
FatTreeSim: Modeling Large-scale Fat-Tree Networks for
HPC Systems and Data Centers Using Parallel and

Discrete Event Simulation

Ning Liu, Adnan Haider, Xian-He Sun, Dong Jin
Illinois Institute of Technology

10 West 31st Street
Chicago, IL 60616

{nliu8,ahaider3}@hawk.iit.edu,{sun,dong.jin}@iit.edu

ABSTRACT
Fat-tree topologies have been widely adopted as the commu-
nication network in data centers in the past decade. Nowa-
days, high-performance computing (HPC) system designers
are considering using fat-tree as the interconnection network
for the next generation supercomputers. For extreme-scale
computing systems like the data centers and supercomput-
ers, the performance is highly dependent on the intercon-
nection networks. In this paper, we present FatTreeSim, a
PDES-based toolkit consisting of a highly scalable fat-tree
network model, with the goal of better understanding the de-
sign constraints of fat-tree networking architectures in data
centers and HPC systems, as well as evaluating the applica-
tions running on top of the network. FatTreeSim is designed
to model and simulate large-scale fat-tree networks up to
millions of nodes with protocol-level fidelity. We have con-
ducted extensive experiments to validate and demonstrate
the accuracy, scalability and usability of FatTreeSim. On
Argonne Leadership Computing Facility’s Blue Gene/Q sys-
tem, Mira, FatTreeSim is capable of achieving a peak event
rate of 305 M/s for a 524,288-node fat-tree model with a
total of 567 billion committed events. The strong scaling
experiments use up to 32,768 cores and show a near linear
scalability. Comparing with a small-scale physical system
in Emulab, FatTreeSim can accurately model the latency in
the same fat-tree network with less than 10% error rate for
most cases. Finally, we demonstrate FatTreeSim’s usability
through a case study in which FatTreeSim serves as the net-
work module of the YARNsim system, and the error rates
for all test cases are less than 13.7%.

Categories and Subject Descriptors
I.6.4 [Computing methodologies]: Modeling and simula-
tion

General Terms
Design, Experimentation, Performance, Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.
c© 2015 ACM ISBN 978-1-4503-3583-6/15/06 $15.00.
DOI: http://dx.doi.org/10.1145/2769458.2769474.

Keywords
Fat-tree networks; Parallel discrete event simulation; Blue
Gene/Q; Datacenter interconnection network; Supercomputer
interconnection networks

1. INTRODUCTION
The growing demands of Internet Services have greatly

propelled the development and deployment of data centers
in the past decade. According to [4], the total number of
data centers deployed will reach 8.6 million by the year 2017
and then start to decline. But the total capacity of the data
center will continue to increase, which indicates the size of
individual data centers will continue to grow. Today’s lead-
ing data centers usually take up millions of square feet, host
sub-millions of physical servers and consume million watts of
energy. Communication network is a key component in data
centers. According to the report from Cisco[2], the total
amount of data processed in data centers is 3.8 Zettabytes in
2014 and will reach 8.6 Zettabytes in 2018, of which, around
75% is internal traffic. Therefore, we need an efficient data
center communication network that is capable of running at
extreme-scale and processing large volumes of application
data. Fat-tree has been the mainstream networking topol-
ogy adopted in data centers and will continue to dominate
in the near future.

In the HPC community, there is a growing interest in un-
derstanding how parallel programs, including system soft-
ware like MPI/OpenMP and scientific applications, scale in
extreme large scale architectures. One key performance im-
pact factor is also the interconnection communication net-
work. In the past decades, torus network is widely adopted
in HPC systems because of its low cost and high delivered
performance. For example, the Blue Gene/L and P series
and the CrayXT series use a 3-D torus network and the
newly delivered Blue Gene/Q system uses a 5-D torus net-
work. However, the torus network is inherently a block-
ing network, meaning the total number of available paths is
smaller than the total demand, which can significantly ex-
acerbate the network performance in communication bursts
such as the MPI All-to-All and the Reduce communication.
A fat-tree can provide the non-blocking feature with the 1:1
subscription ratio and keep the total cost within a reason-
able level [7]. Oak Ridge National Laboratory has recently
announced that the next generation OLCF supercomputer,
SUMMIT, will adopt a fat-tree as its interconnection net-
work [8].

199

torus
network
model

dragonfly
network
model

fat-tree
network
model

CODES

 ROSS

CODES-wkld CODES-net

CODES-base

sequential
simulation engine

conservative parallel
simulation engine

optimistic parallel
simulation engine

traffic
generator

Initializer:
topology,

bandwidth, etc

simulated
switch

statistic
collector

protocols

routing

algorithms

simulated
nodes

Figure 1: FatTreeSim system architecture in CODES ecosystem. CODES is based on ROSS and is com-
prised of multiple modules: CODES-base, CODES-workload and CODES-net. CODES-net is comprised of
multiple network models. FatTreeSim is designed to be part of the CODES-net module and is the fat-tree
network model illustrated in this Figure. FatTreeSim is comprised of multiple components: Initializer, Traffic
Generator, Nodes, Switches, Protocols & Routing Algorithms and Statistic Collectors.

In order to quantify the performance and design trade-
offs of extreme-scale systems, such as a multi-million node
communication network, many researchers resort to parallel
and discrete-event simulation (PDES). PDES can provide a
scalable and cost-efficient alternative for evaluating systems
whose architecture is still in the research stage, or systems
that are economically infeasible to deploy.

In this paper, we present a parallel simulation toolkit, Fat-
TreeSim, for supporting the design and evaluation of large-
scale data center and HPC communication networks, as well
as the applications running on those networks. FatTreeSim
is based on two parallel simulation packages: the Rensse-
laer Optimistic Simulation System (ROSS) [14] and the Co-
Design of Exascale Storage System (CODES) [15]. Fig. 1 il-
lustrates the architecture of CODES.The CODES-workload
[31] module provides the functionalities to model and simu-
late HPC and Cloud workload traces and directly applying
existing traces to drive the underlying models. The CODES-
net module provides multiple PDES-based networking mod-
els as well as a unified user interfaces that facilitate the use
of the underlying networking models. The CODES-net in-
cludes four submodules: a torus network model [23], a drag-
onfly network model [28], a loggp[13] model, and a simple-
net model. To date, many simulation systems [25, 32] that
are based on CODES have successfully leveraged the func-
tionalities provided by CODES-net. In this work, our con-
tribution is to develop a highly scalable PDES-based fat-tree
model, abbreviated as FatTreeSim, as shown in Fig 1. Fat-
TreeSim has been incorporated as a submodule in CODES
and has been used by the aforementioned simulation sys-
tems. We highlight the features of FatTreeSim as follows:
1. To the best of our knowledge, FatTreeSim is the first

simulation system that is capable of modeling and sim-
ulating a fat-tree network with sub-million nodes in a
time efficient manner. FatTreeSim has demonstrated
a close-to-linear scalability on the Blue Gene/Q system
and has achieved a peak event rate of 305 M/s. The task

of simulating a sub-trillion events test case can be ac-
complished within minutes instead of days as compared
with the sequential discrete event simulation.

