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Efficient Tridiagonal Solvers on Multicomputers
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Abstract—Three parallel algorithms, namely the parallel par-
tition LU (PPT) algorithm, the parallel partition hybrid (PPH)
algorithm, and the parallel diagonal dominant (PDD) algorithm
are proposed for solving tridiagonal linear systems on multicom-
puters. These algorithms are based on the divide-and-conquer
parallel computation model. The PPT and PPH algorithms sup-
port both pivoting and nonpivoting. The PPT algerithm is good
when the number of processors is small; otherwise, the PPH
algorithm is better. When the system is diagonal dominant, the
PDD algorithm is highly parallel and provides an approximate
solution which equals to the exact solution within machine ac-
curacy. Both computation and communication complexities of
the three algorithms are presented. All three methods proposed
in this paper have been implemented on a 64-node nCUBE-1
multicomputer. The analytic results match closely with the results
measured from the nCUBE-1 machine.

Index Terms—Communication complexity, divide-and-conquer,
LU decomposition, matrix partitioning, parallel numerical algo-
rithms, multicomputers, tridiagonal systems.

I. INTRODUCTION

E are interested in solving the following tridiagonal
linear system of equations

Az =d (1.1)
where A is a tridiagonal matrix of order n
bo Co
ap by
A= ’ 1.2)
Apn -2 bn72 Cn—2
Ap—1 bn—l
z = (x0, -, 2n-1)T and d = (do, - ,dn—1)T. We assume

that A, =, and d have real coefficients. Extension to the
complex case is straightforward.

Solving tridiagonal linear systems is one of the most im-
portant problems in scientific computing. It is involved in
the solution of differential equations and in various other
areas of science and engineering. A varicty of methods have
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been developed for solving (1.1) on paralle]l computers. A
good survey of these methods can be found in [9], [13],
[14], and [18]. Among them, the recursive doubling method
(RCD) developed by Stone [22] and the cyclic reduction or
odd—even reduction method (OER) developed by Hockney [10]
are able to solve (1.1) in O(logn) time using n processors.
Here and throughout, log denotes log,. However, in a realistic
parallel processing environment, the number of processors,
p, is usually less or much less than the dimension of the
matrix, n. Lawrie and Sameh [16] proposed an algorithm in
1984 for a practical parallel environment. Recently, a parallel
prefix (PP) method developed by Egecioglu, Koc, and Laub (7]
modifies the RCD method to be applied to a limited number
of processors, i.e., p < n. Wang’s partition algorithm [23] is
another relatively new method which is designed for a realistic
parallel environment, and it has been efficiently implemented
in [11]. While the OER algorithm is a popular choice for vector
machines, the Lawrie—Sameh’s algorithm, RCD algorithm,
and Wang’s algorithm are good candidates for multiprocessors.

A multicomputer is a distributed-memory multiprocessor
in which each memory module is physically associated with
each processor. A point-to-point interprocessor communication
network provides a mechanism for communication between
processors [12]. Multicomputers with hundreds or thousands
of processors are commercially available. Multicomputers hold
the promising potential for providing massive parallelism. It is
for this reason the algorithms for multicomputers are studied.

Three parallel algorithms are proposed in this paper. All
these algorithms are developed based on Sheman and Morrison
matrix modification formula [20]. To start with, a tridiagonal
matrix A is partitioned into p submatrices. Solving these p
subsystems in parallel, it leads to a reduced tridiagonal system
of order 2(p—1). If p is small, the parallel partition LU (PPT)
algorithm solves this small tridiagonal system in a serial mode.
If p is large, the reduced system can be solved in parallel by
the PP method. This algorithm is called the parallel partition
hybrid (PPH) algorithm. In many applications, the tridiagonal
matrix A is evenly diagonal dominant. In this case half of
the off-diagonal elements of the small 2(p — 1)-dimensional
matrix converge to zero exponentially. A fast and highly
parallel algorithm, namely the parallel diagonal dominant
(PDD) algorithm, is proposed. All the three algorithms have
less communication requirement than Wang’s algorithm [17],
[23]. The PPT algorithm achieves a time complexity very close
to the algorithm proposed by Ho and Johnsson [11]. Based on
a matrix modification formula, our matrix partitioning scheme
ends up very similar to that of Lawrie and Sameh [16].
However, our algorithms use different strategies in solving the
reduced system, which reduce the communication overhead
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significantly. Particularly, the PDD algorithm gives a fast
solution that approximates the exact solution to the machine
accuracy when n/p > 1. Although the matrix modification
formula being used is not crucial in designing these algorithms,
it provides a nice mathematical equation that an error analysis
can be conducted formally [25].

Communication mechanism has a great impact on the per-
formance of multicomputers. Thus, the communication pattern
of parallel algorithms should be carefully designed to reduce
the communication complexity. In this study, the algorithms
are evaluated based on both computation and communication
complexities.

