of reputation services and n institutions

for each reputation service where m i and n are specified by the user. If these val-

ues are not specified, then it generates the reputation services and institutions based

on the number of entities that requires to be simulated. Each institution consists

of users, resources and services. A user or resource or service is implemented as an

entity. The simulator generates specified number of entities for each of the institu-

tions. It generates a specified number of contexts for each entity. A context with

respect to a resource refers to computing power, storage capacity, network bandwidth

or application specific functionalities. A context with respect to a user refers to pro-

grammer, designer, or any such user-defined role. For entities representing users, it

58

also generates number of tasks as specified. These tasks are generated using the Java

CoG Kit 1.1.

7.5 Execution

The simulation proceeds in simulation cycles. Each simulation cycle consists

of retrieving all the tasks requests and simulating feedbacks. A simple brokering is

performed to match the requests with available resources or services. Actual usage of

resource is not simulated, only the feedbacks are being simulated. Every entity that is

assigned to use a resource or service, sends a feedback to the system, which updates

the reputation value of the resource. The process continues until all the tasks are

completed. Entity Trust is updated whenever a feedback is received but Institution

Trust does not get updated each time a feedback is received. There is a frequency of

update parameter within the service that determines how often the Institution Trust

needs to be updated when running the reputation service in real time. However when

using the simulator, we update the Institution Trust for every simulation cycle.

7.6 Feedback Generator

The feedback in the system is simulated using a random number generator.

The feedback values generated are always between the range of 0 and 100. If an

entity is presumed to have a very good reputation, there is very less probability that

an entity sends a very low feedback value to the same entity in a short span of time.

Two extreme feedback values (one very high and one very low value) on same entity

within a short span of time is unreal. For this reason, we have taken this possibility

into consideration while generating a random feedback value.

59

7.7 Comparison Criteria

We are particularly interested in comparing our distributed EigenVector strat-

egy with a centralized summation strategy as we refer to it. In centralized sum-

mation strategy which similar to the approach taken in Section 2.1.2, EigenVector

mathematical model is not used for computing global reputation. Instead of perform-

ing distributed computation among various services, the values are accumulated to

a single server where the computation is done. To illustrate our comparison criteria

and the methodology used to measure time, we will describe how we have set up our

simulation tests.

Figure 7.1: Reputation Services Network

Figure 7.1 shows a number of reputation services interconnected to each other

being started up by the simulator. Details of how these services might be running

within virtual organizations or institutions is elaborated in Section 4.3. We only focus

on the interconnectivity and communication issues for evaluating the computational

time using simulations. Each of the reputation services shown in Figure 7.1 compute

VO Trust, Institution Trust and Entity trust as shown in Figure 7.2 and explained in

Section 4.3.

60

Figure 7.2: Trust Computations of a Reputation Service

Since the computational time for Entity Trust and VO Trust used in both the

strategies is same, we do not include the time taken to compute them in our measure-

ment. We specifically are interested in measuring the total time taken for computing

Institution Trust using the distributed EigenTrust algorithm used in our model with

a centralized summation algorithm. Before we differentiate the methodologies em-

ployed by both the algorithms, we present few statistical experimental measures used

in our simulator.

We have implemented our reputation service as an OGSA Grid service. The

important parameter to be considered while using Web or Grid services is the time

taken by one service to send information to other services in the network. We use

the measurement analysis test done for peer-to-peer systems for making assumptions

about the latency time which affects the total time taken for sending information

including the computational time. Studies in peer-to-peer systems [58], show that

approximately 20 percentage of the peers have latencies of utmost 70ms for an aver-

age bandwidth of 1Mbps. For bandwidth larger than 1Mbps, this can be decreased

further. Since we are only interested in the percentage improvement of the computa-

61

tional time using both strategies, we will assume that the latency at each node while

communication is 30ms. In that case, every reputation service has a wait time of

30ms while sending information to other reputation services. This latency parameter

can also be modified in the simulator if a different value is to be used.

7.7.1 Distributed EigenVector Algorithm. We have used the distributed

algorithm given in [41] for implementing the EigenVector Model within the Grid Eigen

Trust framework. The steps are listed in Section 6.2.2. Since many services compute

the reputations in a distributed manner, the computation time is drastically reduced.

One other factor for reduction in time is due to the fact that there needs to be less

reputation services communicating with each other at any point of time.

We make this concept more clear by using Figure 7.1. It shows a network with

reputation services numbered from RS1 to RS16. Consider the service, RS1 which

is connected to RS2, RS3, RS11, RS12, RS13, RS14, RS15 and RS16. Assume the

EigenTrust computation for Institutions is invoked at reputation service RS1. RS1

computes the reputations of all the institutions that belong to it and updates the trust

values of all the institutions from which it has utilized services or resources. Once that

is done, it notifies its neighboring services, RS2, RS3 RS11, RS12, RS13, RS14, RS15

and RS16 to perform similar computations. We find that all the services compute the

calculations concurrently. That is within the same span of time all these 8 services

finish their computation. We have handled this issue in our serialized simulator by

dividing the wait time or the latency time by the total number of services working

together concurrently at the same time. Several iterations of the distributed algorithm

is performed similarly and the total time taken for all the iterations is measured.

