
XI YANG , NING LIU, BO FENG, X IAN-HE SUN AND SHUJIA
ZHOU

Illinois Institute of
Technology

PortHadoop: Support Direct HPC Data Processing in Hadoop

INTRODUCTION

Big computing needs the power of both computational science and data analytic
ecosystems.

Typical tasks of an HPC storage system:
1) Input/Output from computing system (major concern)

2) Query and data processing requests from external users

The query and data processing tasks often take a large portion of the performance
time and impair the I/O performance of running applications.

To offload the onerous data intensive tasks to a cheaper and yet powerful system like
Hadoop MapReduce system.

Many data processing and data analytic tools/software are developed under
Hadoop MapReduce environment.

2

PRACTICAL NEEDS

Data diagnosis and visualization

Climate and weather simulations can generate a few Terabyte simulation data set.

Not all the data is needed to be further analyzed under Hadoop platform.
 Only the data items with interesting events, such as hurricane center and thunderstorms, which could be

one order of magnitude smaller than the original data size, are further analyzed.

3

DATA PATH

Data paths for supporting data
processing in Hadoop.

The data path of the naive approach is
labeled as a, and colored in red while
the data path of PortHadoop is labeled
as b, and colored in green.

MapReduce Processing

Memory

Local
storage

Dynamic
Hadoop
Reader

PFS

Remote
storage

Copy
From
Local

b

a.1

b

a.1

a.2

HDFS

a.1

a.2 a.1

4

CHALLENGES

To make data access efficient
 Efficient on each stage of the data path
 Remote disk I/O

 Memory of Hadoop client side

Transparently integrate new features into Hadoop
 Enhance Hadoop, but not ask users to do more
 Bypass HDFS, reading data directly from PFS

 Parallelism

 Fault-tolerance support

Insure data semantic consistency
 HDFS data are un-typed, byte-oriented

 Cross boundary reading

5

HOW TO DO IT: VIRTUAL BLOCK

Introduced the virtual block concept for PFS data

With techniques in
Namespace management

Split alignment

Task scheduling support

PortHadoop also supports
Prefetch

 Inherent fault-tolerance

6

PORTABLE HADOOP

More than data transfer, it transparently

processes the target data that reside at

remote site (not in HDFS).

Hadoop

MPI-IO and PFS-API

CephFS

MapReduce Processing

Target dataset has
already been kept in
in-production PFS

Support native
MapReduce workload

Communication and
interaction

PortHadoop

LustreGPFSPVFS2 HDFS

7

TASK SCHEDULING SUPPORT

PortHadoop intercepts the input split and redirect the data block retrieval from HDFS or local
storage system to memory.

Avoid communication to DataNode for input data accessing.

Metadata retrieval before task scheduling.

Transparently recognizing remote data
 PFS prefix indicating the data reside at PFS (e.g., pvfs2://)

 addInputPath method in FileInputFormat

The hint of PFS will be reserved in the path, to inform the consequent map task to process a
remote data split at a specific PFS.

RPC between the client and NameNode to establish virtual blocks according to the input data.

8

PORTHADOOP SYSTEM ARCHITECTURE

We take PVFS2 as an example for PFS, PortHadoop job_tracker and task_tracker runs on master node, and
map task run on PortHadoop slave node. (There are many slaves, take one as example here.) Virtual blocks
are managed in the virtual block table in namenode. Task tracker initiates the PFS prefetcher thread, which is
responsible for prefetching data directly from remote PFS. Map task initiate the PFS reader thread, which
reads data directly from remote PFS.

RAM

disk
job

master

MR AppsPortHadoopPFS event_list

compute virtual blocks
(step 0)

job registration
(step 1)

task 1

task n

task 2

split resestablish
(step 2)

PFS reader
(step 3)

split computation
(step 2)

PFS prefetch
(step 3)

virtual_block_table

job_tracker

namenode

RAM

disk
task_tracker

map_task

reduce_task

slave

PFS prefetcher

PFS reader

RAM

disk

server node

server node

PVFS2_server

PVFS2_server

RAM

disk

step 0

step 1

file

file

...

...
...

9

TRANSPARENT CROSS-BLOCK-BOUNDARY RECORD
READ

1. Logic file view

2. Blocks in HDFS

3. Split for task scheduling

4. Actual processed data by
a map task

Block n

Split n

Block n+1

Zoom in!

3. Split for task scheduling, the split (block) that map task gets

4. Actual processed data by a map task

10

HOW TO ALIGN SPLIT?

The splits are categorized into two classes

1. The split with predictable size and pattern (e.g., fixed size record)

Solution:
1) perfectly-aligned read with predictable split size (to assign splits according to the predictable

boundary)

2. The split with unpredictable size

Solutions:
2) redundant read

3) perfectly-aligned read with dynamic split boundary detection

11

READ STRATEGIES AND ACTUAL DATA
PROCESSING IN PORTHADOOP

12

PREFETCHING

Data transfer-then-processing, a blocking
procedure.