2. FatTreeSim models the protocol-level granularity in a
fat-tree network with an ECMP routing algorithm. Its
performance accuracy is validated through comparisons
with the real system developed in Emulab, and results
show that errors are all within 10% bounds.

3. We demonstrate the functionalities and compatibilities
of FatTreeSim through a case study. We run YARNsim
[25] with FatTreeSim and show that the network model
can effectively capture the network traffic characteris-
tics and enable the scalable simulation of MapReduce
benchmark applications.

The remainder of the paper is organized as follows. We
discuss the background and motivation in Section 2. We
describe the fat-tree model in Section 3. Section 4 presents
the validation experiments of the fat-tree model, and Section
5 discusses the related work. Closing remarks and future
works are presented in Section 6.

2. BACKGROUND & MOTIVATION
In this section, we present the background information

and motivation of developing FatTreeSim. Then we dis-
cuss two related systems, including the knowledge and tech-
niques, used by FatTreeSim.

2.1 HPC & Data Centers and the Intercon-
nection Networks

The design, evaluation and deployment of data center and
HPC system is a systematic and time-consuming process.
As the key component, the communication network has a
significant impact on system performance. Large-scale data
center and HPC system network architecture need to sup-
port a wide range of applications, each with different com-
munication and I/O requirements. This paper concentrates
on discussing an interconnection network candidate for HPC

200

and date centers: the fat-tree network, and its model and
simulation in large-scale. In distributed computing commu-
nity, it is projected that a single data center can scale out
to host millions of virtual machines or even physical servers
and serve multi-millions jobs/tasks. The requirements for
building a data center network at such a scale also differ
with that of the traditional data centers. The communica-
tion network must guarantee the high availability and relia-
bility, desirable bisection bandwidth, and support for multi-
tenancy. To quantify the design trade-offs of a network at a
scale, it is desirable to build a large scale simulation toolkit
that is capable of evaluating different design points in an
efficient and cost-effective manner. A fat-tree or folded-Clos
topology is the conventional and yet still the most prevalent
design choice for data center communication networks [2].

2.2 Hadoop
In 2003, Google first proposed the MapReduce system [17]

and since then it has become the most well accepted pro-
gramming models in the distributed computing community
because of its simplicity and efficacy. While Google kept its
MapReduce system proprietary, Apache Hadoop [1] is the
most popular open-source implementation of MapReduce
framework. According to a report from Gartner [3], 65%
of the packaged data analytic applications will be built on
Hadoop by 2015. Thus, it is necessary to evaluate the large-
scale network performance under a wide range of Hadoop
applications.

Because of Hadoop’s popularity, we have built YARN-
sim [25]: a Hadoop YARN simulation system. Compared
to other MapReduce simulation system [33, 26, 18, 9, 5],
YARNsim is advantageous in that it is a parallel simulation
system that is potentially capable of simulating extreme-
scale Hadoop YARN systems. Similar systems are con-
strained, for example, MRperf uses ns-2 as its network mod-
ule. While ns-2 has a rich set of functionalities that can
simulate the network at fine-granularity, it lacks the mech-
anism to run in parallel, thus is constrained in terms of
modeling large-scale system. YARNsim includes a compre-
hensive model for HDFS, which can mimic the I/O system
behaviors of Hadoop YARN. However, YARNsim’s capabil-
ities are limited in that it lacks the support of a detailed
parallel network model. We are motivated to develop Fat-
TreeSim to support YARNsim in modeling and simulating
Hadoop YARN at extreme-scale with minimal cost and good
accuracy. We expect YARNsim and FatTreeSim to help the
community to better understand the advantages and disad-
vantages of Hadoop system and quantitatively measure the
trade-offs between different design points.

2.3 ROSS & CODES
FatTreeSim is based on two parallel simulation packages:

ROSS and CODES. ROSS is a massively parallel discrete-
event simulator that has demonstrated the ability to process
billions of events per second by leveraging large-scale HPC
systems. A parallel discrete-event simulation (PDES) sys-
tem consists of a collection of logical processes (LPs), each
modeling a distinct component of the system (e.g., a server).
LPs communicate by exchanging time stamped event mes-
sages (e.g., denoting the arrival of a new I/O request at
that node). The goal of PDES is to efficiently process all
events in a global timestamp order while minimizing any
processor synchronization overheads. Two well-established

core

edge

Switch

Processing
Node

intermediate

Figure 2: A fat-tree network with the total number
of processing nodes equals to 16, the fat-tree height
equals to 3, the number of edge switch equals to 8,
and the number of core switch equals to 4.

approaches toward this goal are broadly called conservative
processing and optimistic processing. ROSS supports both
approaches. As shown in 4.2, FatTreeSim reaches the per-
formance peak using the optimistic approach.

CODES [15] is a simulation system based on ROSS. Its
goal is to enable the exploration and co-design of exascale
storage systems by providing a detailed, accurate, and highly
parallel simulation toolkit for exascale storage systems. Be-
sides the two modules illustrated in Fig. 1, CODES also
includes two modules CODES-bg and CODES-lsm. As seen
in Fig 1, the current CODES-net toolkit includes two im-
portant submodules, the torus network model [29], and the
dragonfly network model [28]. CODES is capable of simu-
lating complex large-scale systems, e.g. FusionFS [36, 35], a
distributed file system for both HPC and Cloud computing.
The metadata in FusionFS is managed by ZHT [21], a zero
hop distributed hash table service. Researchers from Illi-
nois Institute of Technology have build models for the two
systems and evaluated the performance at exascale. Tang
et. al build a resource scheduler for multicloud workflows
[32]. YARNsim [25] is the Hadoop YARN simulation sys-
tem that aims to model and simulate extreme-scale Hadoop
systems. However, current CODES-net module doesn’t in-
clude a model for fat-tree network, which is the prevailing
network topology used in current data centers. FatTreeSim
targets the fat-tree network and is built in the CODES-net
module. Therefore, it is compatible with any existing simu-
lation systems built on CODES.

3. SIMULATING FAT-TREE NETWORK
In this section, we present the details related to the design,

implementation and simulation of FatTreeSim. Specifically,
we discuss the network topology and parameters, the simu-
lated network traffic, routing algorithms and design consid-
erations, and the discrete-event model.