7.7.2 Centralized Summation Algorithm. In Centralized Summation

Algorithm, instead of performing the computations at various services in a distributed

manner, the computations are done in a centralized service. One other major differ-

62

ence is that instead of using the EigenVector model to compute the rank a summation

strategy similar to the one explained for evaluating the global reputation for domains

as explained in Section 2.1.2 is employed. For uniformity in computing time, we use

the same Virtual Organization, Institution and Entity setup even for the centralized

methodology. Every reputation service in this case will not perform computations.

They sent the trust values obtained from feedback to the centralized service. Here the

computations cannot be done concurrently since single service is responsible for com-

putations. The centralized service has to spent the specified latency time while getting

values from each of the services RS1 to RS16. This increases the total computational

overhead while using the strategy. Similar to the computational time measured for

distributed strategy as described in Section 7.7.1, we measure the total time taken

for updating the Institution Trust.

We specifically compute the computational time taken in both scenarios by

varying the size of entities and contexts. Each experiment is run 100 times and we

take the average of these experiments for evaluation. We compute mean, min, max

and standard deviation values to compare our results.

7.8 Experimental Scenarios

We have considered four use case scenarios to test and analyze our system.

7.8.1 USE CASE 1: Varying Number of Entities. We have conducted

experiments for evaluating the computational overhead incurred by our strategy as the

number of entities increases. We started the simulation with an initial of 50 entities.

The number of contexts for this simulation was kept constant to be five. After each

simulation run, we measured the total time taken for updation of Institution trust for

both our system and centralized strategy. We increased the number of entities by 50

each time and continued till we reached up to a total of 500 entities. We repeated the

63

Table 7.1: Increment Entities in Grid Eigen Trust for USE CASE 1

Entities Min Max Mean Standard Mean-SD Mean+SD
deviation

(sec) (sec) (sec) SD(sec) (sec) (sec)
50 1.81 2.01 1.91 0.049 1.864 1.963
100 1.82 1.99 1.9 0.044 1.867 1.955
150 2.75 2.97 2.87 0.066 2.804 2.938
200 3.67 3.94 3.83 0.077 3.756 3.911
250 4.58 4.94 4.79 0.096 4.693 4.887
300 5.52 5.91 5.78 0.109 5.677 5.896
350 6.41 6.88 6.6 0.125 6.496 6.747
400 7.3 7.89 7.65 0.147 7.503 7.798
450 8.31 8.87 8.59 0.175 8.415 8.766
500 9.23 10.21 9.59 0.181 9.418 9.780

experiment for 100 times and computed the mean, min, max, standard deviation and

displacement of mean from standard deviation of the values retrieved. The values are

shown in table 7.1 and table 7.2. All the values are measured as time in seconds.

The values show that as the number of entities increase the total time required

for computing the reputation increases. We have compared the mean values obtained

using our strategy with the mean values obtained for centralized strategy. The re-

sults shows that the percentage improvement achieved using our strategy is between

65 and 72 percentage over the centralized strategy. The comparison values are shown

in table 7.3. The box and whisker plots for both the strategies are shown in Fig-

ure 7.4.The whiskers depicts the min and max values. The box shows the standard

deviation from the mean values.

The major reason for the improvement in the computation time is due to

the fact that in distributed computation method many agents compute the trust

concurrently whereas in centralized the values have to reach to the centralized server

or agent and then the computation has to be done.

64

Table 7.2: Increment Entities in Centralized Strategy for USE CASE 1

Entities Min Max Mean Standard Mean-SD Mean+SD
deviation

(sec) (sec) (sec) SD(sec) (sec) (sec)
50 5.28 7.0 5.58 0.250 5.331 5.832
100 5.39 5.80 5.58 0.106 5.481 5.693
150 7.68 10.51 8.59 0.671 7.922 9.265
200 12.34 14.0 13.46 0.707 12.75 14.17
250 14.96 16.10 15.72 0.247 15.47 15.96
300 16.02 16.95 16.44 0.269 16.17 16.71
350 18.72 21.95 19.44 0.523 18.91 19.96
400 22.25 22.81 22.5 0.109 22.4 22.7
450 25.51 27.93 26.27 0.293 25.98 26.57
500 27.8 29.09 28.4 0.366 28.08 28.82

Table 7.3: Comparative Analysis Table for USE CASE 1

Entities Grid Eigen Centralized Improvement
Trust Strategy Percentage
(sec) (sec)

50 1.91 5.58 65.71
100 1.9 5.58 65.78
150 2.87 8.59 66.58
200 3.83 13.46 71.52
250 4.79 15.72 69.52
300 5.78 16.44 64.81
350 6.6 19.44 65.93
400 7.65 22.5 66.13
450 8.59 26.27 67.3
500 9.59 28.4 66.26

65

Figure 7.3: Total Computation Time for USE CASE 1

7.8.2 USE CASE 2: Varying Number of Contexts. In designing par-

allel and distributed applications in Grid, we are interested not only in using a com-

positions of multiple individual resources, but also in using appropriate networking

and I/O technologies for interconnection between resources. Thus, we get multiple

contexts, not only for resources and services, but also for interconnecting links.