This paper is organized as follows. Section II briefly reviews
the parallel prefix method, which is used in the development
of our parallel algorithms. The matrix partitioning method
is presented in Section III. Based on the matrix partitioning
scheme, three parallel algorithms, PPT, PPH, and PDD are
discussed in Section IV, Section V, and Section VI, respec-
tively. These parallel algorithms are implemented on a 64-
node nCUBE muiticomputer. Section VII presents analytic and
experimental results and comparison discussion. Advantages
of our proposed algorithms are summarized in Section VIII.

1I. PRELIMINARY

Two methods will be used in our algorithms. They are
LU decomposition method and parallel prefix method. For
completeness, the latter is briefly presented in this section.

The RCD method uses O(logn) parallel computation time
to solve (1.1) on a parallel computer with n processors [10],
[22]. The PP method [7] modifies the RCD method for p
processors with p < n.

Equation (1.1) can be written as

a;ri_1 + b + iy = di. 0<:<n—1 (2.1)
where x_; = 2, = 0. Solving for x;4,, we have
b; a d;
Tigy = (—:);(:,— + (—7):111-_1 + ((—) = o + fivio + i
3 € t (272)

Here ¢; # 0 is assumed. Equation (2.2) then can be written
in the matrix form as

EEES Y Hl Vi &y
€T; =11 0 0 Tio1
1 0 0 1 1
Define
Ti41
X1 = T with z_; = x,, = 0.
1

Equation (2.2) becomes

X1 =B:X,, 0<i<n-—1 (2.3)

and X; (1 <i < n) can be expressed in terms of X as
X,‘:Bingigg"'BlBUX(). 1§1§1L

Now solving (1.1) becomes the finding of all the partial
products of matrices B; for 0 < ¢ < n—1and zo. If p < n, we

287

first evenly distribute matrices B;’s to p processors, perform
sequential matrix multiplication on each processor, then use
the prefix method on p processors. There are (log p)+1 parallel
communication steps in applying the prefix method with p
processors. _

Let C! = B;B;_1---B;. Then C7 is a 3 x 3 matrix. Since
the last row of Cf always equals [0,0,1], only six entries of C?
need to be transferred at each parallel communication. Fig. 1
shows the communication pattern of the parallel prefix method
for obtaining all the partial matrix products with n = 16 and
p =8

The actual communication complexity of the PP method
depends on the mapping of computation units into processors,
the interconnection topology of the multicomputer, and the un-
derlying communication mechanism. In the case of hypercube
topology, the communication pattern shown in Fig. 1 can be
mapped such that the dilation cost is no greater than 2 [13].

One drawback of the PP method is that the method is
unstable when |¢;| is small relative to |a;| + |b;] in (2.1). It
has been shown that some stability problems arise in the use
of the algorithm when the size of the system is large [6].

1II. A MATRIX PARTITIONING TECHNIQUE

Our parallel algorithms are based on the divide and conquer
model of parallel computation. In the divide part, the matrix
A is partitioned into submatrices. For convenience we assume
that n = prn. The matrix A in (1.2) can be written as

A=A+ AA. (3.1)
where
Aot : o b ]
D T S [ _a_-J"'J-J.L _____ IL_,
Al | o
- R -- [ Ty S
— 1 —_ Ed
A= | AA =1 T )
1 1 1 ] I - |
1 1 t L 1 ¥
‘-I~v| _____ I__ _—I—_l _____ éﬁ*n—
N f H
i | ' |P‘1 L ' 1 | ]
The submatrices A; (: = 0.---.p — 1) are m x m tridiagonal

matrices. Let e; be a column vector with its ith (0 < ¢ < n—1)
element being 1 and all the other entries being zero. We have

AA = [a/'mem-, Crn—1€m—1.U2m€2m . €29 —-1€2m 1" " "«
r T

€1 -‘
eT

m

=VET

C(p—l)mfle(p—l)m—l]

T
e(p—l)mfl

e(p—l)m A
where both V and E are n x 2(p— 1) matrices. Thus, we have

A=A+ VET (3.2)
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Fig. 1. The communication pattern of the parallel prefix method for obtaining
partial products.

Based on the matrix modification formula originally defined
by Sherman and Morrison [20] for rank-one changes and
generalized by Woodbury [5], [24], and assuming that all A;’s
are invertible, (1.1) can be solved by
r=A"'d=(A+VE")d
< -1 ~=1 T3=li1aT 51
=A d-A VI+E'A V)"E'A d (33)

Note that I is an identity matrix and I + ETA 'V isa
pentadiagonal matrix of order 2(p — 1). We introduce a

permutation matrix P such that
Pz = (21,20,23,22," 7z2p—3722(p——2))T
for all z € R*P~1,

Equation (3.3) then becomes
z=A 'd—AT'VP(P+ETAT'VP)IETAT'd. (34)

Note that Z = (P + ETA_IVP) is a tridiagonal matrix of
order 2(p — 1). Let

Az =d, (3.5)
AY = VP, (3.6)
h=ETz, 3.7
Z=P+ETY, (3.8)
Zy=h, (3.9
Az =Yy (3.10)
From (3.5)-(3.10), (3.4) becomes
T =i Az (3.11)

In (3.5) and (3.6), Z and Y are solved by the LU decomposi-
tion method. By the structure of A and V P, this is equivalent
to solve

A 2D v w9 = [dY aimeo,ciriym—1€m-1],

i=0,-,p—1. (3.12)
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Here we have ag = ¢,—1 = 0,ep,€m—1 € Rm,:i(i) and d
are the ith block of # and d, respectively, and v, w(®) are
possible nonzero column vectors of the ith row block of Y.
Equation (3.12) implies that we only need to solve three linear
systems of order m with the same LU decomposition for each
i(i=0,---,p—1). In addition, we can skip the first m — 1
forward substitutions for the third system since the first m —1
components of the vector at the right-hand side are all zeros.