Considering

•Large memory

•Multiple map task waves

Prefetching helps

• To hide data access latency.

• To utilize bandwidth.

When bandwidth is underutilization.

Implementation:

•Poll-based task assignment, pursue data locality

•PRC call, action

•Synchronized and memory consumption control

13

Split(task) queue

Task assign

Prefetching assign

FAULT-TOLERANCE

As PortHadoop is an extended Hadoop, its map tasks will store their intermediate
results onto local file system as the default Hadoop does.
 Reschedule the failure task and re-fetch the corresponding input data.

PortHadoop optimizes data transfer by pipelining the transfer and processing prior
to alleviating map task skewness and stragglers.
 We observed the skewnesses in multiple waves of map task processing.

To optimizing task processing, PortHadoop also supports backup tasks, as that in the
conventional Hadoop.

14

EVALUATION

We use 17 nodes in Craysun and 25 nodes in HEC, for CephFS and PVFS2,
respectively.

Craysun: All slave nodes are Dell PowerEdge SC 1425 Server, each of which has an
Intel Xeon CPU 3.40GHz processor, 1GB of memory, and a 36GB (15,000 rpm) SCSI
hard drive.

HEC is an SUN Fire Linux cluster, in which each node has two AMD Opteron
processors, 8GB memory, and a 250GB SEAGATE HDD. All nodes run Ubuntu 14.04
with the latest Linux kernel.

The MPI installed in both systems is MPICH 3.0.4.

15

VIRTUAL BLOCK OVERHEAD

0.001

0.01

0.1

1

10 100 1000 10000

E
la

p
se

d
 T

im
e

(s
ec

on
d

s)

Number of Virtual Blocks

16

EXPERIMENTAL RESULTS (W/CEPH FS)

1 2 4 8
0

100

200

300

400

500

600

700

)s
dnoces(e

mi
T

des
pal

E

Wiki Text Data Size (GB)

HDFS put Hadoop PortHadoop

2.9%
26.0%

34.3%

34.9%

Performance comparison between
conventional Hadoop and PortHadoop
with WordCount on wiki text dataset.
“HDFS put” copies an input data file
from CephFS to HDFS and then
“Hadoop” processes the dataset.
“PortHadoop” directly reads and
processes the dataset residing in
CephFS.

17

VARY NUMBER OF CONCURRENT MAP TASKS
(W/PVFS2)

0

100

200

300

400

500

600

1GB 2GB 4GB 8GB 1GB 2GB 4GB 8GB 1GB 2GB 4GB 8GB

2 tasks 4 tasks 8 tasks

E
la

p
se

d
 T

im
e

(s
ec

on
d

s)

Concurrent Map Tasks per Node

Hadoop put + run PortHadoop

18

PERFORMANCE OF MULTIPLE APPLICATIONS
(W/CEPHFS)

0

500

1000

1500

2000

2500

WordCount Grep OCTree TeraSort TestDFSIO read

E
la

p
se

d
 T

im
e

(s
ec

o
n

d
s)

Hadoop put Hadoop PortHadoop

19

WHAT IF BANDWIDTH BETWEEN PFS AND
HADOOP CLUSTER IS A BOTTLENECK (W/PVFS2)

4 8 16
0

100

200

300

400

500

600

)s
d

noces(e
mi

T
des

pal
E

Number of slaves

HDFS put Hadoop PortHadoop

60.7%
51.5%

55.3%

PortHadoop improves the overall
performance but suffers from the limited
network bandwidth for further
scalability.

However, the copy phase in naive
approach is still costly due to the
constraint of the network bandwidth.

Performance comparison between Hadoop and PortHadoop for 3 number of slaves. Each WordCount
job processes 8 GB wiki text data with 8 concurrent map tasks per slave.

20

RELATED WORK

1. Integrating MapReduce and HPC data processing power. Such as, MRAP and
SciHadoop.

• Data model mapping. Copy-based.

2. Researchers in HPC proposed to extend existing PFS to support its non-native
MapReduce workloads. Such as, PVFS-shim-layer, GPFS-FPO, and Lustre.

 Plugin needed & Data layout changed.

3. Improve the response time of applications, adopting pipelining or in-memory
processing strategies. Such as MapReduce Online, Themis, M3R.

 These pipelining strategies are adopted within MapReduce cluster.

 Themis and M3R trade reliability for performance.

21

SUMMARY

Our experimental results show that PortHadoop is effective and compatible with
existing PFS such as PVFS2 and CephFS.

In particular, under PortHadoop:

1. MapReduce can read data directly from PFS without data copying. The target
blocks processed by map tasks reside in memory rather than on disk.

2. Only the needed data at PFS are taken to Hadoop at runtime.

3. Blocks in a PFS files can be accessed concurrently.

4. According to the amount of data required by map tasks, the data transfer
operations from PFS to HDFS can overlap with MapReduce data processing.

5. PortHadoop supports fault tolerance as default Hadoop does.

22

THANK YOU ! xyang34@hawk.iit.edu

Q & A