For example, consider there is a cluster in a certain organization that has two

types of network connection between the nodes: Ethernet and Myrinet. Bandwidth

and latency are the two characteristics that distinguishes them. Ethernet connection

is very reliable connection and processes that are lengthy have very good chance of

completion. On the other hand, Ethernet is known to be very slow compared to

Myrinet, much owing to the TCP protocol it uses. Myrinet is very fast and reliable

for short jobs on this particular cluster but not for long ones. If one requires only the

bandwidth and latency characteristics to decide on which connection to choose, then

considering bandwidth and latency as two different contexts and attributing values to

66

Table 7.4: Increment Contexts in Grid Eigen Trust for USE CASE 2

Entities Min Max Mean Standard Mean-SD Mean+SD
deviation

(sec) (sec) (sec) SD(sec) (sec) (sec)
1 1.84 1.85 1.84 0.004 1.841 1.851
2 1.83 1.84 1.83 0.004 1.834 1.843
3 1.84 1.93 1.88 0.03 1.849 1.923
4 1.87 2.07 1.97 0.082 1.89 2.061
5 1.88 1.97 1.91 0.040 1.875 1.956
6 1.87 1.95 1.92 0.035 1.887 1.958
7 1.88 1.96 1.92 0.034 1.89 1.963
8 1.93 1.98 1.96 0.021 1.941 1.984
9 1.95 2.07 2.00 0.07 1.930 2.073
10 2.01 2.03 2.02 0.008 2.014 2.031

them solves the problem. The user can choose to use Ethernet or Myrinet by looking

at their bandwidth and latency contexts.

In addition to bandwidth and latency, there could also be complex parameters

such as jitter, routing and multi-cast support that might be required when trying to

use the interconnection links for other applications. In that case the context cannot

be limited to two but now becomes five. Continuing this way, it is not possible to

generalize context to a small number. A Grid environment must support multiple

contexts at any point of time.

We ran experiments on our Grid Eigen Trust system by varying the number of

contexts. The major improvement of our strategy over the centralized strategy is with

managing the storage space and avoiding fragmentation of space. Since our system

does not use a centralized mechanism for storing the reputation values, the problem

of fragmentation of space as discussed in [8, 9], is not applicable to our system. It is

not reasonable to compare the amount of memory used for our system and a system

defined in [8,9] since the solutions take different approaches for reputation computa-

tion. In addition to overcoming the space fragmentation problem, the computational

67

Table 7.5: Increment Contexts in Centralized Strategy for USE CASE 2

Entities Min Max Mean Standard Mean-SD Mean+SD
deviation

(sec) (sec) (sec) SD(sec) (sec) (sec)
1 1.08 1.66 1.33 0.241 1.097 1.580
2 1.24 2.20 1.92 0.208 1.720 2.137
3 1.84 2.18 1.99 0.26 1.73 2.25
4 2.19 2.24 2.21 0.020 2.19 2.236
5 2.24 2.46 2.38 0.097 2.282 2.477
6 2.55 3.24 3.10 0.207 2.90 3.315
7 2.85 3.80 3.17 0.145 3.02 3.320
8 3.13 3.55 3.28 0.189 3.097 3.477
9 3.17 3.31 3.29 0.057 3.239 3.355
10 3.69 4.22 3.98 0.220 3.768 4.209

overhead is also improved using our strategy.

Similar to the use case discussed in Section 7.8.1, we computed the total time

taken to calculate the Institution trust. We ran the experiment by incrementing

the context by one each time for 10 simulations. Here the number of entities was

kept constant to be only 50. Each of the experiment was run for 100 times and we

computed the average of all the runs. The table 7.4 and table 7.5 shows the mean,

min, max, standard deviation and displacement of mean from standard deviation (i.e.

mean+standard deviation and mean-standard deviation) values. All the values are

measured as time in seconds.

The mean values are compared in table 7.6. Initially when the number of con-

text is only one, the centralized strategy takes less computational time in comparison

to our strategy. The negative 27.49 percentage shows the improvement of computa-

tional time for centralized strategy over our strategy. But we find that the values

are positive from the second row where the number of contexts is 2 and there is an

improvement of around 4 to 40 percentage in the computational time. The box and

whisker plots are shown in Figure 7.4. Each box and whisker shows min, max, mean

68

and standard deviation values.

Figure 7.4: Total Computation Time for USE CASE 2

7.8.3 USE CASE 3: Reputation Service Failures Analysis. In Grid

environment, where hundreds or even thousands of service requests are made to re-

mote servers, failures are an inevitable event. There can be failures in power systems,

operating systems, communication networks or even in middle-ware. Services must

be made resilient to failures that can occur at every level and every interface.

Providing robustness in the time of intrinsic failures and crashes is one of the

essential features supported by any reliable system. Even though OGSA [26] address

issues relating to availability and robustness by introducing the concept of Factories,

it does not deal with failing or unavailable instances of Grid service. It also does not

deal issues such as what needs to be done if a service overloaded.