Equation (3.7) only picks 2(p — 1) specified components
from the vector &. The evaluation of (3.8) uses those possible
nonzero entries of specified 2(p—1) rows of Y together with P
to form matrix Z. There is no computation or communication
involved in computing h and Z.

Solving (3.9) is the major computation involved in the
conquer part of our algorithms. Since Y has at most two
nonzero entries at each row, the evaluation of (3.10) takes
four arithmetic operations per row.

Based on the above observations and together with a careful
scaling process, the computational complexity required to
solve (1.1) in a sequential processor is stated in the following
theorem.

Theorem 3.1: Equation (1.1) can be solved using
(3.5)—(3.11) with 17n — 6p — 23 arithmetic operations without
pivoting and 24n — 13p — 34 arithmetic operations with
pivoting.

IV. PARALLEL PARTITION LU (PPT) ALGORITHM

Based on the matrix partitioning technique described pre-
viously, in following sections we show how to implement
parallel algorithms on multicomputers. The Parallel Partition
LU (PPT) algorithm is described first in this section.

Using p processors, the PPT algorithm to solve (1.1) consists
of the following steps:

Step 1. Allocate A;,d¥ and elements Qims C(i+1)m—1 10
the sth node, where 0 <7 <p— 1.

Use the LU decomposition method to solve (3.12).
All computations can be executed in parallel and
independently on p processors. )

send 257,59 |, {08 w?, wl  (0<i <
n — 1) to all other nodes from the ith node to form
matrix Z and vector h [(3.7) and (3.8)] on each
node. Here and throughout the subindex indicates
the component of the vector.

Use the LU decomposition method to solve Zy = h
[(3.9)] on all nodes simultancously. Note that Z is
a 2(p — 1) dimensional tridiagonal matrix.
Compute (3.10) and (3.11). We have

Az = [v(i)’w(i)] Y2i-1
y2i |

2O = 70 _ Ag®.

Step 2.

Step 3.

Step 4.

Step 5.

(4.1

This step is executed in parallel on p processors.
As mentioned in Section I, the underlying communication
mechanism of multicomputers has a great impact on the
performance of parallel algorithms. In the store-and-forward
mechanism, which is used in all first generation hypercube
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multicomputers, the message transfer time between two ad-
jacent processors can be expressed as v + 35S, where « is
the communication latency, ( is the transmission time per
byte, and S is the number of bytes in the message [8].
If a message is delivered to h hops away, the message
transfer time can be roughly estimated as h(cx + 35). In
second generation multicomputers, advanced communication
mechanisms are adopted, such as the circuit switching used in
iPSC-2 [2] and the wormhole routing used in Ametek 2010 [1].
In these new communication paradigms, the message transfer
time is almost independent of the distance (number of hops)
between processors [2]. In this case, if network contention is
not considered, the transfer time of a message with S bytes
can always be expressed as v + 35 regardless of the distance
that a message has to traverse.

The PPT algorithm has an all-to-all communication which
is also called total data-exchange or all-to-all broadcasting
[15] communication. Fig. 2 shows the communication pattern
of the PPT algorithm for the case of p = 8.

One of the best ways to handle the all-to-all communication
is using the butterfly communication fashion as shown in Fig. 3
for the case of p = 8.

The butterfly communication pattern can be perfectly em-
bedded in the hypercube topology [19]. Note that in the data
transfer, each processor, upon receiving a message, has to
add in its own data and forward the enlarged message to
the following processors. As a result, the communication time
required in total data-exchange can be estimated to be

(log p)ex + (p — 1)S573. 4.2)

Equation (4.2) shows that the total data-exchange with butter-
fly fashion has the same time complexity as using the spanning
binomial tree technique [15]. By Johnsson and Ho [15], it is
optimum within a factor of two. Now we are ready to state
the computation and communication complexities of the PPT
algorithm.

Theorem 4.1: The PPT algorithm solves (1.1) in 17(n/p) +
16p — 45 and 24(n/p)+22p — 69 parallel arithmetic operations
for nonpivoting and pivoting, respectively. With 4-byte per
data element, it requires «vlogp + 16(p — 1)3 communication
times, where p is the number of processors and n = mp.