3.1 Fat-Tree Topology
We illustrate a simple topology of the fat-tree network in

Fig. 2, and it describes precisely how switches and hosts are
interconnected. In graph representation, vertices represent
switches or hosts, and links are the edges that connect them.
The network topology is central to both the performance
and the cost of the interconnection network. The topology
affects a number of design tradeoffs, including performance,
redundancy, and path diversity, which, in turn, affect the
network’s cost, resilience to faults, and average cable length.

A fat-tree can be described using the number of ports

201

002

001000 003002

012

011010 013012

022

021020 023022

032

031030 033032

102

101100 103102

001 011 021 031 101

000 ...

...

...

...

ECMP

Figure 3: A packet routing in a 128 node fat-tree network. Fat-tree setup: m=8 n=3. The total number of
switches is 80. The source node is 011, and the destination node is 100.

and the tree height. In general, a m-port n-tree fat-tree
have the following characteristics [22, 11]: the height of
the tree is n + 1; m is a power of 2; the tree consists of
m · (m/2)(n−1) processing nodes and (2n − 1) · (m/2)(n−1)

switches; each switch has m communication ports. Thus m
and n determines the size of the fat-tree network. A 4-port
3-tree fat-tree network is given in Fig. 2. Here, the tree
height is 3 which means there are 3 levels of switches. The
switch that connects directly to the processing nodes are
called edge switch, and the topmost level switch is called
the root switch. The rest switches are named intermediate
switch.

3.2 Fat-Tree Traffic
The traffic within the network of data center or HPC sys-

tem is often bursty, meaning a large volume of packets will
be injected into the network within a short period of time. In
HPC system, defensive checkpointping often happens after
the computation phase and usually starts with a synchro-
nization [24]. In data centers, the network traffic exhibits a
high degree of variability and is usually non-Gaussian [27].
In fact, a network that is only 10 percent utilized can see a
lot of packet drops when running a web-search application
[10].

In HPC and data centers, the communication pattern can
be categorized as follows: 1) N to 1; 2) 1 to N; 3) N to N; 4)
1 to 1. In the first two scenarios, the application performs
a global reduction or broadcast, which is a common traf-
fic. This patterTo represent and validate a variety of traf-
fic patterns and test the scalability of FatTreeSim, we pick
two traffic patterns: random destination traffic and nearest
neighbor traffic [24, 28]. With the random destination traf-
fic pattern, each source node randomly picks a destination
node and generates a packet stream with the intervals ap-
ply to the exponential distribution. In fact, the generated
packet is a Poisson stream. With nearest neighbor traf-
fic pattern, each source node picks the nearest-neighboring
node or the second-nearest-neighboring node as the destina-
tion node. This traffic pattern generates packets at a fixed
time interval and the ratio of packets passing through the
core routers is also fixed. It is challenging to simulate ran-

dom destination traffic in discrete event simulation because
the generated packet flows have very low locality. ROSS
optimistic simulation mode can handle this scenario in an
efficient manner. The nearest neighbor traffic is more bal-
anced and thus is more amenable to parallel simulation per-
formance.

3.3 Fat-Tree Routing Algorithm
The routing algorithm determines the route a packet tra-

verses through the network. Non-blocking fat-tree network
provides abundant path diversity in which multiple possible
egress ports exist. To take the advantage of the paths mul-
tiplicity, equal-cost multi-paths routing algorithm (ECMP)
is the widely used [11]. ECMP is a load balancing routing
protocol based on RFC 2991 [19] that optimizes flows over
multiple best paths to a single destination. ECMP applies
load balancing routing on flows such as TCP or UDP, and
can potentially increase the bandwidth between two end-
points by spreading the traffic over multiple paths. Path
selection is based on hashing of the packet header. In recent
years, networking researchers have pointed the limitations
of ECMP routing and proposed dynamic routing algorithm
like Hedera [12]. A path through the network is called min-
imal path if no shorter path, less number of hops, exists.
Different from other network topology, e.g. dragonfly, a fat-
tree has multiple minimal paths. In Fig. 3, we illustrate
an exemplar packet routing procedure in a 8-port 3-tree fat-
tree network. The total number of processing nodes equals
to 128 and total number of switches equals to 80. Here, the
packet starts from the source node 011 and tries to reach
the destination node 100. As we can see, the packet reaches
a different level at each hop, thus the maximum number of
hops for the complete route is 2 times the tree height. In
each step, the ECMP routing algorithm is used to deter-
mine the next hop node. In FatTreeSim, we model ECMP
routing and focus on minimal path. Network flow control
is also key to the network model. It dictates how the input
buffers at each switch or router are managed. FatTreeSim
buffers currently use the store-and-forward technique, thus
the delay can be described using equation 1.

T = H · (D/B + Tp) + Ts (1)

202

procedure GT . generate packet stream
t =processing delay
τ = rng(I)
if RandomDestinationTraffic then

dst = rng(maxnodeID)
Generate packet (header contains dst)

else if NearestNeighborTraffic then
dst = neighborID
Generate packet (header contains dst)

else
Unsupported traffic

end if
Call NSP procedure with t
Call GT procedure with τ

end procedure

Figure 4: Procedure GT

Here, H is the number of hops the packet takes in its entire
route. In fat-tree network this number usually equals to the
number of hops in a minimal path. D is the packet size. B
is the link bandwidth. Equation 1 assumes the bandwidth
are equal between nodes or switches. In FatTreeSim, the
link bandwidth is configurable through a customized config-
uration file. Thus equation 1 can be slightly modified so as
to represent the most accurate cost. Tp is the average prop-
agation delay on links. This parameter is also configurable
in FatTreeSim.

3.4 Simulating the Fat-Tree Network
The key components in a fat-tree network system are

switches and processing nodes. In FatTreeSim, we use LP to
model switch and processing nodes. FatTreeSim only focuses
on the network topology and its related features and sim-
plifies the hardware components such as I/O system, CPU
and memory. The processing node LP can be considered
as a network interface card (NIC) in CODES system where
detailed hardware models are provided. We also use an ad-
ditional LP (App LP) type to model an application software,
e.g. a MPI process or MapReduce task. The purpose is to
accurately capture the application layer behavior and thus
quantitatively model its effects on the network layer. For
example, a group of MPI processes running on terminals
can issue a collective communication call which generates a
burst of packets in the network layer. In FatTreeSim, switch
LPs are classified as a core switch LP, intermediate-switch
LP and edge switch LP. This resembles a real fat-tree net-
work system. Edge-switch LP connects to processing-node
LP. The same group of switch LP and processing-node LP
share the same address prefix. For the convenience of pre-
sentation, we use procedures to describe the typical events
used in FatTreeSim and illustrate them in Figures 4 to 7.