In order to overcome these limitations that occur due to inevitable failures, we

have designed Grid Eigen Trust system to be able to manage these vulnerabilities. As

69

Table 7.6: Comparative Analysis Table for USE CASE 2

Contexts Grid Eigen Centralized Percentage
Trust Strategy Change
(sec) (sec)

1 1.84 1.33 -27.49
2 1.83 1.92 4.66
3 1.88 1.99 5.543
4 1.97 2.21 10.69
5 1.91 2.38 19.49
5 1.92 3.10 38.11
7 1.92 3.17 39.22
8 1.96 3.28 40.29
9 2.00 3.29 39.29
10 2.02 3.89 49.28

explained in Section 4.3, the distributed nature of the hierarchical reputation Model

used in Grid Eigen Trust obviates single point failures in the system. Failures occur-

ring at the individual reputation services are effectively handled by using the services

of information registries. As discussed in the Section 4.2, the reputation services

contact the information services or registries to publish the reputation information.

Other services or applications contact the information services to get the reputation

values. The frequency rate at which the reputation services publishes the updated

reputation values is dependent on the application requirements. Thus, at any point

of time all the reputation values are stored in the information registry. If a reputa-

tion service instance fails at any point of time, then a new instance of the reputation

service can be started in order to manage the reputation. The values from the infor-

mation registry can be fed back to the instance so that the reputation services takes

the values from information registry as initial reputation values. It continues updat-

ing subsequent reputation values using these values rather than starting to evaluate

the reputation of a service from the scratch.

70

7.8.4 USE CASE 4: Extensibility Analysis. The extensibility support

provided by the Grid Eigen Trust System comes from the fact that the system adopts

OGSA architecture and defines a generic interface to connect to Information Services.

Much of the extensibility feature within our framework comes from the use of web

services technologies such as SOAP [13] and WSDL [17] for object access and object

description. Any application implemented as a Web or Grid service can easily be

integrated into our framework. Since the communication is done using SOAP and

WSDL protocols, any applications that understand these protocols can communicate

and interact with our reputation service. This makes our framework extensible.

7.9 Limitations

In this section, we present few of the limitations incurred in our approach

as well as our implementation. Future research can be taken up to overcome these

limitations.

• One of the limitations can be named as sociological limitation. Since reputation

is intensely related with society and its relations, the notion of trust might dis-

courage few of the resources or services from sharing their services. Most of the

time services with bad reputation are seldom used and the services with high

reputation are used very often. This might discourage the services which do not

provide high quality of services and on the other hand encourage the services

which provide a very good quality of service. Also few institutions or organi-

zations might be reluctant to allow their entities to interact with reputation

services from other institutions.

• We have not investigated on computing the optimal number of agents that has to

be running in any organization at any point of time to assure less computational

and time overhead. This can ensure that few of the reputation service are not

71

loaded with many entities and few of the services have only few entities whose

reputations are to be managed.

• The accuracy of the distributed and centralized algorithm which were used in our

simulation tests, were not presented using mathematical complexities formulas.

Since the simulation involved power-law networks, a more complex mathemati-

cal model can be researched to compute such complexities theoretically. Instead,

a set of experimental results have been presented for verification.

72

CHAPTER 8

POSSIBLE EXAMPLE APPLICATIONS

In this chapter, we will discuss how we could use the Grid Eigen Trust System

to interact with the Information Services and other Grid Services. We will give an

example to show how these systems can interact with each other to provide automated

computing.

Information services are a vital part of any Grid software infrastructures. It

provides fundamental mechanisms for discovering and monitoring the existence and

characteristics of resources, services, computations and entities which could be part

of a Grid. Grid Services as explained in Chapter 6 extends conventional Web service

functionality. Since the Reputation Service is implemented as OGSA Grid service, it

not only inherits several advantages of a Grid service, but also makes it interoperable

with other Grid services. Web or Grid services are published to be used by soft-

ware unlike websites which are directly used by humans. Software applications using

various Grid services can be developed for facilitating easy use of the computational

power provided by Grid infrastructure.

Resource allocation or scheduling Grid services can use reputation as one of

its QoS parameters to make resource selection decisions in automated systems. Rep-

utation to be used by such a service is computed by the Grid Eigen Trust Engine

present in the Reputation Grid service and published in Information Services. Other

Grid services then retrieves the reputation information thus published to take quality

of service decisions.

Grid Services can also directly interact with Reputation Service by using the

endpoint URL. We can also exploit notification mechanisms supported by Grid ser-

vices to develop automated interactive applications. Notifications allow clients to be

notified whenever changes occur in a Grid service. Notifications in Grid services is

73

related to service data. They allow both Pull and Push notifications. Pull approach

is used when observers need to get different information whenever an event has oc-

curred. In Push approach the changed data is send to all the observers along with

the notification message.

For instance, the Reputation Service can be registered to a QoS Grid service to

get automated feedbacks on usage of resources or services instead of allowing human

intervention for feedback. The QoS Grid service uses the Notification mechanism to

notify the Reputation service about the feedback once a job is completed. This avoids

unnecessary polling by Reputation service for feedbacks and facilitates autonomic

computing.

Thus the OGSA architecture makes our system to be platform-independent,

language-independent, robust and easily interoperable with sophisticated services for

automated dynamic resource management.

8.1 Application

To illustrate the how exactly the interaction takes between between the In-

formation Services, Reputation Services and other Grid Services, we provide a hypo-

thetical application example that integrates all of them.

The example is inspired by the infrastructure needed to obtain climate and

weather forecasts [45,64]. In climatology and weather forecast it is typical to develop

systems that are used for identifying, accessing, preparing, assimilating, predicting,

managing, analyzing, mining, and visualizing a broad array of meteorological data

to predict mesoscale weather events such as floods, tornadoes, hail, strong winds,

lighting and winter storms.