Let Ty, Tspr, and Tppr be the time required to solve
(1.1) using the sequential LU decomposition algorithm, the
sequential partitioning algorithm [(3.5)—(3.11)], and the PPT
algorithm, respectively. Let 7., represent the unit of a
computation operation normalized to the communication time.
From those theorems shown previously, we have

Tre = (8n — ) Teomp
Trep = (11n = 12)Tcomp
Tspr = (17n — 6p — 23)Teomp
Tspr = (24n — 13p — 34)Teomp with pivoting (4.6)
Tppr = (17% + 16p — 45)Teomp + (log p)o
+ 16(p— 1)3
Tppr = (24% +22p — 69)Teomp + (logp)a

without pivoting (4.3)
with pivoting (4.4)
without pivoting (4.5)

without pivoting (4.7)
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Total Data-Exchange
D@H
Fig. 2. The communication pattern of the PPT algorithm.

Fig. 3 The butterfly communication pattern.

+16(p — )8 with pivoting (4.8)

In Section VIL, the theoretical results obtained here will be
compared with the measured results obtained from experi-
ments on a 64-node nCUBE-1.

V. THE PARALLEL PARTITION HYBRID (PPH) ALGORITHM

The PPT algorithm competes well with any existing parallel
algorithms for solving (1.1) when p <« n. However, the
efficiency of the PPT algorithm decreases as the number of
processors, p, increases. This is due to the fact that the major
computation in the conquer part (Step 4 in Section 1V) of
the PPT algorithm is redundant down on each node. For this
reason, we use the PP method (see Section II), the limited
processor version of the RCD method, to solve (3.9). In order
to apply the PP method, all the superdiagonal elements of the
coefficient matrix must be nonzero. The following theorem is
needed in applying the PP method to (3.9).

Theorem 5.1: If all the superdiagonal elements of the matrix
A are nonzero, the tridiagonal matrix Z = P + ETA'VvP
has nonzero superdiagonal elements.

Proof: The superdiagonal elements of Z are either equal
to 1 or the first components of the solutions

Aiw(i) = C(i+1)m—1€m -1, i = 1,"'.])—2 (51)
where w'") . e,n_1 € R™. Suppose w((,i) = 0, then wﬁ.’) =0
for j = 1,---.m — 1, since the superdiagonal elements of
A; are nonzero. Therefore, we have A1’w(i) = (), which is a

contradiction to (5.1). O
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The new algorithm, namely the parallel partition hybrid
(PPH) algorithm, is similar to the PPT algorithm except the
following changes. After Step 2 of the PPT algorithm, the
2i — 1th and 2ith, for i = 0,---,p — 1, rows of the tridiagonal
matrix Z are stored in the ith node (here the —1th and
2(p—1)th rows of Z arc assumed to be zero). Step 3 of the PPT
algorithm, which performs total data-exchange, is eliminated.
Step 4 of the PPT algorithm is then replaced by the PP method
as described in Section II.

The PP method has two communication patterns in Step 4.
The first communication pattern shown in Fig. 1 computes all
partial matrix products. The second communication pattern is
a broadcast which broadcasts the computed zq to all other
nodes. Broadcast can be achieved by using the spanning
binomial tree technique [15]. Considering second generation
multicomputers, based on the communication model discussed
in Section IV, the communication time required to obtain all
partial products of B;’s (Fig. 1) is (log p+1)a+24(log p+1)4.
Here we have S = 24 because each message transfer has 6 data
elements and we assume that each floating point number has 4
bytes. Since the broadcast communication takes log p steps and
the message has one data element, it takes (log p)a+(4logp)g
time. The communication pattern of the PPH algorithm is
shown in Fig. 4 for the case of p = 8. Counting the arithmetic
operations and communication time, we have the following
theorem.

Theorem 5.2: With n = pm, the PPH algorithm solves
(1.1) in 17(n/p) + 20logp + 17 and 24(n/p) + 20logp + 4
parallel arithmetic operations for nonpivoting and pivoting,
respectively. It requires (2logp + L)a + (28logp + 24)8
communication steps.

Let Tspg be the time required to execute the PPH algorithm
in a sequential processor and Tppy be the time required to
execute the PPH algorithm on p processors, we have

Tspr = (1Tn+ 8p — 41)Teomp
Tspr = (24n — 5p — 41)Teomp

without pivoting
with pivoting

Tppy = (17% +20logp + 17)Tcomp + (2logp + 1)

+ (28logp + 24)8 without pivoting

n
Tppy = (24; +20logp + 4) Teomp + (2logp + v

+ (28logp + 24)0. with pivoting
It is interesting to notice that the PPH algorithm can reach a
speedup of 2 over the PP algorithm for 1 < p < n. When
p = n, no matrix partitioning is needed and the PPH algorithm
is virtually the RCD algorithm. When p = 1, there is no
conquer part and as the LU decomposition method is used in
the dividing part, the algorithm becomes the LU decomposition
algorithm.

As we mentioned earlier, the PP method is unstable if
superdiagonal elements are small. This may be true for the
PPH method. However, in this method, the PP algorithm is
used only for solving a smaller linear system Zy = h, and
half of superdiagonal elements of the matrix Z equal to 1 as
we proved in Theorem 5.1. This indicates that the PPH method
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Fig. 4. The communication pattern of the PPH algorithm.

might be more stable than the PP method, but still inherits the
unstability of the PP method.