The packet routing in FatTreeSim is based on the address-
ing system. A m-port n-tree fat-tree network has a total of
m · (m/2)(n−1) processing nodes and (2n − 1) · (m/2)(n−1)

switches. Each node LP is assigned a unique n-bit address.
The first bit indicates the group number. mport means the
total number of groups is m. The rest n− 1 bits vary from
1 to (m− 1)/2. Thus the total number of processing nodes

inside each group is (m/2)(n−1). A switch LP is also as-
signed a unique n-bit address. The first bit also indicates
the group number. The last bit of the address indicates the

procedure NSP . node send packet
t = D/B + Tp

dst =my connected router
Call flit generates procedure with t and dst

end procedure

Figure 5: Procedure NSP

procedure RFR . router receives flit
t =processing delay
Check flit dst
Call RFS procedure with t

end procedure

Figure 6: Procedure RFR

layer number, where 0 represents the core layer and n − 1
represents the edge layer. The rest n − 2 bits vary from 1
to (m − 1)/2. Thus the total number of switches in each

layer is 2 · (m/2)(n−1) with the exception that the core layer

has (m/2)(n−1) switches. The routing starts at the edge
switch LP and iterates through all the layers. At any layer,
if the first k bits of the destination node address matches
the first k bits of the address of the current switch, then
the packet starts to go down to the lower layer of the switch
or the processing node. Otherwise, the packet continues to
go to upper layer switch. When packets go up, there are
multi-paths to choose from. ECMP algorithm hashes the
packet header and find the corresponding egress port based
on the hash value. In [22], the authors validated the rout-
ing algorithms with analytical proof and experiments. With
the aforementioned scheme, the packet routing is based on
table look-up rather than pre-allocation, which could save
memory for storing LP state variables in FatTreeSim.

In ROSS and CODES, the LP is addressed through a
global ID in the form an unsigned long integer. This is
different from the bit-format address assigned to the LP in
routing. Thus, we convert addresses between the two for-
mats and guarantee the events are forwarded to the correct
LPs.

The most important event in an App LP is the packet
generation event. We describe this event in Fig. 4. GT
procedure models the communication patterns of an appli-
cation. As described in 3.2, FatTreeSim support two types
of traffic: random destination and nearest neighbor. GT
procedure calls itself with an random interval. The inter-
vals applies to exponential distribution, therefore, the GT
procedure is capable of generating a Poisson input stream.

The NSP procedure illustrates a packet has been gener-
ated in an App LP and is injected into the fat-tree network.
NSP further triggers the flits generation event that mod-
els the protocol level details of network traffic. Users can
customize the flit sizes to evaluate how different network
configurations can affect the performance. When a switch
receives a flit, it parses the flit header and calls the AD-
DRESS procedure to get the exact next-hop address. Rout-
ing algorithms such as ECMP is implemented in ADDRESS
procedure. In this study, we only implemented and eval-
uated the ECMP. It is our future work to develop models
for other routing algorithms and evaluate the performance

203

procedure RFS . router sends flit
Parse flit dst
nextHop =ADDRESS(dst,flit)
t = D/B + Tp

Call RFR procedure with t and nextHop
end procedure

Figure 7: Procedure RFS

procedure ADDRESS . find next hop node
Parse flit dst
Get my address adr
Find gcp address greatest common prefix (dst,adr)
if gcp == Lc then

Route down, hash packet header
nextHop =ECMP()

else if gcp < Lc then
Route up, hash packet header
nextHop =ECMP()

else
Error

end if
return nextHop

end procedure

Figure 8: Procedure ADDRESS

under different applications at large scale.
At the processing node LP, the flits that belong to the

same packet are assembled and then further forwarded to
the destination App LP. We use additional events to model
this process and the details are omitted in the discussion.

4. EXPERIMENTAL EVALUATION
We evaluate FatTreeSim from three aspects: its accuracy,

scalability and usage. To verify that FatTreeSim can accu-
rately model the real-world network traffic, we conducted
extensive experiments on Emulab and compare the results
against the simulation results. The detailed discussion is
provided in section 4.1. To further demonstrate the scalabil-
ity, we run FatTreeSim on Blue Gene/Q supercomputer with
a variety of configurations. The details are presented in 4.2.
Lastly, we demonstrate the usage of FatTreeSim through a
use case study and its discussion is in section 4.3.

4.1 Fidelity Evaluation on Emulab
Emulab is a network testbed that allows users to flexibly

allocate the physical devices as well as virtual devices to
build the desired networking experiment environment [16].
Throughout the duration of the experiment, a user has com-
plete control of the devices and thus is capable to configure
the system with the desired parameters. We choose Emulab
for FatTreeSim accuracy tests because we can configure the
fat-tree network in a flexible manner. The maximum num-
ber of physical links an Emulab router can have is 4, thus
we configured a 4-port 3-tree fat-tree network topology, in
which we have full control of the physical nodes and links.
We used the MPI Ping-Pong benchmark for the experiments.
Here, the message size is set as 1,024 bytes because we want
to use and verify the MPI eager protocol. Similar to UDP,

Figure 9: Latency comparison between Emulab mea-
surements and FatTreeSim results using MPI Ping-
Pong benchmark. The message size is 1,024 bytes.
The total number of nodes is 16, and the total num-
ber of switches is 20. The traffic pattern is Nearest
Neighbor.

Figure 10: Latency comparison between Emulab
measurements and FatTreeSim results using MPI
Ping-Pong benchmark. The message size is 1,024
bytes. The total number of nodes is 16, and the to-
tal number of switches is 20. The traffic pattern is
Random Destination.

The eager protocol features a fire-and-forget communication
pattern in which no acknowledgment message is generated.
An MPI message smaller than 2,048 bytes will automatically
trigger the eager protocol. This experiment setting guaran-
tees that FatTreeSim has the correct configurations for each
node, link and switch.

We used two traffic patterns, nearest neighbor and random
destination, in the experiments. For each traffic pattern, we
vary the number of outgoing messages from 500 to 8,000,
and we repeat the test 10 times and calculated the stan-
dard deviation. In FatTreeSim, we set up an exact 4-port
3-tree fat-tree network with identical configurations. We re-
peat the experiments 10 times and calculate the average for
each configuration. The experimental results for the nearest
neighbor test is reported in Figure 9. As we can see, the
standard deviation decreases with the increase of the num-
ber of messages and its maximum value is 2.86% in a 500-
message test. This demonstrates that the system noise has
minimal impact on the experiments. We conducted identical

204

(a) CDF of Message Latency. The number of
processing nodes is 8. The number of switches is 6.

The traffic pattern is Nearest Neighbor.