Let us consider an example of an application pertaining to assimilating, ana-

lyzing and visualizing meteorological information. The meteorological information is

retrieved using various sensors and tools. Automated Services running at sites where

74

sensors are kept, capture the sensor data.

Let us assume that we use Grid services for each of the services required by

the application as show in Figure 8.1.

Figure 8.1: A Meteorological Example Application

A meteorologist will try to get the captured sensor data using the services

running at the Data collection sites. Now he needs to send this data for analysis.

He might want to contact Grid services that provide the analysis of the captured

meteorological information. He contacts an Information Service to find about the

services available. The information service provides a number of services that do

the analysis. The meteorologist wants the service to be reliable otherwise, he might

not be able to predict the weather conditions in the right time. If the service is not

reliable then it might cause problems due to which the weather predictions cannot be

done. So he contacts a Reputation Service regarding the reputation of the services

providing analysis. The reputation service provides reputation information of all the

services that are registered to it and support the required context, which is analyzing

the meteorological data.

After having selected the service that performs analysis, the meteorologist

wants computational power needed to perform huge computational analysis on the

data collected. He needs to find out remote job manager services that enable the

user to use remote computational resources. He optionally can use the reputation

75

service to select the most reliable job manager service and perform the computations

required. Similarly, he might be interested in Grid services that provide visualization

and similar other services.

In this example, we find that there is lot of interaction taking place between

services. This interactions can be automated by writing appropriate software applica-

tions for the functionalities discussed. In that case, the interaction of the meteorologist

with the application is simplified. He does not have to worry about any searching

and selection of services. Since the services are designed to be interoperable they can

communicate with each other and provide the final results to the meteorologist. Thus

reputation services play significant role in enhancing automated selection services and

aid in developing sophisticated scientific applications.

76

CHAPTER 9

SUMMARY AND CONCLUSIONS

We have presented Grid Eigen Trust system that provides a less computation-

intensive, cross-platform, robust and extensible framework for managing reputations

in Grid-based systems. We provided a brief overview of few of the existing trust

models available for peer-to-peer systems, Grid computing systems, internet applica-

tions, pervasive computing, ubiquitous computing and mobile computing. We then

presented the requirements for a reputation-based system and showed how Grid Eigen

Trust system fulfills those requirements.

We have presented the layered architecture including the hierarchical model

of Grid Eigen Trust in Chapter 4. We also described the important functionalities

supported by various components of Grid Eigen Trust and explained the importance

of the Computation Engine. Chapter 5 described the new algorithm that is used

by our framework. Chapter 6 provided the details about the implementation of the

system including the syntax of service requests and the WSDL document required for

Web Services interaction.

Our Grid Eigen Trust system promises to be less computational intensive based

on our experimental evaluations given in Chapter 7. Our implementation harnessing

the technology of web services gives multiple advantages of our system over the exist-

ing systems. Our system shows to be interoperable, platform-independent, protocol-

independent and extensible due to the fact that it has been implemented as a Grid

service within the OGSA framework. The possibility of integrating with specialized

Grid services makes Grid Eigen Trust system suitable for autonomic computing.

77

9.1 Future Work

Even though Grid Eigen Trust provides basic functionalities required for a rep-

utation framework, there are other areas of research that attracts attention. Robust

security systems can be developed to ensure trust in feedback mechanisms in cases

where human interaction is involved.

We have not used MDS3 as our Information Registry since MDS3 is in the

initial stage of development. We have only defined an interface that needs to be

implemented to interact with Grid Eigen Trust. As long as the Information Registry

is able implement the interface we have specified, it can be easily used for publishing

and retrieving the reputation values. The features supported for information services

by GT3 itself can be exploited to support reputation publishing and retrieval.

Even though we have shown how our system handles various types of failures

such as system failure or service failures using one of our use case scenarios, more fault

tolerant mechanisms can be developed and deployed. Currently we use a parameter

to set the frequency during which the institution trust needs to be updated. More

advanced methodologies can be used to provide automated updation of these trust

values.

Another important and interesting area of research as an extension to this work

is designing an automated resource selection system based on reputation. Several

challenges related to load imbalance needed to be addressed in such systems. If

selection is merely based on reputation, then the services with high reputations will

always suffer from heavy load. Robust algorithms can be developed to handle such

issues in developing automated resource selection systems. Such work would greatly

enhance autonomic computing.

78

BIBLIOGRAPHY

[1] A survey of trust in Internet application. IEEE Communi-
cations Surveys and Tutorials, 3(Fourth Quarter), 2000.
http://www.comsoc.org/livepubs/surveys/public/2000/dec/grandison.html.

[2] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer
Information System. In Tenth International Conference on In-
formation and Knowledge Management ACM CIKM 2001, pages
310–317, Atlanta, Georgia, 5-10 November 2001. ACM Press.
http://lsirpeople.epfl.ch/despotovic/CIKM2001-trust.pdf.

[3] Adams and Farrell. IETF RFC 2510: PKI Certificate Management Protocols.
ftp://ftp.rfc-editor.org/in-notes/rfc2510.txt, March 1999. visited Oct 24th,
2003.