VI. THE PARALLEL DIAGONAL
DOMINANT (PDD) ALGORITHM

Theorem 5.1 guarantees that the superdiagonal elements
of matrix Z are nonzero if A has the same property. In
practice, especially for a diagonal dominant tridiagonal matrix
A, the magnitude of the last component of v(*) and the first
component of w(”, which turn out to be the off-diagonal
elements of the matrix Z, may be smaller than the machine
accuracy when p < n. In this section we show that the
magnitudes of v, and w§’ converge to zero when m =
n/p — oo. An estimated rate of convergence will also be
provided. Thus, when the tridiagonal system satisfies a strong
diagonal dominance condition, a fast and highly efficient
parallel algorithm gives an approximate solution which equals
the exact solution within machine accuracy.

A. Theoretical Results for Diagonal Dominant Systems

For notational convenience, we write a tridiagonal matrix
A as a triple of vectors as

bo co
a b
A= : = (@i, bi. i)
bn—Z Cn—2
bnfl

(i=0,-

An—2
an-1

,n—1)

where ag = ¢,_1 = 0. The matrix Z and the jth block of the
matrix A can be similarly written as

(7;:0,"',2([)—1)—1),
(i=0,---,m—1).

5 Ci

Z = (9’1 L 2N
4;= (@ 0.

Z bZ Z)
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The super index (j) will be dropped when the context is clear.
The matrix Z can be represented as

-’11),(:,))71 1 W
1 'u[(]l) 'w(()m
oy w1
Z = ’
WS
L U
where v . w®) for i = 0..--.p — 1 are the solutions of
A\ = (LE)I)E().

Aw® = (:S,?_lc,,,_\.

and 1’s come from the permutation matrix P.
Definition: A tridiagonal matrix A is evenly diagonal dom-
inant if
la:] < |b;/2|. |¢i| £ 1bi/2]and a;qq - ¢; >0

i=0..n—2 (61)

Note that the evenly diagonal dominant is little stronger than
diagonal dominant. The submatrix A; has a LDU factoriza-
tion
A; = LDU = (1;.1.0)(0.6;.0)(0. Lowjy1)
(1=0.---.m—=1).
It can be easily verified that

li=ai/6;—1. ui = ci—1/6i-1. i=1.---.m—1. (6.2)

Since AJ-_1 = U 'D7 'L}, where

- m—1
1, —uy. (1) Uy U1 ]

1.

ULUL.

1.

L I
D! =(0,1/8:.0)
r 1.

—Iy. 1.

Ily 1.

-(—1)7’1_111"'11n4. I

The last component of vU) = Afl((zf;j)cg) and the first

. J N
component of w(?) = Aj‘l(<:§,’,llem-1) are

m—1
m—1 ] (_l) H a;
’I)(J) — (_1> Zl c 'lmAlnl((]]) i=0
m—1

émfl

m—1
m—1
1 m—1, ., (4) (—1> H C;
RS (7 ) Uy =10,y _ i=0
IH“ = - .
bm—l !
I &
=0

Let det(A;) denote the determinant of A;. We have
m—1

] Fal
%, = [0 = | T o1/ det(4)).
1=0

m—1

1 = lu’ 1= | T o1/ det(A)). (6.3)
=0

for j = 1.---.p — 2. Scaling matrix A, we have

A=KA = (0.k;.0)(a}. b}, c}).

!

where
ki = sign(b;) - Max(|a;|. |¢i])-
ESNESN )

Equation (6.3) then is written as

m—1

lflgj| = H a:(”|/d(%t(A;-)_
=0
m—1

le5; 11 =1 H (i:(J)|/(1<ét(A;),
i=0

Thus, under the condition (6.1), with no loss of generality, we
can assume that A satisfies

lat] < 1, |} < 1.0 > 2. i=0,---.n—1L
gy - ¢ > 0. 1=0,-.n—2. (6.4)
The next theorem shows that ugj.czzj;l(j =1..-.p—2)

converge to zero as the dimension of submatrices m = n/p —
~c if A satisfies the condition (6.4), which is equivalent to
that matrix A satisfies condition (6.1). The convergent rate is
at least exponential if b; > 2 fori =0.---.n — L

Lemma 6.1: Suppose a real tridiagonal matrix A =
(a;.b;.c;) of order n satisfies condition (6.4). Let ¢ =
ming<;<,—1(b; — 2). Then we have

$T
n+1

det(A) > H(/\,.—f—() with A, = 2+2cos 6.5)
=1

The proof of Lemma 6.1 can be found in the Appendix.
Theorem 6.2: 1f the matrix A satisfies condition (6.1), then
for matrix Z = (a?.b%.¢¥), we have

1

gl <1/ JJA +2)
s=1

|5, 11 <1/ H()\s +e) (6.6)
s=1

{7}
m41"

where j =1.---.p—2,mn=mn/p,and A, = 2 + 2cos
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The proof of Theorem 6.2 is a direct result of (6.3) and
Lemma 6.1. It is not difficult to verify that

1 < 1
(e +6) = (m+ DA +e/D™

6.7)

3

1

s

Thus, the convergent rate of those elements is at least expo-
nential if € > 0. Note that the bound in (6.7) is exact for e = 0
and would be more accurate for small €. A sharper bound for
larger € is given by [3].