(b) CDF of Message Latency. The number of
processing nodes is 8. The number of switches is 6.

The traffic pattern is Random Destination.

(c) CDF of Message Latency. The number of
processing nodes is 16. The number of switches is 20.

The traffic pattern is Nearest Neighbor.

(d) CDF of Message Latency. The number of
processing nodes is 16. The number of switches is 20.

The traffic pattern is Random Destination.

Figure 11: CDF of MPI Ping-Pong Test Message Latency. The message size is 1,024 bytes. The number of
messages is 1,000.

experiments on FatTreeSim in which we manually introduce
random noise to match the real system. There are, how-
ever, around 10-13% error in FatTreeSim for all test cases.
In Figure 10, we report the experimental results for random
destination traffic. Here, simulation can achieve a better
accuracy and the error range is within 3% for all test cases.

To further evaluate the accuracy of FatTreeSim, we record
the latency for each message from both the Emulab cluster
and FatTreeSim and report the results in the CDF plots.
We used two different configurations: a 4-port 2-tree and
a 4-port 3-tree. The message size is 1,024 bytes and the
number of messages is 1,000 per node. In all experiments,
we observed that the curve for simulation is much smoother
than the curve for Emulab. This is attributed to the fact
that we model only one outgoing buffer in each outgoing
port. If multiple messages are sent through this port, con-
gestion will occur and this single point queuing effect lead to
a unique waiting time for each packet. Another observation
is that there is a gap between the two CDF curves in the
high latency zone in Figure 11a. We attribute this to the
congestion model overuse in FatTreeSim. This gap explains
the average latency error in Figure 9. In the 4-port 3-tree

test, we observed better CDF curve match. However, Fat-
TreeSim cannot generate the steep increase or plateau ob-
served in the Emulab real system tests. As discussed earlier,
one way to model this effect is to introduce the multi-thread
and multi-channel model.

4.2 Validation on BG/Q
We conduct the strong-scaling experiment of FatTreeSim

on Mira, a Blue Gene/Q supercomputing system in Argonne
National Laboratory. As of Nov. 2014, Mira ranks 4th in the
top 500 lists. Mira consists of a total of 48 racks and 786,432
processors and is capable of 10 quadrillion calculations per
second. The total memory of Mira is 768 terabytes. Each
rack consists of 1,024 nodes and each node consists of 16
cores with a total of 16 gigabytes of shared memory. Users
can choose to run on different modes, thus allocating differ-
ent size of memory for each MPI process. The interconnec-
tion network is a 5-D torus which provides a fast collective
communication for global reduce operations. This is ideal for
ROSS to perform the optimistic synchronization algorithm.
FatTreeSim leverages the fast 5-D torus interconnection net-
work and achieves a performance of 305 million events per

205

0%

20%

40%

60%

80%

100%

0
50

100
150
200
250
300

Ef
fi

ci
en

cy

Ev
en

t
R

at
e

(M
/s

ec
)

Number of Cores

Event Rate Efficiency

Event Rate Efficiency
(a) Packet arrival interval

equals 200 ns.

0%

20%

40%

60%

80%

100%

0
50

100
150
200
250
300

Ef
fi

ci
en

cy

Ev
en

t
R

at
e

(M
/s

ec
)

Number of Cores

Event Rate Efficiency

(b) Packet arrival interval
equals 400 ns.

0%

20%

40%

60%

80%

100%

0
50

100
150
200
250
300

Ef
fi

ci
en

cy

Ev
en

t
R

at
e

(M
/s

ec
)

Number of Cores

Event Rate Efficiency

(c) Packet arrival interval
equals 800 ns.

0%

20%

40%

60%

80%

100%

0
50

100
150
200
250
300

Ef
fi

ci
en

cy

Ev
en

t
R

at
e

(M
/s

ec
)

Number of Cores

Event Rate Efficiency

(d) Packet arrival interval
equals 1600 ns.

(e) Packet arrival interval
equals 200 ns.

(f) Packet arrival interval
equals 400 ns.

(g) Packet arrival interval
equals 800 ns.

(h) Packet arrival interval
equals 1600 ns.

Figure 12: FatTreeSim Scalability Experiment on Blue Gene/Q. The fat-tree model consists of 524,288
processing nodes and 20,480 switches. The total number of committed events is 567 billion. In each top
subfigure, we vary the number of cores from 1,024 to 16,384 through running experiments on c1, c2, c4, c8
and c16 modes. From top-left subfigure to top-right subfigure, we vary the packet arrival interval from 200
ns to 1,600 ns. Experiments on the top subfigures are conducted using 1 Blue Gene/Q rack. In each bottom
subfigure, we vary the number of cores from 2,048 to 32,768 through running experiments on c1, c2, c4, c8
and c16 modes. From top-left subfigure to top-right subfigure, we vary the packet arrival interval from 200
ns to 1600 ns. Experiments on the top subfigures are conducted using 2 Blue Gene/Q racks. The traffic
pattern is random destination.

second using 32,768 cores.
We use two metrics: the committed event rate and the

event efficiency to evaluate the simulation performance of
FatTreeSim. In ROSS, the event efficiency determines the
amount of useful work performed by the simulation. It is
defined in Equation 2 [14]:

efficiency = 1− rolled back event

total committed events
(2)

The simulation efficiency is inversely proportional to the
number of rollbacks and is a rigorous indicator of the perfor-
mance of a simulation system. The higher the efficiency, the
faster the simulation performs. Another factor that affects
the efficiency is the percentage of remote events, which is de-
fined as the event transmitted between physical processes.
The delay of remote event is unpredictable and can cause the
logically erroneous events. The percentage of remote event is
inherent to the model and usually increases with the increase
of the number of physical processes when performing the
scaling experiment. Global synchronization can effectively
reduce the number of rollbacks, however, this global commu-
nication is usually expensive, especially in large-scale sys-
tems like Mira. There is a tradeoff in determining how fre-
quently the simulation system performs the synchronization.
ROSS uses gvt-interval and batch to control the frequency of
global virtual time computation. FatTreeSim leverages the
functionalities provided by ROSS and can achieve its peak
performance in large-scale through parameters tuning and
system configuration. The strategy for obtaining the opti-
mal gvt-interval and batch size for the Dragonfly network
module is discussed in [28].

Specifically, we configured a 128-port 3-tree fat-tree net-

work in FatTreeSim. The total number of processing-node
LP and App LP is 524,288 respectively, and total number of
switch LP is 20,480. We select random destination traffic as
it can generate the worst case scenario for parallel simulation
for its large percentage of remote event. Each node contin-
uously generates a packet stream and each packet randomly
selects a destination. The time interval between two packets
applies to the exponential distribution, thus the packet is a
Poison stream. The author in [24] has pointed out that the
interval also has an impact on the simulation performance.
To perform the strong scaling experiment,we fixed the sim-
ulation size through setting the number of packets to 5,000
on each node. The total committed event is 567 billion.