[4] Kento Aida, Atsuko Tekefusa, Hidemoto Nakada, Satoshi Matsuoka, Satoshi
Sekiguchi, and Umpei Nagashima. Performance Evaluation Model for
Scheduling in Global Computing Systems. The International Journal
of High Performance Computing Applications, 14(3):268–279, Fall 2000.
http://dlib.computer.org/conferen/hpdc/8579/pdf/85790352.pdf.

[5] Beulah Alunkal, Ivana Veljkovic, and Gregor von Laszewski.
Reputation-based Grid Resource Selection. In Workshop on
Adaptive Grid Middleware, number ANL/MCS-P1109-0903,
New Orleans, Louisiana, 27 September 2003. AGridM 2003.
http://www.iit.edu/∼alunbeu/publications/reputation.pdf.

[6] Amazon. http://www.amazon.com, Oct 2003. visited Oct 20th, 2003.

[7] Farag Azzedin and Muthucumaru Maheswaran. Towards Trust-Aware Resource
Management in Grid Computing Systems. In Second IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid (CCGRID’02),
pages 452–457, Berlin, Germany, May 21-24 2002. IEEE Computer Society
Press. http://www.cs.mcgill.ca/∼anrl/PUBS/ccgrid2002 farag.pdf.

[8] Farag Azzedin and Muthucumaru Maheswaran. Evolving and Managing Trust
in Grid Computing Systems. In Canadian Conference on Electrical and
Computer Engineering 2002, pages 1424–1429, Hotel Fort Garry, Win-
nipeg, Manitoba, Canada, May 12-15 2002. IEEE Computer Society Press.
http://www.cs.mcgill.ca/∼anrl/PUBS/ccece2002 farag.pdf.

[9] Farag Azzedin and Muthucumaru Maheswaran. Integrating Trust into
Grid Resource Management Systems. In International Confer-
ence on Parallel Processing 2002, pages 47–54, Vancouver, B.C.,

79

Canada, August 18-21 2002. The International Association for
Computers and Communications, IEEE Computer Society Press.
http://www.cs.umanitoba.ca/∼anrl/PUBS/icpp2002 farag.pdf.

[10] S. Ba and P. A. Pavlou. Evidence of the Effect of Trust Build-
ing Technology in Electronic Markets: Price Premiums and
Buyer Behavior. MIS Quarterly, 26(3):243–268, Sep 2002.
http://www.sba.uconn.edu/users/sulin/BaPavlou.pdf.

[11] F. Berman and R. Wolski. The AppLeS Project: A Status Re-
port. In The 8th NEC Research Symposium, May 21-22 1997.
http://www.cs.ucsd.edu/groups/hpcl/apples/pubs/nec97.ps.

[12] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
Trust Management. In IEEE Symposium on Security and
Privacy,1996, Oakland CA, May 6-8 1996. IEEE Press.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1996/96-
17.ps.gz.

[13] Don Box, Davin Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-
sohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple
Object Access Protocol. Technical Report NOTE-SOAP-20000508, May
2000. http://www.w3.org/TR/SOAP.

[14] Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/G: An
Architecture of a Resource Management and Scheduling System in a
global Computational Grid. In the 4th International Conference on
High-Performance Computing in the Asia-Pacific Region, pages 283–289.
IEEE Press, May 2000. http://www-unix.gridforum.org/mail archive/perf-
wg/pdf00000.pdf.

[15] The Large Hadron Collider Project. http://lhc.web.cern.ch/lhc/general/gen info.htm,
Oct 2003. visited Oct 24th, 2003.

[16] B. Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy VII, and
F. Pfenning. Trustless grid computing in ConCert. In M. Parashar,
editor, Grid Computing – Grid 2002 Third International Workshop,
pages 112–125, Berlin, November 2002. Springer-Verlag. http://www-
2.cs.cmu.edu/∼concert/papers/grid2002/ grid2002.pdf.

[17] Erik Christensen, Fancisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language. Technical Report NOTE-wsdl-
20010315, March 2001. http://www.w3.org/TR/wsdl.

80

[18] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and
Martin Strauss. REFEREE: Trust management for Web applica-
tions. Computer Networks and ISDN Systems, 29(8–13):953–964, 1997.
http://www.farcaster.com/papers/www6-referee/www6-referee.htm.

[19] Ernesto Damiani, De Capitani di Vimercati, Stefano Paraboschi, Pierangela Sama-
rati, and Fabio Violante. A reputation-based approach for choosing reli-
able resources in peer-to-peer networks. In 9th ACM conference on Com-
puter and communications security, pages 207–216. ACM Press, Nov 2002.
http://seclab.dti.unimi.it/Papers/ccs02.ps.

[20] Roger Dingledine, Nick Mathewson, and Paul Syverson. Reputa-
tion in P2P Anonymity Systems. In Proceedings of Work-
shop on Economics of Peer-to-Peer Systems, June 2003.
http://freehaven.net/doc/econp2p03/econp2p03.pdf.

[21] Ebay. http://www.ebay.com, Oct 2003. visited Oct 20th, 2003.