The fast convergence of these elements has a simple intu-
itive explanation. The solution of a tridiagonal system requires
that every equation influences every other equation. For di-
agonal dominant systems, the influence diminishes with the
distance between equations.

As v w0 < i < 2(p — 1)) become zero within
machine accuracy, the matrix Z becomes a diagonal block
matrix with each block of size 2 x 2. In order to carry out the
PDD algorithm, we have to guarantee that the 2 x 2 diagonal
blocks of matrix Z

wl® 1 .

are nonsingular. This is proved by the following theorem and
its proof is stated in the Appendix.

Theorem 6.3: If a real tridiagonal matrix A of order n
satisfies condition (6.1), then )
1=0,--

(6.8)

i i+1
|w5n)71‘v((] )|<1. ,p—2.

B. The Parallel Diagonal Dominant (PDD) Algorithm

Theorem 6.2 implies that the matrix Z is a diagonal block
matrix with block size 2 x 2 within machine accuracy if m
is large enough. Then the procedure for solving (3.9), the
conquer part of our algorithm, becomes very simple. If (1.1)
satisfies condition (6.1), the parallel diagonal dominant (PDD)
algorithm has the following steps modified from the PPT
algorithm.

3) Send igi), v((]i) from the ith node to the (¢ — 1)th node
fori =1,---,p— 1.
4) Solve

[ws;)—l 1 ] Y2i | _ i:;)—l
1 v(()z"'l) Y2i+1 ich)

in parallel on all ith nodes for (0 < ¢ < p — 2). Then
send yoi41 from the ith node to the (¢ + 1)th node for
i =0,---,p— 2.

Fig. 5 depicts the communication pattern of the PDD
algorithm. In Step 3, all nodes transfer a message to their left
neighbor. In Step 4, all nodes transfer a message to their right
neighbor. Since it is unnecessary for node 0 to communicate
with node p — 1, the algorithm only needs a one dimensional
array connection, which can be perfectly embedded in first
generation hypercube multicomputers. The optimal and simple
communication property makes the PDD algorithm an ideal
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T

Fig. 5. The communication pattern of the PDD algorithm.

algorithm for multicomputers. The computation and commu-
nication complexities of the PDD algorithm is stated in the
following theorem.

Theorem 6.4: 1f n/p > 1 and matrix A satisfies condition
(6.1), the PDD algorithm solves (1.1) in 17(n/p) — 14 parallel
arithmetic operations and 2+ 12/ communications on multi-
computers with p processors. When the left-hand side of 6.7)
is within machine accuracy, the approximate solution equals
the exact solution within machine accuracy.

Let Tspp and Tppp be the time required to execute
the PDD algorithm in a sequential processor and p parallel
processors, respectively. We have

TSDD = (1771 b 14p - S)Tc(,mp,

TPDD = (17% - 14) Tcomp + 2a0 + ].Zﬂ

Many tridiagonal systems arising in science and engineering
problems satisfy condition (6.1). However, condition (6.1) is
sufficient but not necessary. The algorithm can be used for any
positive definite or diagonal dominant matrix whose resulting
|vf,’l)_1 ,|w((,’)| [see (6.3)] become underflow as n > p. One
of the sufficient conditions is that the determinants of scaled
matrices A (j = 0,---,p — 1) become overflow as n > p.
For example, if A = (1,4, 1), det(A’;) are approximately larger
than m/! since its ith eigenvalue \; = i except few smallest
and largest ones. The magnitude of those entries of Z can be
as small as 107 for n/p > 50.

VII. EXPERIMENTAL RESULTS

The arithmetic operation counts and communication steps
of each individual algorithm are summarized in Table L

Fig. 6 shows the estimated and measured speedup of the
PP, PPT, PPH, and PDD algorithms with respect to the
subroutine SGTSL of LINPACK [4]. These algorithms are
implemented on a 64-node nCUBE 1 multicomputer. nCUBE
1 is a first generation multicomputer adopting the store-
and-forward communication mechanism. In our nCUBE 1
machine, the following system parameters are measured: o =
5.0, § = 0.013, and Teomp = 0.08 (without normalization).
The dimension of matrix A is chosen as n = 6400. This value
is limited by the memory constraint of individual processors.
As p increases, the PPH algorithm will outperform the PPT
algorithm because the dimension of the matrix Z [(3.9)]
increases as p increases, which favors the parallel approach
used in the PPH algorithm. The performance of the PPH
algorithm seems to be underestimated compared with the
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TABLE 1
COMPUTATION AND COMMUNICATION COUNTS OF TRIDIAGONAL SOLVERS
Algorithm Computation Communication
PPT (nonpivoting) T',—’, + 16p — 45 (log p)o + 16(p—1) 3

PPT (pivoting)
PPH (nonpivoting)
PPH (pivoting)

PDD

24% + 22p — 69
17'7') +20log p + 17
24’[—" +20logp+4

174 — 14
»

(log p)a + 16(p —1)3

(2logp+ 1)a 4+
(28log p+24) 3

(2log p+ 1)a +
(281log p+ 24)3

20 + 123

Speed

AL L1 AL L1y
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

No. of Nodes No. of Nodes
(a) (b)

Fig. 6. The speedup over the LU decomposition method, where n = 6400.
(a) Estimated speedup. (b) Measured speedup.

measured results. This is mainly caused by assuming a dilation
of 2 for all communications occurred in Fig. 1. However, in
actual implementation, some communications have dilation 1.