We perform the experiments on Mira using 1 rack and 2
rack of nodes respectively. Each Blue Gene/Q node has 16
processors and 16 gigabytes of shared memory, the job can
run on 6 different modes in which the each node can host
1, 2, 4, 8, 16, 32, and 64 MPI processes. In the last two
modes, an MPI process runs as a hyper-thread and 32/64
threads share 16 physical cores. We focus on the first 5
modes because, a parallel simulation is usually memory in-
tensive rather than CPU intensive. Thus, each MPI process
can get more memory. We vary the modes and packet ar-
rival intervals and report the performance of FatTreeSim on
Mira in details in Figure 12. In the tests that use 1 rack
of nodes, FatTreeSim nearly achieves a linear speedup up to
16,384 cores, the peak event rate is 297 million per second.
The efficiency decreases as the number of cores increases,
this is because of the increase of remote event percentage.
The maximum percentage we observed is 37%. Comparing
horizontally, we can see that the event rate increases with
the enlarged packet arrival interval. This is because the in-

206

tensive packet arrivals can cause the simulation engine to
generate more out of order events which contributes to the
total rollbacks. The takeaway here is that the performance
of FatTreeSim will decrease on simulating a burst of commu-
nication or I/O operations. On the experiments that use 2
racks of nodes, we start to observe negative efficiency when
the scale reaches 32,768 cores. This phenomenon is inherent
in the model. The efficiency will increase if we: a) use the
nearest neighbor traffic instead of random destination traf-
fic; b) increase the problem size of the simulation, e.g. total
number of LPs; c) tune the gvt-interval and batch parame-
ter in a fine-grained manner; d) perform a better mapping of
LPs to MPI processes so as to better balance the wordload.
We have yet to use experiments to corroborate the above
assertions. The gvt-interval and batch used in the experi-
ments are 32 and 8 respectively. The peak event observed
in this set of experiments is 305 million per second using
16,384 cores.

4.3 Case Study: YARNsim
YARNsim [25] is a comprehensive Hadoop YARN simu-

lation system that is capable of evaluating both the hard-
ware and software stack performance under a wide range
of applications. YARNsim is built on CODES and ROSS
and leverage the fast 5-D torus network provided by Blue
Gene/Q system for global reduction and synchronization.
In [25], the performance of YARNsim is evaluated through
comprehensive Hadoop benchmarks and a bioinformatic ap-
plication study. The details regarding the design, imple-
mentation and usage of YARNsim are beyond the scope of
this paper. In this experiment, we want to demonstrate the
usability of FatTreeSim through running YARNsim using
FatTreeSim. We perform the Hadoop application simula-
tion in YARNsim. Here, FatTreeSim serves as the network
layer module in CODES and helps YARNsim in evaluating
Hadoop benchmarks and application. We record the YARN-
sim performance and compare it against the results collected
from HEC. HEC is a 51-node Sun Fire Linux- based cluster,
in which there are one head node and 50 computing nodes.
The head node was Sun Fire X4240, equipped with dual 2.7
GHz Opteron quad-core processors, 8GB memory, and 12
500GB 7200RPM SATA-II drives configured as RAID5 disk
array. The computing nodes were Sun Fire X2200 servers,
each node with dual 2.3GHz Opteron quad-core processors,
8GB memory, and a 250GB 7200RPM SATA hard drive. All
51 nodes are connected through Gigabit Ethernet. We use
Hadoop YARN 2.5.0 for all experiments.

We choose Terasort and Wordcount benchmarks for the
experiments because they are widely accepted and can repre-
sent a class of Hadoop applications. To further analyze the
application performance, we decompose each job to three
phases, the map phase, shuffle phase and reduce phase, as-
suming map phase and reduce phase contains the merge-sort
operations. In HEC, we use a total of 16 nodes and vary the
input data size from 128MB to 16GB. To accurately record
the performance of each phase in the real system, we lever-
age the job history service provided by Hadoop, in which
the detailed performance of each phase is reported. We col-
lect and report these numbers and compare them against the
numbers collected from the YARNsim system. In YARNsim,
we use the same configuration as in HEC for configuring the
simulated clusters

We report the results of Terasort benchmark experiment

Figure 13: Performance Comparison of Terasort
Benchmark between real system and simulation.
The simulation uses FatTreeSim as the network
module: input data size varies from 128MB to
16GB; number of nodes is 16. Blue stacks are the
reported performance of each MapReduce phase on
HEC, red stacks are the reported performance of
each MapReduce phase on YARNsim.

Figure 14: Performance Comparison of Wordcound
Benchmark between the real system measurements
and simulation results. The Simulation uses Fat-
TreeSim as the network module: the input data size
varies from 128MB to 16GB; the number of nodes is
16. The blue stacks are the reported performance of
each MapReduce phase on HEC, and the red stacks
are the reported performance of each MapReduce
phase on YARNsim.

in Figure 13. Here we compare the performance results from
both HEC and YARNsim. In most test cases the error of
the accumulated performance is within 5%. YARNsim can
achieve a good accuracy in modeling Terasort benchmark
and the Hadoop system with the FatTreeSim network mod-
ule deployed. In Figure 14, we report the Hadoop Word-
count benchmark performance results on both HEC and
YARNsim. As we can see, YARNsim can also achieve a
good accuracy in modeling Wordcount benchmark and the
Hadoop system with the FatTreeSim network module de-
ployed. The observed error rate is within 10% for all test
cases.

In the field of bioinformatics, large dataset clustering is a

207

Figure 15: Performance Comparison of Bio-
application between real system measurements and
simulation results. The Simulation uses FatTreeSim
as the network module: the input data size varies
from 128MB to 16GB; the number of nodes is 16.
The blue stacks are the reported performance of
each MapReduce phase on HEC, and the red stacks
are the reported performance of each MapReduce
phase on YARNsim.

challenging problem. Many biological scientists resort to
Hadoop MapReduce for large scale and parallel process-
ing solutions. In [34], researchers from the University of
Delaware have developed an octree based clustering algo-
rithm for classifying protein-ligand binding geometries. The
proposed method is implemented in Hadoop MapReduce
and is divided into a two-phase MapReduce job. The geome-
try reduction and key generation are the first phase MapRe-
duce job where large datasets are read by the map tasks.
The output of the first phase is the input of the second
phase MapReduce job. Here, iterative octree based cluster-
ing algorithm is implemented as a chain of MapReduce jobs
representing the search has iterated to the deep level of the
search tree. In the first phase, the output data size is about
1% of the input data size. Thus the MapReduce job spends
most of the time on the map and the shuffle phase. To ef-
fectively model this application, we identify the sizes and
locations of all data blocks in each phase and use them as
input to the modeled MapReduce jobs. We vary the input
file of protein geometry data from 948MB to 60GB and run
the experiments on HEC using 16 nodes. We also build a
model for this clustering application and run it on YARN-
sim with different configuration. The performance on HEC
and YARNsim are reported in Fig 15. Here, FatTreeSim
also serves as the underlying network topology. The perfor-
mance results show that the error is within 10% for all test
cases. With FatTreeSim, we are capable of building a large-
scale model of the data centers where the Hadoop system
is deployed. Thus, it is potentially possible to evaluate and
optimize a large-scale Hadoop application from a simulation
perspective. It is our future work to continue on this topic.