[22] Matthew L. Massie David E Culler Federico D. Sacerdoti, Mason J. Katz. Wide
Area Cluster Monitoring with Ganglia. In Cluster 2003-IEEE International
Conference On Cluster Computing, Hong Kong, 1-4 December 2003. IEEE
Press. http://ganglia.sourceforge.net/papers/ Sacerdoti03Monitoring.pdf.

[23] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. IETF RFC 2616: Hypertext transfer proto-
col – HTTP/1.1. ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt, June 1999.
visited June 12th, 2003.

[24] Ian Foster. The anatomy of the Grid: Enabling scalable vir-
tual organizations. International Journal of High Perfor-
mance Computing Applications, 15(3):200–222, August 2001.
http://www.gl.iit.edu/database/frame/compendex.htm.

[25] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. Grid Ser-
vices For Distributed System Integration. Computer, 35(6), June 2002.
http://www.globus.org/research/papers/ieee-cs-2.pdf.

[26] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Information. In Global Grid Forum 5, Edinburgh, Scotland, June 2002.
Global Grid Forum. http://www.globus.org/research/papers/ogsa.pdf.

[27] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: a com-
putation management agent for multi-institutional grids. In High Perfor-
mance Distributed Computing, 2001. Proceedings. 10th IEEE International

81

Symposium, pages 55–63, San Francisco, CA, USA, August 2001. IEEE
Computer Society Press.

[28] Caronni Germano. Walking the Web of Trust . In Proceedings IEEE Ninth
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2000), pages 153–158, 100 Bureau
Drive, Gaithersburg, MD, 14-16 June 2000. IEEE Computer Society Press.
http://www.olymp.org/∼caronni/work/papers/wetice-web-final.pdf.

[29] Gnutella. http://www.gnutella.com/, Oct 2003. visited Oct 20th, 2003.

[30] GridSim: A Grid Simulation Toolkit for Resource Modelling and Ap-
plication Scheduling for Parallel and Distributed Computing.
http://www.cs.mu.oz.au/∼raj/grids/gridsim/, Oct 2003. visited Oct
20th, 2003.

[31] Grid Security Infrastructure. http://www.globus.org/security/, Oct 2003. visited
Oct 20th, 2003.

[32] Taher H. Haveliwala and Sepandar D. Kamvar. The
Second Eigenvalue of the Google Matrix.
http://www.stanford.edu/∼sdkamvar/papers/secondeigenvalue.pdf,
Oct 2003. visited Oct 20th, 2003.

[33] What is Grid Computing. http://www-1.ibm.com/grid/about grid/what is.shtml,
Oct 2003. visited Oct 20th, 2003.

[34] Trust establishment. http://www.haifa.il.ibm.com/projects/software/e-
Business/TrustManager/index.html, Oct 2003. visited Oct 24th,
2003.

[35] R. Jain, editor. The Art of Computer Systems Performance Analysis. John Wiley
and Sons, 2001.

[36] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Lan-
guage for Expressing Authorizations. In IEEE Symposium on Secu-
rity and Privacy, pages 31–42, Oakland, CA, May 04-07 1997. IEEE
Press. http://www.sis.uncc.edu/∼gahn/courses/ITIS6210/Fall03/ techpa-
pers/jajodia97logical.pdf.

[37] The source for java technology. http://java.sun.com, Oct 2003. visited Oct 20th,
2003.

[38] David Singer Jim Miller, Paul Resnick. Rating Services and Rating
Systems. Technical Report REC-PICS-services-961031, Oct 1996.
http://www.w3.org/TR/REC-PICS-services.

82

[39] L. Kagal, T. Finin, and J. Anupam. Trust-Based Security in Pervasive
Computing Environments. IEEE Computer, 34(12):154–157, 2001.
http://www.cs.umbc.edu/∼lkagal1/papers/computer-article.pdf.

[40] Sepandar D. Kamvar, Taher H. Haveliwala, and Gene H. Golub.
Adaptive Methods for the Computation of Page Rank.
http://www.stanford.edu/∼sdkamvar/papers/adaptive.pdf, Oct 2003.
visited Oct 20th, 2003.

[41] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The EigenTrust Algorithm for Reputation Management in P2P
Networks. In Twelfth International World Wide Web Confer-
ence, 2003, Budapest, Hungary, May 20-24 2003. ACM Press.
http://www.stanford.edu/∼sdkamvar/papers/eigentrust.pdf.

[42] Gnutella. http://www.kazaa.com/us/index.htm, Oct 2003. visited Oct 20th, 2003.

[43] John Klensin et al. IETF RFC 2821: Simple mail transfer protocol. ftp://ftp.rfc-
editor.org/in-notes/rfc2821.txt, April 2001. visited June 17th, 2003.

[44] A. Halberstadt L. Mui, M. Mohtashemi. A Computational Model of Trust
and Reputation. In 35th Hawai’i International Conference on
System Science, Island of Hawaii, Big Island, 7-10 January 2002.
http://www.cdm.lcs.mit.edu/people/lmui/docs/TrustReputationModel.ps.

[45] Linked Environments for Atmospheric Discovery(LEAD).
http://lead.ou.edu/project summary.html, Nov 2003. visited Nov
20th, 2003.

[46] Managing Trust in Decentralized Applications.
http://lsirwww.epfl.ch/projects/swiss/trust-project.htm/, Oct 2003.
visited Oct 20th, 2003.