As n goes to infinity, the asymptotic speedups, compared
with the LU decomposition method, of all our methods are
0.471p. And the asymptotic speedup for the PP method is
0.229p. Dividing the speedup by the number of processors, p,
Fig. 7 shows the efficiencies of our methods. For the case of
n = 6400, only the PDD algorithm has an efficiency closing
to the asymptotic efficiency. For all methods, the efficiency
decreases as the number of processors p increases. This is
mainly caused by the increasing ratio of the communication
and the computation complexities.

There are two commonly accepted measures for the
speedup and the efficiency of parallel algorithms [18]. One
focuses on how much faster a problem can be solved by
p processors. Thus, it compares the best serial algorithm
with the parallel algorithm under consideration. It is defined
as
execution time using the fastest sequential algorithm

on one processor

S, =
P execution time using the parallel algorithm
on p Processors
Both Figs. 6 and 7 are based on the above mea-

sure, and the best sequential algorithm chosen is LIN-
PACK subroutine, SGTSL. Another measure interests in
the parallel inherence of the algorithm and is defined
as

execution time using one processor

S = — : .
P execution time using p processors

We call the latter as the relative speedup. The relative speedups

Effi
ciency 02
r | I N Y U IS B | 0 N I N N S |
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
No. of Nodes No. of Nodes
(2) (b)
Fig. 7. Efficiency over the LU decomposition method, n = 6400. (a)
Estimated efficiency. (b) Measured efficiency.
64
56 o
7
48 D
’/
40 ”
Speed i
-Up 32 — H
24 i
6 £ PR

8 16 24 32 40 48 56 64
No. of Nodes

8 16 24 32 40 48 56 64
No. of Nodes
@) (b)

Fig. 8. The performance of relative speedup and relative efficiency. where
n = 6400. (a) Estimated relative speedup. (b) Measured relative speedup.

and efficiencies of our methods are shown in Fig. 8. As it
shows, the relative speedup of the PDD algorithm is very
close to the ideal speedup. This is due to the high effi-
ciency of the PDD algorithm as we discussed in Section
VI-A.

One of the advantages of our methods is its diversity.
In the dividing part, the pivoting may be used when it
is necessary. There has been a tacit assumption for most
available parallel algorithms that no pivoting is required.
Thus, our algorithms may be more stable than others in the
cases pivoting is required. In the conquer part, basically the
major computation required is to solve (3.9). The methods
used in this part are irrelevant to the methods used in the
dividing part. Other strategies may also be used to solve
(3.9).

The nonsingularity of matrix A is required by the PPT
and PPH algorithms. Unless the matrix A is positive definite
or diagonal dominant, there is no general rule to guarantee
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that A (see Section III) is nonsingular. However, for certain
class of matrices A at hand, very often we can find a
criterion to avoid the singularity of A and make the algorithms
work.

Michielse and Vorst [17] studied the communication pattern
of Wang’s method [23] for local memory machines. Based
on their result, the communication count of Wang’s method is
2(p—1)(a+1083) + (a+163). The recent results given by Ho
and Johnsson [11] are more encouraging. The algorithms of Ho
and Johnsson are based on substructuring, which is a variant of
Wang’s method. The computation and communication counts
of their algorithms are very close to respective counts of
the PPT method. The difference of their algorithms versus
ours is that, in the partitioning/substructuring phase, their
algorithms require neighboring communications, while ours do
not need any communication. The major gain of these extra
communications is that their reduced system is of order p—1,
while ours is of 2(p—1). The numbers of communication steps
in the conquer phase for all these algorithms are essentially
the same.

It is interesting to know that, based on the matrix mod-
ification formula (3.3), we are end up a matrix partition
which is very similar to that of Lawric and Sameh [16].
The main difference between our algorithms and theirs is
the strategies adopted in solving the reduced system (3.9).
Both theoretical and numerical results have shown that strate-
gies of solving the reduced system will affect the overall
performance on a multicomputer considerably. It is for this
reason, we proposed three algorithms, the PPT, PPH, and
PDD, in which, the actual differences are the strategies in
solving this reduced system. Table I shows that, the com-
munication complexities of these three algorithms in solving
(3.9) are O(logp), O(logp), and O(1), respectively, while
it is O(p) for the Lawrie—Sameh’s algorithm. When p is
large (> 16), O(p) communication delay can be signifi-
cant comparing with O(logp) and O(1), especially on the
nCUBE multicomputer we used, which has a relatively high
communication startup latency. This fact is confirmed as
shown in Figs. 6-8. Lawric—Sameh’s algorithm was de-
signed for shared-memory multiprocessors, while ours are
designed mainly for multiprocessors with distributed memory
architecture, although they are well-suited for a variety of
architectures.