5. RELATED WORK
There exists a plethora of works in modeling and simu-

lating large scale systems, each with a different focus. As
part of the exascale co-design process, there is a growing in-
terest in understanding how parallel systems software such
as MPI/OpenMP and the associated supercomputing appli-

cations scale on extreme-scale computing systems. To this
end, researchers have turned to parallel discrete-event simu-
lation. For example, Perumallas µπ [30] system allows MPI
programs to be transparently executed on top of the MPI
modeling layer and simulate the MPI messages. Each MPI
task is realized as a thread in the underlying µsilk simula-
tor. Thus, µπ captures the true direct execution behavior
across millions of MPI tasks that are part of a massively
parallel application. Similar systems, such as BigSim [37],
have not achieved such a level of scaling. The Structural
Simulation Toolkit (SST) uses a component-based parallel
discrete-event model built on top of MPI. SST models a va-
riety of hardware components including processors, memory
and networks under different accuracy and details. To the
best of our knowledge, neither of these systems performs
packet-level simulations of the underlying network at scale.
Instead, the focus of their research is application computa-
tion performance with the hardwares abstracted away.

Wang et al. have built the Hadoop simulator MRperf
[33]. MRperf use NS2 [20] as the network module. NS2 is
a well established network simulator in the community due
its rich set of functionalities, however, NS2 cannot run in
parallel and thus is constrained in terms of modeling large-
scale network. The new NS3 [6] project uses the conservative
parallel simulation and its performance on large-scale has yet
to be evaluated.

Researchers have focused on modeling large-scale network
model for topologies like torus [24] and dragonfly [28]. These
network models also leverage the functionalities provided by
ROSS platform and have already been ported to the CODES
[15] platform. Currently, the network models can support
a wide range of application models that run on CODES.
For example, Tang et al. [32] build a data-aware resource
scheduler on CODES. YARNsim [25] is the Hadoop YARN
system simulator that runs on CODES. However, to the best
of our knowledge, there is no large-scale model for fat-tree
networks. FatTreeSim targets the fat-tree network, which
has already been widely used in the distributed computing
community and is being considered as a network candidate
for the next generation HPC system.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present FatTreeSim, a fat-tree network

simulation system built on ROSS and CODES. We discuss
the design and implementation of FatTreeSim and validate
its accuracy, scalability and usability through extensive ex-
periments. Specifically, we run FatTreeSim on the Argonne
Leadership Computing Facility’s Blue Gene/Q system, Mira,
and demonstrates a close-to-linear scalability up to 32,768
cores. We also configured a 4-port 3-tree fat-tree network in
EmuLab and compared with FatTreeSim results using the
MPI Ping-Pong benchmark. The experimental results show
that the error rate of average latency is within 10%. Finally,
we run YARNsim, a Hadoop YARN simulation system with
FatTreeSim to test the Terasort and Wordcount benchmarks
and a bio-application. The experimental results show that
FatTreeSim can help YARNsim to accurately model Hadoop
benchmarks as well as real system applications.

Fat-tree is an important network topology that has been
widely used in the community of parallel and distributed
computing. Nowadays, fat-tree networks face new challenges
with the advent of the era of extreme-scale computing, when
systems feature millions of physical cores and the potential

208

billion-way concurrency. FatTreeSim is a timely work to
equip system designers with the right tools to cope with de-
ploying large-scale fat-tree networks. We plan to focus on
the following issues in the future: a) To increase the accu-
racy of FatTreeSim, we plan to augment the existing system
with a multi-channel model and a buffer management mech-
anism; b) to conduct extensive experiments on a Blue Gene
supercomputer at even larger scale to find the optimal sys-
tem configuration to maximize the model scalability; c) to
test YARNsim on FatTreeSim with large-scale Hadoop ap-
plications, whose results can be used for large-scale Hadoop
system optimization.

Acknowledgements
The authors would like to thank Dr. Misbah Mubarak, Dr.
Jonathan Jenkins, and Dr. Robert Ross from Argonne Na-
tional Laboratory for their valuable suggestions and help
throughout this work. This material is based upon work sup-
ported byt the Maryland Procurement Office under Contract
NO. H98230-14-C-0141. This also research used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH113571.

7. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org. [Last

accessed May 2015].

[2] Cisco Global Cloud Index: Forecast and Methodology,
2013-2018.
http://cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-
gci/Cloud Index White Paper.html. [Last accessed
November 2014].

[3] Gartner Report.
http://www.gartner.com/newsroom/id/2313915. [Last
accessed May 2015].

[4] IDC: Amount of World Data Centers to Start
Declining in 2017.
http://www.datacenterknowledge.com/archives/2014/11/11/idc-
amount-of-worlds-data-centers/-to-start-declining-in-
2017/. [Last accessed November
2014].

[5] Mumak: Map-Reduce Simulator.
https://issues.apache.org/jira/browse/MAPREDUCE-
728. [Last accessed May
2015].

[6] ns-3. https://www.nsnam.org/. [Last accessed May
2015].

[7] Real Cost Comparison of Fat-tree and Torus Networks
| ClusterDesign.org.
http://clusterdesign.org/2013/01/real-cost-comparison
-of-fat-tree-and-torus-networks/. [Last accessed May
2015].

[8] Summit. Scale new heights. Discover new solutions.
http://www.olcf.ornl.gov/summit/. [Last accessed
May 2015].

1Disclaimer: Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Maryland Procurement Office.

[9] Yarn Scheduler Load Simulator (SLS).
http://hadoop.apache.org/docs/r2.4.1/hadoop-
sls/SchedulerLoadSimulator.html. [Last accessed May
2015].

[10] D. Abts and B. Felderman. A guided tour through
data-center networking. Queue, 10(5):10:10–10:23,
May 2012.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. ACM
SIGCOMM Computer Communication Review,
38(4):63–74, Oct. 2008.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In Proceedings of
the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, pages 19–19,
Berkeley, CA, USA, Apr. 2010. USENIX Association.