[47] MicroGrid- Emulation Tools for Computational Grid Research . http://www-
csag.ucsd.edu/projects/grid/MGridDownload.html, Oct 2003. visited Oct
20th, 2003.

[48] Keith Norman. Grid Computing. Tesella Scientific software solutions, 1(1), April
2003. issue V1.R1.M0 Tesella free technical supplements.

[49] OpenPrivacy. http://www.openprivacy.org/, Oct 2003. visited Oct 20th, 2003.

[50] PeerTrust Overview. http://www.cc.gatech.edu/projects/disl/PeerTrust/, Oct
2003. visited Oct 20th, 2003.

83

[51] The International PGP Home Page. http://http://www.pgpi.org/, Oct 2003. vis-
ited Oct 25th, 2003.

[52] Jon Postel and Joyce Reynolds. IETF RFC 959: File transfer protocol.
ftp://ftp.rfc-editor.org/in-notes/rfc959.txt, October 1985. visited June
17th, 2003.

[53] ReferralWeb. http://www.cs.washington.edu/homes/kautz/referralweb/, Oct
2003. visited Oct 24th, 2003.

[54] Reputation Research Network. http://databases.si.umich.edu/reputations/index.html,
Oct 2003. visited Oct 24th, 2003.

[55] W.Ford D.Solo R.Housley, W.Polk. IETF RFC 3280:internet x.509 public key in-
frastructure. ftp://ftp.rfc-editor.org/in-notes/rfc3280.txt, April 2002. vis-
ited Oct 24th, 2003.

[56] Marshall Rose. IETF RFC 3080: The blocks extensible exchange protocol core.
ftp://ftp.rfc-editor.org/in-notes/rfc3080.txt, April 2001. visited June 12th,
2003.

[57] I. Foster J. Frey S. Graham C. Kesselman T. Maquire T. Sandholm D. Snelling
P. Vanderbilt S. Tuecke, K. Czajkowski. Open Grid Services Infrastructure
(OGSI). Version 1.0 (draft), 5 2003.

[58] S. Saroiu and S.D. Gribble P. Krishna Gummadi. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proceedings of
the Multimedia Computing and Networking (MMCN), January
2002. http://www.cs.washington.edu/homes/tzoompy/publications/
mmcn/2002/mmcn.ps.

[59] Simgrid. http://gcl.ucsd.edu/simgrid/, Oct 2003. visited Oct 20th, 2003.

[60] Joseph S. Valacich. Ubiquitous Trust: Evolving Trust into Ubiqui-
tous Computing Environments. In Workshop on Ubiquitous Com-
puting Envionment, Cleveland, OH USA, 24-26 October 2003.
http://weatherhead.cwru.edu/pervasive/Paper/ UBE

[61] Gregor von Laszewski and Kaizar Amin. Grid Middleware,
chapter Middleware for Commnications. Wiley, 2004.
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski–grid-
middleware.pdf.

84

[62] Gregor von Laszewski, Kaizar Amin, Mihael Hategan, and Nestor J. Zaluzec. Gri-
dAnt: A Client-Controllable Grid Workflow System. In 37th Hawai’i In-
ternational Conference on System Science, Island of Hawaii, Big Island, 5-
8 January 2004. http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski–
gridant-hics.pdf.

[63] Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, Mike Russell, and
Keith Jackson. Features of the Java Commodity Grid Kit. Concurrency
and Computation: Practice and Experience, 14:1045–1055, 2002.

[64] Gregor von Laszewski, Gail Pieper, and Patrick Wagstrom. Gestalt of the Grid. In
Performance Evaluation and Characterization of Parallel and Distributed
Computing Tools, Series on Parallel and Distributed Computing. Wiley,
2003. http://www.mcs.anl.gov/ gregor/papers/vonLaszewski–gestalt.pdf.

[65] Gregor von Laszewski, Mary Westbrook, Ian Foster, Edwin Westbrook, and Craig
Barnes. Using Computational Grid Capabilities to Enhance the Ability of
an X-Ray Source for Structural Biology. Cluster Computing, 3(3):187–199,
2000. ftp://info.mcs.anl.gov/pub/tech reports/P785.ps.Z.

[66] U. G. Wilhelm, L. Buttyán, and S. Staamann. On the Problem of Trust in Mobile
Agent Systems. In Symposium on Network and Distributed System Secu-
rity, pages 114–124, San Diego, CA, March 11-13 1998. Internet Society.
http://www.isoc.org/isoc/conferences/ndss/98/wilhelm.pdf.

[67] Li Xiong and Ling Liu. Building Trust in Decentralized Peer-to-Peer Elec-
tronic Communities. In Fifth International Conference on Electronic
Commerce Research (ICECR-5), Montreal, Canada, 23-27 October 2002.
ACM Press. http://www.cc.gatech.edu/projects/disl/PeerTrust/pub/
xiong02building.pdf.

[68] Li Xiong and Ling Liu. A Reputation-Based Trust Model For Peer-
To-Peer Ecommerce Communities. In IEEE Conference on E-
Commerce (CEC’03), Newport Beach,California USA, 24-27 2003.
IEEE Press. http://www.cc.gatech.edu/projects/disl/PeerTrust/
pub/xiong03reputation.pdf.