In solving a multiple tridiagonal system, the procedures
(3.5)=(3.11) can be divided into two stages: 1) factorin% the
coefficient matrices A; and Z, and formulating Y = AVP
[see (3.6)]; 2) solving the systems (3.5) and (3.9), then
forming the final solution. The number of computation and
communication steps in the first stage remains unchanged.
In the second stage, both (3.5) and (3.9) become solving
a multiple linear system. For a multiple system the vectors
d; of the rightside, (i = 1,---,k), are either available at
the beginning of the computation or only available during
the solving process. In the formal case, the communication
increases slightly, since only the message length is increased
due to the multiple rightside vectors. In the latter case,
communication has to be repeated for each system, which
makes the PPT method more preferable than the PPH method.
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A matrix partitioning method for tridiagonal linear systems
is introduced. Based on this partitioning method, three parallel
algorithms for solving a tridiagonal system on multicomputers
are proposed. All these three algorithms are based on the
divide and conquer principle and are designed for the situation
where the number of processors p is much smaller than the
dimension of the system n. The PPT and PPH algorithms are
fast and able to incorporate pivoting. The PPT algorithm is
simple and more stable. It is a good choice when the number
of processors is small. The PPH algorithm is a hybrid of
the LU decomposition method and the recursive doubling
method. When p = n, the PPH algorithm is virtually the
recursive doubling algorithm. When 1 < p < n, the PPH
algorithm is faster than the limited processor version of the
recursive doubling algorithm and is more efficient than the
PPT algorithm. The PDD algorithm is the most efficient
algorithm when the system is evenly diagonal dominant. It
requires a simple and minimum communication and is an
ideal algorithm on multicomputers when the condition is
permitted.

The methods introduced in this paper have advantages in the
speedup, efficiency, diversity, and the uniqueness of pivoting.
All the three algorithms have been implemented on a 64-node
nCUBE 1 multicomputer and compared with the sequential
LU decomposition algorithm. Our theoretical analysis matches
closely with our experimental results. All the three algorithms
introduced in this paper can be extended to the banded
linear systems and block tridiagonal linear systems. Although
the methods proposed here are dedicated to multicomputers,
they can be easily modified to run on other multiprocessor
architectures.

CONCLUSIONS

APPENDIX

Proof of Lemma 6.1: First let A = (a;, b, ¢;) with b = b;
fori # j and b5 = b; + ¢, where € > 0. We have

det(A°) = det(A)

by - 1
bj,1 0
+ det 0 € 0
0 bjt
L .
> det(A).

Repeating this process we have

det(as, b; + €5, ¢;) > det(aq, by, ¢;) with ¢; > 0. (Al)

Next let A° = (a;, b;, ) with ¢§ = ¢; fori # j, ¢§ = ¢; + €t
7 7 7 7
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such that |¢5| < |¢;] and et # (. Then we have

det(A7) = det(A)
rbg - "

()_,’,1 Ci—1

2
&
T

Proof: Since &; = b; — a;icizyfoioa (i=1.-m— 1)

with 69 = bo, then

8> 24 ¢ —1/8 with ¢; > 0.

Using mathematical induction, (A4) can be easily verified. O
Using LDU decomposition of Aj, it is found that

+ det 0 0 I
(l'i+l [)'/.Tl .“'f!’l)—L : l’((),+“' =
®j+2 ) (i41)(i+1)
L . . l(mfl 1 ) l’]
(1) (i4+1) (i+1)
) bnfl E b,”71 h() bl
— 1 + . 1 i 1 {
—detlA) = e R Ao TR A e
by <o 6““" ay |
b ) m—1
a1 1 C1 . )
-det 1 1 LD i+
de < 0 +
aj o bja i > 5(:,)71 5(();“) ((Sf)’H))?(S(l'H)
aj-1 bj-1 D) (D) D) G
bj+2 Cjy2 0 U tm—2™1 -1 |
(i+1) (i+1)\9¢(i+1)
aj+3 bj+s Cja (b b0 )01
' ' . L 1 N 1 .
2 On—9 Cp—=2 T N n
- - = () (i+1) (i+1)yo ¢lit1)
-1 l),,,l bm—l g)[) ((S(] )261
> det(A) N 1
. . . . i+1 i+ 1)\ (it
since sign(e*a; 1) = sign(ete;) < 0. It follows directly that ((5(()Hr . 55,Zt2))255,2t1)

det(ai.bici + €,+) > det(a;.b;.¢;) with €; > 0. (A2)
with
lei 4671 < el

Similarly we can get

< _m 1+1'2+ N 1-m
“m+1\2 22-3 m2-(m+1)

_oom 1 n 1 R 1
TomA41\1-2 23 m - (m+1)

m m <1 for >0
= — or any m .
m+1 m+1 y

det(a; + €. bioei) 2 det{a;. b;i. i) (A3)
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