[13] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages
into the LogP Model&Mdash;One Step Closer
Towards a Realistic Model for Parallel Computation.
In Proceedings of the Seventh Annual ACM
Symposium on Parallel Algorithms and Architectures,
SPAA ’95, pages 95–105, New York, NY, USA, July
1995. ACM.

[14] C. Carothers, D. Bauer, and S. Pearce. ROSS: a
high-performance, low memory, modular time warp
system. In Fourteenth Workshop on Parallel and
Distributed Simulation, 2000. PADS 2000.
Proceedings, pages 53–60, Bologna, Italy, May 2000.

[15] J. Cope, N. Liu, S. Lang, P. Carns, C. D. Carothers,
and R. Ross. CODES: Enabling co-design of multilayer
exascale storage architectures. In Proceedings of the
Workshop on Emerging Supercomputing Technologies
(WEST), Tuscon, AZ, June 2011.

[16] C. Cutler, M. Hibler, E. Eide, and R. Ricci. Trusted
disk loading in the emulab network testbed. In
Proceedings of the 3rd International Conference on
Cyber Security Experimentation and Test, CSET’10,
pages 1–8, Berkeley, CA, USA, Aug. 2010. USENIX
Association.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, Jan. 2008.

[18] S. Hammoud, M. Li, Y. Liu, N. Alham, and Z. Liu.
MRSim: A discrete event based MapReduce
simulator. In 2010 Seventh International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD),
volume 6, pages 2993–2997, Yantai, China, Aug. 2010.

[19] C. E. Hopps and D. Thaler. Multipath Issues in
Unicast and Multicast Next-Hop Selection.
https://tools.ietf.org/html/rfc2991. [Last accessed
May 2015].

[20] T. Issariyakul and E. Hossain. Introduction to Network
Simulator NS2. Springer Publishing Company,
Incorporated, 1 edition, 2008.

[21] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. ZHT: A
light-weight reliable persistent dynamic scalable
zero-hop distributed hash table. IPDPS ’13, pages
775–787, Boston, MA, May 2013.

[22] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang. A multiple

209

LID routing scheme for fat-tree-based InfiniBand
networks. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International,
pages 11–, Santa Fe, New Mexico, Apr. 2004.

[23] N. Liu, C. Carothers, J. Cope, P. Carns, and R. Ross.
Model and simulation of exascale communication
networks. Journal of Simulation, 6(4):227–236, Nov.
2012.

[24] N. Liu and C. D. Carothers. Modeling Billion-Node
Torus Networks Using Massively Parallel
Discrete-Event Simulation. In Proceedings of the 2011
IEEE Workshop on Principles of Advanced and
Distributed Simulation, PADS ’11, pages 1–8,
Washington, DC, USA, 2011. IEEE Computer Society.

[25] N. Liu, X. Yang, X.-H. Sun, J. Jenkins, and R. Ross.
Yarnsim: Simulating hadoop yarn. In 15th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid ’15, Shenzhen,
China, May 2015.

[26] Y. Liu, M. Li, N. K. Alham, and S. Hammoud. HSim:
A MapReduce Simulator in Enabling Cloud
Computing. Future Generation Computer Systems,
29(1):300–308, Jan. 2013.

[27] T. Mori, M. Uchida, R. Kawahara, J. Pan, and
S. Goto. Identifying elephant flows through
periodically sampled packets. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet
Measurement, IMC ’04, pages 115–120, New York,
NY, USA, Nov. 2004. ACM.

[28] M. Mubarak, C. Carothers, R. Ross, and P. Carns.
Modeling a Million-Node Dragonfly Network Using
Massively Parallel Discrete-Event Simulation. In 2012
SC Companion: High Performance Computing,
Networking, Storage and Analysis (SCC), pages
366–376, Washington, DC, USA, Nov. 2012.

[29] M. Mubarak, C. D. Carothers, R. B. Ross, and
P. Carns. A case study in using massively parallel
simulation for extreme-scale torus network codesign.
In Proceedings of the 2Nd ACM SIGSIM/PADS
Conference on Principles of Advanced Discrete
Simulation, SIGSIM-PADS ’14, pages 27–38, New
York, NY, USA, 2014. ACM.

[30] K. S. Perumalla and A. J. Park. Simulating
billion-task parallel programs. In Performance
Evaluation of Computer and Telecommunication
Systems (SPECTS 2014), International Symposium

on, pages 585–592, Monterey, CA, USA, July 2014.

[31] S. Snyder, P. Carns, J. Jenkins, K. Harms, R. Ross,
M. Mubarak, and C. Carothers. A case for epidemic
fault detection and group membership in hpc storage
systems. In the 5th International Workshop on
Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS14).,
pages 237–248, New Orleans, LA, USA, Nov. 2014.
Springer International Publishing.

[32] W. Tang, J. Jenkins, F. Meyer, R. B. Ross,
R. Kettimuthu, L. Winkler, X. Yang, T. Lehman, and
N. L. Desai. Data-aware resource scheduling for
multicloud workflows: A fine-grained simulation
approach. In 2014 IEEE 6th International Conference
on Cloud Computing Technology and Science
(CloudCom), pages 887–892, Singapore, Dec. 2014.

[33] G. Wang, A. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions in
MapReduce setups. In IEEE International Symposium
on Modeling, Analysis Simulation of Computer and
Telecommunication Systems, MASCOTS ’09, pages
1–11, London, UK, Sept. 2009.

[34] B. Zhang, D. T. Yehdego, K. L. Johnson, M.-Y.
Leung, and M. Taufer. Enhancement of accuracy and
efficiency for RNA secondary structure prediction by
sequence segmentation and MapReduce. BMC
Structural Biology, 13(Suppl 1):S3, Nov. 2013.

[35] D. Zhao, D. Zhang, K. Wang, and I. Raicu. Exploring
reliability of exascale systems through simulations. In
Proceedings of the High Performance Computing
Symposium, HPC ’13, pages 1:1–1:9, San Diego, CA,
USA, 2013. Society for Computer Simulation
International.

[36] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang,
D. Kimpe, P. Carns, R. Ross, and I. Raicu. Fusionfs:
Toward supporting data-intensive scientific
applications on extreme-scale high-performance
computing systems. In 2014 IEEE International
Conference on Big Data, pages 61–70, Washington,
DC, Oct 2014.

[37] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. V.
Kale. Simulating Large Scale Parallel Applications
using Statistical Models for Sequential Execution
Blocks. In Proceedings of the 16th International
Conference on Parallel and Distributed Systems,

210

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150515103356
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150515103356
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryList_V1
 qi2base

